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POPULAR VALUES OF THE LARGEST PRIME DIVISOR FUNCTION

NATHAN MCNEW

Abstract. We consider the distribution of the largest prime divisor of the integers in the interval
[2, x], and investigate in particular the mode of this distribution, the prime number(s) which show
up most often in this list. In addition to giving an asymptotic formula for this mode as x tends to
infinity, we look at the set of those prime numbers which, for some value of x, occur most frequently
as the largest prime divisor of the integers in the interval [2, x]. We find that many prime numbers
never have this property. We compare the set of “popular primes,” those primes which are at some
point the mode, to other interesting subsets of the prime numbers. Finally, we apply the techniques
developed to a similar problem which arises in the analysis of factoring algorithms.

1. Introduction

Let P (n) denote the largest prime divisor of an integer n ≥ 2. The distribution of the values of
this function as n ranges over the interval [2, x] has been considered by several authors. Alladi and
Erdős [2] investigated the average order of P (n) (as well as the average order of the k-th largest
prime factor) and showed that

1

x

∑

n≤x
P (n) =

π2x

12 log x
+O

(

x

log2 x

)

. (1)

This fact was later shown by Kemeny [10] using different methods, and improved upon by De
Koninck and Ivić, who showed that there exist constants d1, d2 . . . such that for any m ≥ 1,

1

x

∑

n≤x
P (n) = x

(

d1
log x

+
d2

log2 x
+ · · · + dm

logm x
+O

(

1

logm+1 x

))

. (2)

uniformly inm. Naslund [11] worked out the values of the constants in this expression, in particular

dm =

m
∑

j=0

(−1)jζ(j)(2)

j!2m+1−j . (3)

The median value,M(x), of P (n) as n ranges over the integers in [2, x] was considered by Selfridge

and Wunderlich [20] who noted that M(x) = x
1√
e
+o(1)

. The result itself is much older, however,
and was essentially Vinogradov’s trick for extending the usefulness of character sums. Naslund [12]
shows that this median value is given more accurately by

M(x) = e
γ−1√

e x
1√
e

(

1 +
c1

log x
+

c2

log2 x
+ · · · + cm

logm x
+Om

(

1

logm+1 x

))

(4)

where the ci are computable constants.
Note that the median value grows substantially slower than the mean value, which indicates

that the distribution is skewed strongly to the right. De Koninck [4] shows that a mode of this
distribution (note that the mode need not necessarily be unique), corresponding to a prime number
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which occurs with maximal frequency as the largest prime divisor of the integers in [2, x], grows
even slower still, slower than any power of x. More precisely, he shows the mode is given by

e

√

1
2
log x(log log x+log log log x+O(1))

(5)

though in his result the O(1) term is incorrectly given as being o(1). In what follows, we will say
that a prime p is popular on the interval [2,x] if no prime occurs more frequently than p as the
largest prime divisor of the integers in that interval. While the asymptotic behaviors of the mean
and median values of this distribution, as in (2) and (4), are well understood, the relative error
term in (5) is quite large. The primary goal of this paper is to improve (5) and in particular give
the following asymptotic formula, which we prove in Section 4.

Theorem 1.1. If the prime p is popular on the interval [2, x] (i.e., p is a mode of the distribution
of the largest prime divisor function for that interval) then p satisfies

p = exp

{

√

ν(x) log x+
1

4

(

1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)}

(

1 +O

(

(

log log x

log x

)1/4
))

where ν(x) is the solution to the implicitly defined equation eν(x) = 1 +
√

ν(x) log x− ν(x) and is
given approximately by

ν(x) = 1
2 log log x+ 1

2 log log log x− 1
2 log 2 + o(1)

as x→ ∞.

Using this we also give an asymptotic expression for the frequency with which the mode value
occurs, improving the approximation given in [4, Theorem 1].

Theorem 1.2. If p is popular on the interval [2, x], then the number of integers n ∈ [2, x] for which
P (n) = p is given asymptotically by

Ψ

(

x

p
, p

)

=
x√

2π log x
exp

{

−2
√

ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(

1

log log x

)

}

. (6)

In [5] De Koninck and Sweeney consider further the frequency with which prime numbers occur
as the largest prime divisor on the interval [2, x]. They note that for a fixed value of x there exists
an initial interval [2, f(x)] of primes, p on which the frequency with which p = P (n), monotonically
increases at each prime, an intermediate range, (f(x), g(x)) where the behavior is oscillatory, and a
final interval [g(x), x] on which it monotonically decreases. They show that for sufficiently large x,
f(x) ≤

√
log x and g(x) ≥ √

x. Clearly the mode value lies somewhere in the intermediate interval.
The oscillatory behavior and the exact value of the mode depends on the spacing and gaps between
the primes near this peak value.

Somewhat surprisingly one finds that there are primes which are not popular on any interval
[2, x], and experimentally it appears that in fact most primes are not. We therefore define a prime
to be a popular prime if it is popular on an interval [2, x] for some value of x. In Section 5
we investigate further this subset of the primes. Clearly there must be infinitely many popular
primes. We are able to show that there is also a positive proportion of prime numbers which are
not popular. To do this we show that the average prime spacing between popular primes cannot
be too small. We prove a more general result which implies the following bound on their spacing.

Theorem 1.3. Given any two sufficiently large consecutive primes, p < q, if the gap between them,
q − p, is less than 0.153 log p, then p is not a popular prime.

We then combine this with a consequence of the GPY sieve [6] which shows that a positive propor-
tion of prime gaps are smaller than that.
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Corollary 1.4. A positive proportion of primes are not popular.

In Section 6 we present data on the prime numbers which, for some value of x ≤ ×1014, appear
most frequently as the largest prime divisors of the integers in [2, x]. We compare these values
to other subsets of the prime numbers, in particular the “convex primes,” the set of those prime
numbers numbers, pn, which form the vertices of the boundary of the convex hull of the points
(n, pn) in the plane, considered by Pomerance [13] and recently by Tutaj [19]. Within the range of
our computations the convex primes are a subset of the popular primes.

Finally we apply the methods developed in this paper to another problem which turns out to
be closely related to ours, the analysis of the running time of factoring algorithms. A key step in
several algorithms for factoring integers (including Dixon’s random squares algorithm, the quadratic
sieve and the number field sieve) requires generating a pseudorandom sequence of integers a1, a2, . . .
until a subset of the ai’s has product equal to a square. Pomerance [14] notes that in the (usually
heuristic) analysis of these algorithms one can assume that the pseudo-random sequence a1, a2, . . .
is close enough to random that one can make predictions using this assumption, and thus the
analysis of this step of these algorithms can be captured by the following question.

Pomerance’s Problem. Select positive integers a1, a2, . . . ≤ x independently at random (each
integer is chosen with probability 1/x) until some subsequence of the ai’s has product equal to a
square. When this occurs, we say that the sequence has a square dependence. What is the expected
stopping time of this process?

Pomerance [15] showed for any ǫ > 0 that as x→ ∞ the probability that this stopping time lies
in the interval

[

exp
{

(1− ǫ)
√

2 log x log log x
}

, exp
{

(1 + ǫ)
√

2 log x log log x
}]

tends to 1. Croot, Granville, Pemantle and Tetali [3] showed that the interval can be taken to

be
[

(πe
−γ

4 − ǫ) x
h(x) , (e

−γ + ǫ) x
h(x)

]

with the same result, where h(x) is the maximum value of the

function Ψ(x,y)
π(y) taken over y < x. (For simplicity, they find y0 which maximizes ψ(x,y)

y , and then

consider Ψ(x,y0)
π(y0)

.) They give only the same crude approximation

x

h(x)
= exp

{

(1 + o(1))
√

2 log x log log x
}

as Pomerance however. In Section 7 we analyze the values of y which maximize both Ψ(x,y)
y and

Ψ(x,y)
π(y) , and give the following asymptotic for the function h(x).

Theorem 1.5. For a given value of x, the value of h(x), the maximum value of Ψ(x,y)
π(y) for y < x

is given asymptotically by

h(x) =
x√

2π log x
exp

{

−2
√

ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(

1

log log x

)

}

,

the same expression as (6).

2. Smooth Numbers

These results rely on careful estimates for the counts of smooth numbers, those integers whose
prime factors are all less than some bound. In particular a number is called y-smooth if all of its
prime factors are at most y. We will denote by Ψ(x, y) the count of the y-smooth numbers up to
x. We are specifically interested in the count of the number of integers up to x whose largest prime
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factor is the prime p. This count is given by Ψ
(

x
p , p
)

since each integer up to x whose largest

prime divisor is p can be written uniquely as p times a p-smooth number that is at most x/p.
The function Ψ(x, y) has been well studied over the course of the last century. From Hildebrand

[9] we know that for each ǫ > 0, x > 2 and exp
(

(log log x)5/3+ǫ
)

< y < x,

Ψ(x, y) = xρ(u)

(

1 +Oǫ

(

log(u+ 1)

log y

))

(7)

where

u =
log x

log y

and ρ(u), the Dickman rho function, is the continuous solution to the differential delay equation

uρ′(u) + ρ(u− 1) = 0 (8)

with the initial condition ρ(u) = 1, (0 ≤ u ≤ 1). It was shown by Alladi [1] that as u→ ∞,

ρ(u) =

(

1 +O

(

1

u

))

√

ξ′(u)

2π
exp

{

γ − uξ(u) +

∫ ξ(u)

0

es − 1

s
ds

}

. (9)

Here γ is the Euler-Mascheroni constant and ξ(u) denotes the unique positive solution to the
equation

eξ(u) = 1 + uξ(u) (10)

which is given approximately by

ξ(u) = log u+ log log u+O

(

log log u

log u

)

. (11)

It will be useful later to note that
∫ u

0
ξ(t)dt = uξ(u)−

∫ ξ(u)

0

es − 1

s
ds. (12)

Saias [16] gives an approximation for Ψ(x, y) which, while better than Hildebrand’s result, is
somewhat more cumbersome to work with. Defining

Λ(x, y) =











x

∫ x

0
ρ

(

log x− log t

log y

)

d
⌊t⌋
t

x /∈ Z

lim
z→x−

Λ(z, y) x ∈ Z,

then the approximation

Ψ(x, y) = Λ(x, y)

(

1 +Oǫ

(

1

exp
(

(log y)3/5−ǫ
)

))

holds in the same range as Hildebrand’s result. Assuming the Riemann Hypothesis, this can be
improved to

Ψ(x, y) = Λ(x, y)

(

1 +Oǫ

(

log x

y1/2−ǫ

))

.

Saias also shows that the asymptotic expansion

Λ(x, y) = x

k
∑

j=0

aj
ρ(j)(u)

(log y)j
+Ok,ǫ

(

x
ρ(k+1)(u)

(log y)k+1

)

(13)
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where the aj are the coefficients for the Taylor series of (s−1)ζ(s)/s around s = 1, holds uniformly
for x ≥ 2, (log x)1+ǫ < y ≤ x as long as

u− j

k + 1− j
≥ log log y

log y

for 0 ≤ j ≤ min(k, u). We will use extensively Saias’ expansion in the case k = 1. In particular,
the constants a0 and a1 are given by a0 = 1 and a1 = γ − 1 so that if we define

κ(x, y) = ρ(u) + (γ − 1)
ρ′(u)

log y

then the approximation

Ψ(x, y) = xκ(x, y)

(

1 +Oǫ

(

(

log(u+ 1)

log y

)2
))

(14)

holds in the same range as (7).
In order to make use of Saias’ improved approximation we will also require a better approxi-

mation of ρ(u). Both Smida [17] and Xuan [21] have given improved approximations in which the
(

1 +O
(

1
u

))

is replaced by a series involving negative powers of u and ξ(u). Xuan shows that for
any fixed integer N ,

ρ(u) =

√

ξ′(u)

2π
exp

{

γ − uξ(u) +

∫ ξ(u)

0

es − 1

s
ds

}



1 +

N
∑

i=1

1

ui

∞
∑

j=0

bi,j
ξ(u)j

+ON

(

1

uN+1

)



 (15)

where the bi,j are constants and the series is uniformly convergent. We will only be using his result
in the case that N = 1. Smida’s work, which is done in greater generality for a family of differential
difference equations like Dickman’s function, shows that b1,0 = − 1

12 .
Finally, Hildebrand [8, Theorem 3] gives an upper bound for the number of smooth integers in

short intervals which we will useful. Uniformly for x > y > 2, 1 ≤ z ≤ x we have

Ψ (x+ z, y)−Ψ(x, y) ≤
(

1 +O

(

1

log y

))

Ψ(x, y)y log(xy/z)

Ψ(xy/z, y) log y
. (16)

3. Dickman’s Function

The approximation

ρ(u− 1)

ρ(u)
= uξ(u)

(

1 +O

(

1

u

))

(17)

is common in the literature. (See for example [18, Section III.5 Corollary 8.3].) We will need a
slightly stronger form obtained using the work of Smida and Xuan.

Lemma 3.1. For u ≥ 1 and any v ≪ 1 the function ρ(u) satisfies

ρ(u+ v)evξ(u)

ρ(u)
= 1− v

2u

(

1 +
vξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)2

)

+O

(

1

u2

)

. (18)

In particular when v = −1,

ρ(u− 1)

ρ(u)
= uξ(u) +

1

2
+

1

2(ξ(u) − 1)2
+O

(

ξ(u)

u

)

. (19)
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Proof. By implicit differentiation of the functional equation eξ(u) = 1 + uξ(u) we find that

ξ′(u) =
ξ(u)

uξ(u)− u+ 1
=

1

u

(

ξ(u)

ξ(u)− 1

)

+O

(

1

u2ξ(u)

)

, (20)

that

ξ′′(u) =
2ξ′(u)− eξ(u)ξ′(u)2

uξ(u)− u+ 1

=
2ξ(u)

(uξ(u)− u+ 1)2
− uξ(u)3 + ξ(u)2

(uξ(u)− u+ 1)3
= − 1

u2
+O

(

1

u2ξ(u)

)

, (21)

and that ξ′′′(u) ∼ 1/u3. Also,

ξ′′(u)

ξ′(u)
=

2− eξ(u)ξ′(u)

ξ(u)− u+ 1
=

2

uξ(u)− u+ 1
− uξ(u)2 + ξ(u)

(uξ(u) − u+ 1)2

=
2

u

(

1

ξ(u)− 1

)

− 1

u

(

ξ(u)2

(ξ(u)− 1)2

)

+O

(

1

u2ξ(u)

)

= −1

u

(

1 +
1

(ξ(u)− 1)2

)

+O

(

1

u2ξ(u)

)

. (22)

Now, using equation (15) with N = 1, along with (12) and the approximation
∫ u+v

u
ξ(t)dt = vξ(u) +

v2ξ′(u)

2
+O

(∣

∣ξ′′(u)
∣

∣

)

we find that

ρ(u+ v) = ρ(u)

√

ξ′(u+ v)

ξ′(u)
exp

{

−
∫ u+v

u
ξ(t)dt

}





1 + 1
u+v

∑∞
j=0

b1,j
ξ(u+v)j

+O
(

1
u2

)

1 + 1
u

∑∞
j=0

b1,j
ξ(u)j

+O
(

1
u2

)





= ρ(u)

√

1 + v
ξ′′(u)

ξ′(u)
+O

(

ξ′′′(u)

ξ′(u)

)

exp

{

−vξ(u)− v2ξ′(u)

2
+O

(∣

∣ξ′′(u)
∣

∣

)

}(

1+O

(

1

u2

))

= ρ(u)e−vξ(u)
(

1 +
vξ′′(u)

2ξ′(u)
− v2ξ′(u)

2
+O

(

1

u2

))

.

Here we have used the Taylor expansions for
√
1 + x and ex around x = 0. Finally, using equations

(20) and (22) we have

ρ(u+ v) = ρ(u)e−vξ(u)
(

1− v

2u

(

1 +
1

(ξ(u)− 1)2

)

− v2

2u

(

ξ(u)

ξ(u)− 1

)

+O

(

1

u2

))

= ρ(u)e−vξ(u)
(

1− v

2u

(

1 +
vξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)2

)

+O

(

1

u2

))

.

In the specific case v = −1, we have that eξ(u) = 1 + uξ(u), and so

ρ(u− 1) = ρ(u) (uξ(u) + 1)

(

1 +
1

2u

(

1− ξ(u)

ξ(u)− 1
+

1

(ξ(u)− 1)2)

)

+O

(

1

u2

))

= ρ(u)

(

uξ(u) + 1 +
ξ(u)

2

(

− 1

ξ(u)− 1
+

1

(ξ(u)− 1)2)

)

+O

(

ξ(u)

u

))

= ρ(u)

(

uξ(u) +
1

2
+

1

2(ξ(u) − 1)2
+O

(

ξ(u)

u

))

.

�
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We can use Lemma 3.1 to obtain a good approximation for the derivative of ρ(u).

Lemma 3.2. For u ≥ 1 we have

ρ′(u) = −ρ(u)
(

ξ(u) +
1

2u

(

1 +
1

(ξ(u)− 1)2

)

+O

(

ξ(u)

u2

))

. (23)

Proof. Using the differential difference equation for ρ(u) and Lemma 3.1 we have

ρ′(u) = −1

u
ρ(u− 1) = −ρ(u)

(

ξ(u) +
1

2u

(

1 +
1

(ξ(u) − 1)2

)

+O

(

ξ(u)

u2

))

.

�

4. The most popular largest prime divisor

For x ≥ 2 we say that a prime p is popular on the interval [2, x] if no prime occurs more frequently
than p as the largest prime divisor of the integers in that interval. In the case of a tie we will say that
any prime which occurs a maximal number of times is popular. The following theorem, Theorem
1.1 in the introduction, makes use of Saias’ approximation (14). In particular, this result implies

that for each ǫ > 0, x > 4, p ≥ 2 and exp
(

(log log x)5/3+ǫ
)

< p < x
p ,

ψ

(

x

p
, p

)

=
x

p
κ

(

x

p
, p

)

(

1 +Oǫ

(

(

log log x

log p

)2
))

. (24)

Theorem 4.1. If the prime p is popular on the interval [2, x] then p satisfies

p = exp

{

√

ν(x) log x+
1

4

(

1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)}

(

1 +O

(

(

log log x

log x

)1/4
))

(25)

where ν(x) is the solution to the implicitly defined equation ν(x) = ξ
(√

logx
ν(x) − 1

)

and is given

approximately by

ν(x) = 1
2 log log x+ 1

2 log log log x− 1
2 log 2 + o(1) (26)

as x→ ∞.

Proof. By using the functional equation (10) for ξ(u), we can rewrite the equation for ν(x) as the
solution to

eν(x) = 1 +
√

ν(x) log x− ν(x) (27)

which can be approximated using standard asymptotic techniques to yield the rough approximation
above.

The proof proceeds in three steps, each giving better bounds for any prime that is popular on
the interval [2, x]. We show first that as x→ ∞, if p is popular on [2, x], then p satisfies

exp

{

(

1

4
+ o(1)

)

√

log x

ν(x)

}

< p < exp
{

(2 + o(1))
√

ν(x) log x
}

. (28)

Next, we show that

p = exp
{

√

ν(x) log x+O(log log x)
}

, (29)

and finally that the approximation (25) holds.

To see that Ψ
(

x
p , p
)

is maximized near (28), we first set

P0 = exp
{

√

ν(x) log x
}

7



and let

u0 =
log x

logP0
− 1 =

√

log x

ν(x)
− 1.

If p′ is the greatest prime less than or equal to P0 then Ψ
(

x
p′ , p

′
)

≥ Ψ
(

x
P0
, P0

)

and hence if

Ψ
(

x
q , q
)

< Ψ
(

x
P0
, P0

)

, for some prime q, then q is not popular on [2, x].

Note that by definition ν(x) = ξ(u0). We then compute, using (7) as well as (9) that

Ψ

(

x

P0
, P0

)

=
x

P0
ρ(u0)

(

1 +O

(

log u0
log P0

))

= x

√

ξ′(u0)

2π
exp

{

γ − u0ξ(u0) +

∫ ξ(u0)

0

es − 1

s
ds

}

(

1 +O

(

1

u0

))

≫ x√
u0

exp

{

−
(
√

log x

ν(x)
− 1

)

ν(x)−
√

ν(x) log x

}

= x exp
{

−2
√

ν(x) log x+ ν(x)− 1
2 log u0

}

≥ x exp
{

−2
√

ν(x) log x
}

(30)

for sufficiently large x. Using the elementary estimate Ψ (x, y) ≪ x exp
{

− log x
2 log y

}

, x ≥ y ≥ 2,

(see [18, Section III.5 Theorem 1]) we see that for any ǫ > 0 and sufficiently large x that if

q < exp

{ √
log x

(4+ǫ)
√
ν(x)

}

, then

Ψ

(

x

q
, q

)

≪ x

q
exp

{

− log x

2 log q

}

< x exp
{

−(2 + ǫ
2 )
√

ν(x) log x
}

which is asymptotically less than (30). Similarly, if q > exp
{

(2 + ǫ)
√

ν(x) log x
}

, then trivially

Ψ

(

x

q
, q

)

<
x

q
< x exp

{

−(2 + ǫ)
√

ν(x) log x
}

, (31)

which proves (28). We can thus assume without loss of generality in the following that a prime
popular on [2, x] must lie in the range where Hildebrand’s approximation (7) holds, which we now
use along with (9) and (12) to prove (29).

Suppose q is a prime lying in the interval (28), also satisfying

| log P0 − log q| > 2ν(x). (32)

We will show that for sufficiently large x, Ψ
(

x
P0
, P0

)

> Ψ
(

x
q , q
)

which means that some other

prime occurs more frequently than q as the largest prime divisor on the interval [2, x], which will
then imply (29) because ν(x) = O(log log x).

8



Letting uq =
log x
log q − 1 and, as before, u0 = log x

logP0
− 1 =

√

log x
ν(x) − 1, we have, using (9) and (12)

that

Ψ
(

x
P0
, P0

)

Ψ
(

x
q , q
) =

x
P0
ρ
(

log x
logP0

− 1
)

x
q ρ
(

log x
log q − 1

)

(

1 +O

(

log log x

log P0

))

=
q

P0

√

ξ′(u0)

ξ′(uq)
exp

{∫ uq

u0

ξ(t)dt

}(

1 +O

(

1

u0

)

+O

(

log log x

log P0

))

. (33)

First, if q < P0 then u0 < uq and so, using (20) we know that ξ′(u0)
ξ′(uq)

> 1, at least for sufficiently

large x, and that
∫ uq
u0
ξ(t)dt > (uq − u0)ξ(u0). Using these inequalities we see that the main term

in (33) is greater than

q

P0
exp {(uq − u0)ξ(u0)} = exp

{

log q − logP0 +

(

log x

log q
− log x

logP0

)

ξ(u0)

}

. (34)

Because ξ(u0) = ξ
(

log x
logP0

− 1
)

= ν(x) = log2 P0

log x , we can rewrite the exponent above as

log q − log P0 +
log2 P0

log q
− logP0. (35)

Differentiating this with respect to log q gives 1− log2 P0

log2 q
, which is negative for all q < P0, and so, as

a function of q, (35) is strictly decreasing for all q < P0. Thus, in our situation, (34) is minimized
when log P0 − log q = 2ν(x) in which case it equals

exp

{

−2ν(x) + log P0

(

logP0

logP0 − 2ν(x)
− 1

)}

= exp

{

4ν(x)2

logP0 − 2ν(x)

}

.

This is not only greater than 1, but also asymptotically greater than the error term of (33), and
so we can conclude that the ratio there is strictly greater than 1, for sufficiently large x. Therefore
some other prime occurs more frequently than q as the largest prime divison on [2, x].

If instead, q > P0, we have uq < u0 which means ξ′(u0)
ξ′(uq)

< 1, and so a little more care is required.

Let δ = u0 − uq. Because log q − logP0 > 2ν(x), we will have that

δ = u0 − uq =
log x

logP0
− log x

log q
>

log x

logP0
− log x

log P0 + 2ν(x)
>

1.99ν(x) log x

log2 P0
= 1.99

for sufficiently large x. Also, from (28), we may assume that for any fixed 0 < ǫ < 1
2 and sufficiently

large x, log q < (2 + ǫ) log P0 and so

δ =
log x

log P0
− log x

log q
< u0

(

1− 1

2 + ǫ

)

<
3u0
5
. (36)

In this case we can use (20) to approximate

ξ′(u0)

ξ′(uq)
=

(

ξ(u0)

ξ(u0 − δ)

)(

(u0 − δ)ξ(u0 − δ) − u0 + δ + 1

u0ξ(u0)− u0 + 1

)

=

(

ξ(u0)

ξ(u0) +O (δξ′(u0))

)(

1− δ (ξ(u0) +O(1))

u0ξ(u0)− u0 + 1
+O

(

1

u0ξ(u0)

))

= 1− δ

u0
+O

(

δ

u0ξ(u0)

)

.
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If we now use the somewhat more precise approximation

∫ uq

u0

ξ(t)dt > −(u0 − uq)ξ(u0) +
1

2
(u0 − uq)

2ξ′(u0),

we have that the main term of (33) is greater than

q

P0

√

ξ′(u0)

ξ′(uq)
exp

{

(uq − u0)ξ(u0) +
1

2
(u0 − uq)

2ξ′(u0)

}

. (37)

We now consider the term

√

ξ′(u0)

ξ′(uq)
exp

{

1

2
(u0 − uq)

2ξ′(u0)

}

=

√

1− δ

u0
+O

(

δ

u0ξ(u0)

)

exp

{

δ2

2u0

(

1 +O
(

1
ξ(u0)

))

}

, (38)

using (20). Using (36) we see that when δ >
√
u0 this expression is greater than

√

2e
5 > 1 for

sufficiently large x. If δ ≤ √
u0, then we can rewrite (38) as

exp

{

δ2

2u0
+ 1

2 log

(

1− δ

u0

)

+O

(

δ2

u0ξ(u0)

)}

= exp

{

δ2 − δ

2u0
+O

(

δ2

u0ξ(u0)

)}

, (39)

which is greater than 1 for sufficiently large x since δ > 2. Since this term (38) can now be ignored
in inequality (37) we are left with the same inequality (34) as in the first case, and essentially the
same analysis shows that the ratio is again greater than 1. This proves equation (29).

In order to prove the theorem, we will now need to use the more precise approximation (14). In

particular we have, using that u = log x
log p − 1 and that p is in the interval described in (28),

Ψ

(

x

p
, p

)

=
x

p
κ

(

x

p
, p

)

(

1 +O

(

(

log log x

log p

)2
))

=
x

p

(

ρ (u) + (γ − 1)
ρ′ (u)

log p

)

(

1 +O

(

(

log log x

log p

)2
))

=
x

p
ρ(u)

(

1 +
1− γ

log p
ξ(u) +O

(

1

u2

))

. (40)

Let c be a parameter,

s = exp
{

√

ν(x) log x+ cν(x)
}

, (41)

and us =
log x
log s − 1.

In the following we will optimize the value of c as a function of x, however, from (32), we can
assume without loss of generality that |c| ≤ 2. In particular, we would like to choose c so as to

10



maximize the ratio

Ψ
(

x
s , s
)

Ψ
(

x
P0
, P0

) =

x
sρ(us)

(

1 + 1−γ
log sξ(us)

)

x
P0
ρ(u0)

(

1 + 1−γ
logP0

ξ(u0)
)

(

1 +O

(

1

u20

))

= e−cν(x)
ρ(us)

(

1 + 1−γ√
ν(x) log x+cν(x)

ξ(us)

)

ρ(u0)

(

1 + 1−γ√
ν(x) log x

ξ(u0)

)

(

1 +O

(

1

u20

))

. (42)

Now, since
√

ν(x)
logx = 1

u0+1 , we have that

us − u0 =
log x

log s
− log x

log P0
=

log x
√

ν(x) log x+ cν(x)
− log x
√

ν(x) log x

= −c+ c2

√

ν(x)

log x
+O

(

c3

u20

)

= −c+ c2

u0 + 1
+O

(

c3

u20

)

(43)

and so, using Lemma 3.1, and the fact that ν(x) = ξ(u0),

ρ(us)

ρ(u0)
= exp

{

ν(x)

(

c− c2

u0+1
+O

(

c3

u20

))}(

1 +
c

2u0

(

1− cν(x)

ν(x)−1
+

1

(ν(x)−1)2

)

+O

(

1

u20

))

= exp

{

cν(x)−c2
(

ν(x)

u0+1
+

ν(x)

2u0(ν(x)−1)

)

+
c

2u0

(

1+
1

(ν(x)−1)2

)

+O

(

c3ν(x)+1

u20

)}

. (44)

Also, we see that the final term of (42) can be ignored since

1 + 1−γ√
ν(x) log x+cν(x)

ξ(us)

1 + 1−γ√
ν(x) log x

ξ(u0)
= 1 +

1−γ√
ν(x) log x+cν(x)

ξ(us)− 1−γ√
ν(x) log x

ξ(u0)
(

1 + 1−γ√
ν(x) log x

ξ(u0)

)

= 1 +

1−γ√
ν(x) log x

(ξ(us)− ξ(u0)) +O
(

ξ(us)
log x

)

(

1 + 1−γ√
ν(x) log x

ξ(u0)

)

= 1 +

1−γ√
ν(x) log x

ξ′(u0) (us − u0) +O
(

1
u20

)

(

1 + 1−γ√
ν(x) log x

ξ(u0)

)

= 1 +O

(

1

u20

)

. (45)

Using (44) and (45) in the ratio (42) we have that

Ψ
(

x
s , s
)

Ψ
(

x
P0
, P0

)

= exp

{

−c2ν(x)
(

1

u0+1
+

1

2u0(ν(x)−1)

)

+
c

2u0

(

1+
1

(ν(x)−1)2

)

+O

(

c3ν(x)+1

u20

)}

, (46)
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and so maximizing this ratio is equivalent to maximizing the polynomial expression in c appearing

in the exponent. After rescaling by dividing out a factor of ν(x)
(

1
u0+1 +

1
2u0(ν(x)−1)

)

this expression

is

−c2 + c

2ν(x)

(

1 + 1
(ν(x)−1)2

u0
u0+1 +

1
2(ν(x)−1)

)

+O

(

c3

u0
+

1

ν(x)u0

)

(47)

which is maximized by some c satisfying

c =
1

4ν(x)

(

1 + 1
(ν(x)−1)2

u0
u0+1 +

1
2(ν(x)−1)

)

+O

(

c3/2√
u0

+
1

√

ν(x)u0

)

=
1

2ν(x)

(

ν(x)2 − 2ν(x) + 2

2ν(x)2 − 3ν(x)1 + 1

)

+O

(

1
√

ν(x)u0

)

=
1

4ν(x)

(

1− ν(x)− 3

2ν(x)2 − 3ν(x) + 1

)

+O

(

1
√

ν(x)u0

)

. (48)

Using this expression for c in (41), we see that the ratio (42) is maximized when s satisfies the
expression given in (25). �

We can use this result to give an asymptotic for the number of times that a prime which is popular
on [2, x] appears as the largest prime divisor of an integer on that interval, which we denote by
C(x), thus giving the height of the peak of the distribution of P (n) on the interval [2, x]. (Note
that if multiple primes are popular on [2, x], they occur the same number of times on that interval,
so the function C(x) is well defined for all x.) This theorem is Theorem 1.2 in the introduction.

Theorem 4.2. If p is popular on the interval [2, x], then C(x), the count of integers n ∈ [2, x] for
which P (n) = p, is given asymptotically by

C(x) =
x√

2π log x
exp











−2
√

ν(x) log x+

ν(x)
∫

0

es−1

s
ds+

3ν(x)

2
+γ+O

(

1

ν(x)

)











. (49)

Proof. We know from the above theorem that if p is popular on [2, x] then

p = exp

{

√

ν(x) log x+
1

4
+O

(

1

ν(x)

)}

. (50)

Using (7),

Ψ

(

x

p
, p

)

=
x

p
ρ(u)

(

1 +O

(

log(1 + u)

log p

))

, (51)

where

u =
log x

log p
− 1 =

log x
√

ν(x) log x+ 1
4 +O

(

1
ν(x)

) − 1

=

√

log x

ν(x)
− 1− 1

4ν(x)
+O

(

1

ν(x)2

)

. (52)
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Now,

ξ(u) = ξ

(
√

log x

ν(x)
− 1 +O

(

1

ν(x)

)

)

= ξ

(
√

log x

ν(x)
− 1

)

+O





ξ′
(√

logx
ν(x) − 1

)

ν(x)





= ν(x) +O

(

1
√

ν(x) log x

)

, (53)

so, using (9), along with (20) we see that

ρ(u) =

(

1 +O

(

1

u

))

√

ξ′(u)

2π
exp

{

γ − uξ(u) +

∫ ξ(u)

0

es − 1

s
ds

}

=

(

1 +O

(

1

ν(x)

))

√

1

2πu
exp

{

γ − uν(x) +

∫ ν(x)

0

es − 1

s
ds+O

(

eν(x) − 1

ν(x)
√

ν(x) log x

)}

=
1√
2π

(

ν(x)

log x

)1/4

exp

{

γ −
√

ν(x) log x+ ν(x) +
1

4
+

∫ ν(x)

0

es − 1

s
ds+O

(

1

ν(x)

)

}

. (54)

Combining this with (50) and (51) we have that

Ψ
(

x
p , p
)

=
x√

2π log x
exp











−2
√

ν(x) log x+

ν(x)
∫

0

es−1

s
ds+

3ν(x)

2
+γ+O

(

1

ν(x)

)











,

where we have also used (27) to see that eν(x)/2 = (ν(x) log x)1/4 +O
(

ν(x)3/4

(log x)1/4

)

. �

Note that, asymptotically,
∫ ν(x)
0

es−1
s ds = eν(x)

ν(x) + O
(

eν(x)

ν(x)2

)

=
√

log x
ν(x) + O

(√
log x
ν(x)

)

, and so the

expression in (49) is given approximately by

x exp
{

−
√

2 log x (log log x+ log log log x− (2 + log 2) + o(1))
}

(55)

which is the estimate given in [4, Theorem 1].

5. Popular primes

Having seen that the value of any prime which is popular on the interval [2, x] tends, slowly, to
infinity and takes on prime values, one might expect that every prime number is popular on some
such interval. This turns out not to be the case. We define a popular prime to be a prime number
which is popular on some such interval [2, x].

In what follows we will see that not only are there prime numbers which are not popular, but in
fact there is a positive proportion of primes which are not popular. First however, we use Theorem
4.1 to give a lower bound for their count.

Corollary 5.1. There exists an absolute positive constant C such that the count of of the popular

primes up to x, for x > 10, is at least C log3/2 x√
log log x

.
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Proof. Theorem 4.1 implies that there exists an absolute constant C ′ such that for any popular
prime, p, popular on the interval [2, x′], there exists another popular prime in the interval

(

p, p

(

1 + C ′

(

(

log log x′

log x′

)1/4
))]

. (56)

Setting y = p we have log y =
√
log x′ log log x′ + O (1), and so we see that for a suitably large

choice of C ′′ and any y there is a popular prime in the interval
(

y, y

(

1 + C ′′

√

log log y

log y

)]

. (57)

If we restrict to counting popular primes appearing in [x1/2, x] in intervals of the form (57) where

y is greater than x1/2, then we may assume that 1 + C ′′
√

log log y
log y ≥ 1 + C ′′′

√

log log x
log x for yet an-

other constant C ′′′. The number of non-overlapping intervals of the form
(

y, y
(

1 + C ′′′
√

log log x
log x

)]

between x1/2 and x is
1
2 log x

log
(

1 + C ′′′
√

log log x
log x

) ≫ log3/2 x√
log log x

(58)

and the result follows. �

Before we can prove an upper bound for the distribution of the popular primes, we need first a
version of the Buchstab identity for the function Ψ(x, y) defined earlier.

Lemma 5.2. Let pn denote the nth prime number. For any k ≥ 1,

Ψ

(

x

pn+k
, pn+k

)

= Ψ

(

x

pn+k
, pn

)

+
k
∑

i=1

Ψ

(

x

pn+kpn+i
, pn+i

)

. (59)

Proof. The left hand side, Ψ
(

x
pn+k

, pn+k

)

counts those integers at most x whose largest prime

factor is pn+k. Taking such an integer m, and dividing out a factor of pn+k we obtain an integer,
m

pn+k
, at most x

pn+k
whose largest prime factor is either less than or equal to pn, in which case m is

counted by Ψ
(

x
pn+k

, pn

)

, or its largest prime factor is pn+i for some 1 ≤ i ≤ k, in which case m is

counted by Ψ
(

x
pn+kpn+i

, pn+i

)

. �

We can use this lemma to show that the average prime spacing between popular primes cannot
be too small.

Theorem 5.3. If the primes pn and pn+k are any two popular primes satisfying

pn+k − pn = O

(

pn
log pn

)

, (60)

then the average prime gap between these primes must satisfy

pn+k − pn
k

≥
(

1 +O

(

log log pn
log pn

))

ρ(2− α) log pn
2− α

, (61)

where α =
log(pn+k−pn)

log pn
.
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Proof. Suppose that pn and pn+k, k > 0 are any two popular primes satisfying (60) and let α =
log(pn+k−pn)

log pn
. Because both pn and pn+k are popular, there exist integers xn and xn+k such that pn

is popular on the interval [2, xn], and likewise pn+k is popular on [2, xn+k].

Now, as x increases, the function Ψ
(

x
p , p
)

is nondecreasing, in fact, as x increases through the

integers, the difference Ψ
(

x+1
p , p

)

− Ψ
(

x
p , p
)

is either 0 or 1. So, in the case that xn+k ≥ xn, we

have that

Ψ

(

xn
pn+k

, pn+k

)

≤ Ψ

(

xn
pn
, pn

)

≤ Ψ

(

xn+k
pn

, pn

)

≤ Ψ

(

xn+k
pn+k

, pn+k

)

. (62)

Thus, we see that as x increases from xn to xn+k, there must be an intermediate integer x′ between
xn+k and xn for which

Ψ

(

x′

pn+k
, pn+k

)

= Ψ

(

x′

pn
, pn

)

. (63)

Note that it need not necessarily be the case that xn+k ≥ xn, however the case that xn+k < xn is
essentially identical and we again find an integer x′ between these values satisfying (63).

By Theorem 4.1 we know that both

log pn =
√

ν(xn) log xn +
1

4
+O

(

1

ν(xn)

)

and

log pn+k =
√

ν(xn+k) log xn+k +
1

4
+O

(

1

ν(xn+k)

)

.

Since log pn+k − log pn = O
(

1
log pn

)

and x′ lies between xn and xn+k we must have that

log pn =
√

ν(x′) log x′ +
1

4
+O

(

1

ν(x′)

)

. (64)

Set u0 =
log x′

log pn
−1. Using Equation 63, Lemma 5.2 and the approximation Ψ(x, y) =

(

1+O
(

1
u

))

xρ(u)
we can write

Ψ

(

x′

pn
, pn

)

−Ψ

(

x′

pn+k
, pn

)

=

k
∑

i=1

Ψ

(

x′

pn+kpn+i
, pn+i

)

=

(

1 +O

(

1

u0

)) k
∑

i=1

x′

pn+ipn+k
ρ

(

log x− log pn+k − pn+i
log pn+i

)

. (65)

Using Lemma 3.1,

ρ

(

log x′ − log pn+k − log pn+i
log pn+i

)

= ρ





log x′ − 2 log pn +O
(

1
log pn

)

log pn

(

1 +O
(

1
log2 pn

))





= ρ

(

(u0 − 1)

(

1 +O

(

1

log2 pn

)))

=

(

1 +O

(

u0 log u0

log2 pn

))

ρ(u0 − 1)

=

(

1 +O

(

1

log pn

))

ρ(u0 − 1). (66)
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Since

k
∑

i=1

1

pn+i
=

k
∑

i=1

1

pn +O
(

pn
log pn

) =
k

pn

(

1 +O

(

1

log pn

))

, (67)

we have that

Ψ

(

x′

pn
, pn

)

−Ψ

(

x′

pn+k
, pn

)

=

(

1 +O

(

1

u0

))

x′k

pnpn+k
ρ(u0 − 1). (68)

On the other hand, using Hildebrand’s upper bound for the count of smooth numbers in short

intervals with z =
x′(pn+k−pn)
pnpn+k

= x′pα−1
n

pn+k
we have that

Ψ

(

x′

pn
, pn

)

−Ψ

(

x′

pn+k
, pn

)

= Ψ

(

x′

pn+k
+ z, pn

)

−Ψ

(

x′

pn+k
, pn

)

≤
(

1 +O

(

1

log pn+k

)) Ψ
(

x′

pn+k
, pn

)

pn log
(

x′pn
zpn+k

)

Ψ
(

x′pn
zpn+k

, pn

)

log pn

=

(

1 +O

(

1

u0

))
x′pn
pn+k

ρ
(

log x′−log pn+k

log pn

)(

log x′ − log z +O
(

1
log pn

))

x′pn
zpn+k

ρ
(

log x′+log pn−log pn+k−log z
log pn

)

log pn

=

(

1 +O

(

1

u0

)) zρ (u0)
(

(2− α) log pn +O
(

1
log pn

))

ρ

(

(2−α) log pn+O
(

1
log pn

)

log pn

)

log pn

=

(

1 +O

(

1

u0

))

(2− α)ρ (u0) x
′(pn+k − pn)

ρ (2− α) pnpn+k
. (69)

Using (20) to see that

ξ(u0) = ξ

(

log x′

log pn
− 1

)

= ξ

(

log x′
√

ν(x′) log x′ +O(1)
− 1

)

= ξ

(
√

log x′

ν(x′)
− 1 +O

(

1
ν(x′)

)

)

= ν(x′) +O

(

ξ′(u0)

ν(x′)

)

= ν(x′) +O
(

1
log pn

)

, (70)

and, from the functional equation (27) for ν(x), that

ν(x′) = log
(

1 +
√

ν(x′) log x′ − ν(x′)
)

= log
(

log pn − ν(x′) +O(1)
)

)

= log log pn + o(1) (71)
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we can conclude, by combining (68) and (69), and using (17) that

pn+k − pn
k

≥
(

ρ(2− α)

2− α
+O

(

1

u0

))

ρ(u− 1)

ρ(u0)

=

(

ρ(2− α)

2− α
+O

(

1

u0

))

u0ξ(u0)

=

(

ρ(2− α)

2− α

)

ξ(u0) log x
′

√

ν(x′) log x′
+O(ξ(u0))

=

(

1 +O

(

log log pn
log pn

))

ρ(2− α) log pn
2− α

. (72)

�

As a corollary, we see that for any sufficiently large pair of twin primes, or consecutive primes
with any fixed gap, the smaller of the pair will never be a popular prime. In fact, approximating
ρ(2)/2 = 0.153 . . . we have the following stronger result, which is Theorem 1 in the introduction.

Corollary 5.4. Given any two sufficiently large consecutive primes, p < q, if the gap between
them, q − p, is less than 0.153 log p, then p is not a popular prime.

Goldston, Pintz and Yıldırım [6] have shown that for any fixed η, there is a positive proportion
of prime numbers, p, which are followed by a gap less than η log p, which means we can conclude
the following, Corollary 1.4 from the introduction, as well.

Corollary 5.5. A positive proportion of the prime numbers are not popular.

Note that if we assume that the smooth numbers are regularly distributed in all of the short
intervals that we are concerned with in the proof of Theorem 5.3 we can do much better. Assuming,
as is widely conjectured, that

Ψ(x+ z, y)−Ψ(x, y) ∼ z

x
Ψ(x, y) (73)

for y ∼ exp
(

√

ν(x) log x+ 1
4

)

and z > x/y2, we could show, by the method of Theorem 5.3, that

the average gap between any two popular primes p and q, p < q, must be asymptotically equal to
log q, and thus that the popular primes have relative density 0 among the primes.

6. Computations and the Convex Primes

Compiling a list of the popular primes is computationally difficult, as it requires counting all
of the largest prime divisors of integers up to relatively large values of x compared to the pop-
ular primes themselves. The first few popular primes (popular on some interval [2, x] for some
x ≤70,000,000,000,000) and the integer x for which they were first popular on the interval [2, x] are
given in the table below. Note that thus far no prime has been a popular prime without being the
uniquely popular prime on some such interval. Further, the table gives the count of the number of
times the prime occurs as the largest prime divisor of an integer in the interval [2, x].
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Primes popular on some interval [2, x] for x ≤ 1014

Popular
Prime

First popular
on [2, x]

First uniquely
popular

Last popular
on [2, z] C(x) C(z)

2 2 2 17 1 4
3 3 12 119 1 14
5 45 80 279 8 25
7 70 196 1858 10 77
13 1456 1638 5471 67 151
19 4845 4864 29301 140 428
23 20332 22425 53474 344 616
31 46345 46500 117303 563 1005
43 106812 109779 220523 947 1517
47 153032 158625 611374 1197 2902
73 592760 603564 2642391 2846 7664
83 2484190 2552416 2672025 7357 7722
109 2620033 2620142 2952463 7621 8284
113 2623860 2627250 41192601 7629 48380
199 41163150 41163747 237611044 48357 161644
283 237321819 237398795 1967277194 161507 698074
467 1966462280 1966466950 13692930957 697875 2761234
661 13690728506 13690729828 64358549949 2760913 8357693
773 64322151699 64322158656 79880100420 8354317 9758410
887 79838726306 79838739611 220369251374 9754751 20285553
1109 220355977754 220355987735 232880841877 20284680 21123128
1129 232268764689 232268774850 618765808209 21082412 43031555
1327 618745965579 618745972214 1882062587041 43030537 96835113
1627 1882062393429 1882062476406 9607847299025 96835105 318539488
2143 9607711921430 9607713772982 19364476224949 318536223 534261087
2399 19364051434020 19364051829855 26396066576762 534252383 672081919
2477 26393150922356 26393150937218 37636861534247 672026918 873949289
2803 37636607775855 37636607806688 84128837898779 873944930 1588958920
2861 84128837864448 84128837898780 85992223800357 1588958920 1612740571
2971 85992223734996 85992223800358 89487767416445 1612740571 1656313907
3023 89487767413423 89487767416446 90749798232275 1656313907 1672851087
3041 90749798153210 90749798232276 91157523869191 1672851087 1678444884
3049 91015395545226 91015395548275 91473520711546 1676495503 1682728352
3089 91473520705369 91473520711547 92913565436551 1682728352 1699108828
3137 93871134565472 93871134606253 94131107722837 1708870682 1712113344
3373 94131107675616 94131107722838 > 1014 1712113344 > 1791544685

Note that the ranges of popularity for 73, 83, 109 and 113 all overlap, and in fact all four are
popular on the interval [2, 2626355], each occurring 7634 times.

Thus far, the data for the popular primes appear to be related to a subset of the prime numbers
studied by Pomerance [13] and Tutaj [19] and also discussed in Guy’s book of unsolved problems in
number theory [7, Problem A14]. This set, the “convex primes,” is the set of those prime numbers
numbers, pn, which form the vertices of the boundary of the convex hull of the points (n, pn) in the
plane. Pomerance uses this set of primes to show that there are infinitely many primes pn which
satisfy the inequality

2pn < pn−i + pn+i for all positive i < n.
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Using the best known error term for the prime number theorem, Pomerance claims that there are
at least exp(c(log x)3/5−ǫ) convex primes up to x for any ǫ > 0 and some constant c > 0. Assuming

the Riemann hypothesis gives at least c′x1/4/ log3/2 x convex primes.
The values of the popular primes computed above are a superset of the convex primes: all of the

convex primes less than 3000 are also popular. Furthermore, all of those primes, pn, where the point
(n, pn) lies on the boundary of the convex hull but is not a vertex point of it (namely 5, 13, 23, 31 and
43) are popular as well. The popular primes 83, 109, 773, 1109, 2143, 2399, 2477, 2861, 2971, 3023,
3041, 3049, 3089, 3137 and 3373 correspond to points on the interior of the convex hull, however.

Both convex primes and popular primes are more likely to be found after a run of densely
packed primes, and prior to a larger than average gap betwen primes, which partially justifies
the connection. If one assumes that the convex primes continue to be a subset of the popular
primes, then we would expect the count of the popular primes up to x to be at least x1/4/ log3/2 x,
substantially better than what we are able to prove in Corollary 5.1. In a forthcoming paper we
will further discuss the convex primes, including a significantly improved upper bound for their
count.

7. Optimization of factoring algorithms: making squares

As mentioned in the introduction, the analysis done here is closely related to a key step in the
analysis of the running time of a variety of factoring algorithms. In particular, one wishes to choose
an optimal smoothness bound y so as to minimize the number of random integers that must be
chosen from the interval [1, x] before the product of some subset of the integers chosen at random
is a square. When some subset of the integers has this property we say that the set has a square
dependence. Since the probability an integer chosen at random from the interval [1, x] is y-smooth
is x

Ψ(x,y) , and any set of π(y)+1 y-smooth integers contains a square dependence, it is advantageous

to pick a value of y which minimizes the expression xπ(y)
Ψ(x,y) , or equivalently maximizes

Ψ(x, y)

π(y)
=

(

1 +O

(

1

log y

))

Ψ(x, y) log y

y
≈ Ψ(x, y)

y
. (74)

The analysis of the maximum value of Ψ(x,y)
y is highly similar to the analysis of the peak value

of Ψ
(

x
p , p
)

performed in Section 4. In fact, maximizing Ψ(x,y)
y requires maximizing the same

expression (40) as in the proof of Theorem 4.1, with the modification that now u = log x
log p , rather

than that value shifted by one. One thus finds that after suitably modifying the implicitly defined

function ν(x) used in the proof, replacing it instead with the function ω(x) = ξ

(

√

ω(x)
log x

)

, which

satisfies the functional equation

eω(x) = 1 +
√

ω(x) log x, (75)

and, like ν(x) is given approximately by

ω(x) = 1
2 log log x+ 1

2 log log log x− 1
2 log 2 + o(1) (76)

as x→ ∞, the exact same analysis goes through and one obtains the following.

Theorem 7.1. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
p , then

p = exp

{

√

ω(x) log x+
1

4

(

1− ω(x)− 3

2ω(x)2 − 3ω(x) + 1

)}

(

1 +O

(

(

log log x

log x

)1/4
))

. (77)
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Comparing the functions ν(x) and ω(x), we find that

ν(x)− ω(x) = log(
√

ν(x) log x− ν(x) + 1)− log(
√

ω(x) log x+ 1)

=
1

2
log ν(x)− 1

2
logω(x) + log

(

1−
√

ν(x)

log x

)

+O

(

1√
log x log log x

)

= −
√

ν(x)

log x
+

1

2
log

(

1 +
ν(x)− ω(x)

ω(x)

)

+O

(

1√
log x log log x

)

= −
√

ν(x)

log x
+O

(

1√
log x log log x

)

. (78)

We can use this to restate Theorem 7.1 in terms of the function ν(x) for comparison to Theorem
4.1.

Corollary 7.2. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
p , then

p = exp

{

√

ν(x) log x+
3

4
+O

(

1

log log x

)}

. (79)

Proof. Using (78), we see that

√

ω(x) log x =

√

√

√

√

(

ν(x) +

√

ν(x)

log x
+O

(

1√
log x log log x

)

)

log x

=

√

√

√

√ν(x) log x+
√

ν(x) log x+O

(
√

log x

log log x

)

=
√

ν(x) log x+
1

2
+O

(

1

log log x

)

. (80)

Using this approximation in (77) the result follows. �

The method of proof can also be adapted to maximize the function Ψ(x,y)
π(y) , which is slightly

more relevant to the optimization of these factoring algorithms. Using the approximation π(y) =
y

log y

(

1 + 1
log y +O

(

1
log2 y

))

we find that again, the analysis is nearly identical to that of Theorem

4.1 with the function ω(x) used in place of ν(x). However, instead of equation (42), we find that
we are maximizing the ratio

Ψ (x, s) π(P0)

Ψ (x, P0)π(s)
=

x log s
s ρ(us)

(

1 + 1−γ
log sξ(us)

)(

1− 1
log s

)

x logP0

P0
ρ(u0)

(

1 + 1−γ
logP0

ξ(u0)
)(

1− 1
logP0

)

(

1 +O

(

1

u20

))

, (81)

where u0 and us have been suitably modified.
As before, the term

(

1 + 1−γ
log sξ(us)

)(

1− 1
log s

)

(

1 + 1−γ
logP0

ξ(u0)
)(

1− 1
logP0

)

can be absorbed into the error term, however the additional ratio of log s
logP0

=
(

1 + c
u0

)

introduces

an additional c
u0

in the exponent of (46).
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As a result, when we maximize c, we find that it now occurs for some c satisfying

c =
3

4ω(x)

(

1− 3ω(x)− 5

6ω(x)2 − 9ω(x) + 3

)

+O

(

1
√

ω(x)u0

)

. (82)

Thus we can conclude the following asymptotic, usefull in determining the optimal smoothness
bound for use in integer factorization.

Theorem 7.3. If, for a given value of x, the prime p maximizes the expression Ψ(x,p)
π(p) , then

p = exp

{

√

ω(x) log x+
3

4

(

1− 3ω(x)− 5

6ω(x)2 − 9ω(x) + 3

)}

(

1 +O

(

(

log log x

log x

)1/4
))

= exp

{

√

ν(x) log x+
5

4
+O

(

1

log log x

)}

. (83)

Note that (83) implies that in the limit as x → ∞, the ratio of the prime, p, which maximizes
Ψ(x,p)
π(p) to a prime popular on [2, x] tends to e.

Having estimated the value of y which maximizes Ψ(x,y)
π(y) relatively precisely, we can likewise give

an estimate for the maximum value of this function. Note that the maximum value of this function
is what plays a key role in the analysis of factoring algorithms. Denote by h(x) this maximum

value of Ψ(x,y)
π(y) taken over all y < x. Croot, Granville, Pemantle and Tetali showed [3] that if one

chooses integers at random between 1 and x until the sequence contains a square dependence, then

the expected stoping time lies in the interval
[

(πe
−γ

4 + o(1)) x
h(x) , (e

−γ + o(1)) x
h(x)

]

, and futhermore

that as x → ∞, the stopping time lies, almost surely in this interval. The only estimate that

they give for h(x), however, is that h(x) = x exp
{

−
√

(2 + o(1)) log x log log x
}

. (In their notation,

J0(x) = x
h(x) .) We give here an asymptotic expression for the value of this function, proving

Theorem 1.5 in the introduction.

Theorem 7.4. For a given value of x, the value of h(x), the maximum value of Ψ(x,y)
π(y) for y < x

is given asymptotically by

h(x) =
x√

2π log x
exp

{

−2
√

ω(x) log x+

∫ ω(x)

0

es−1

s
ds+

3ω(x)

2
+ γ +O

(

1

log log x

)

}

(84)

or, equivalently, the same expression with ν(x) in place of ω(x),

h(x) =
x√

2π log x
exp

{

−2
√

ν(x) log x+

∫ ν(x)

0

es−1

s
ds+

3ν(x)

2
+ γ +O

(

1

log log x

)

}

= C(x)

(

1 +O

(

1

log log x

))

, (85)

where C(x), defined before Corollary 4.2, is the number of times a prime, popular on [2, x], appears
as the largest prime divisor of an integer on that interval.

Proof. Because π(y) = y
log y

(

1 +O
(

1
log y

))

, the proof is essentially identical to that of Corollary

4.2, (again using ω(x) in place of ν(x)) with the exception that in (52) we now have u = log x
log p ,

which causes us to lose a factor of ω(x) in the exponent of the expression (54), and that the final
expression is multiplied by a factor of

log y =
√

ω(x) log x

(

1 +O

(

1
√

ω(x) log x

))

= eω(x)

(

1 +O

(

1
√

ω(x) log x

))

,
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which then restores that factor of ω(x) to the exponent.
Using this, we obtain (85) by using (80) (which decreases the exponent by 1 when using ν(x))

along with the observation that
∫ ω(x)

ν(x)

es − 1

s
ds = (ω(x)−ν(x))e

ν(x)−1

ν(x)
+O

(

(ω(x)−ν(x))
(

eω(x)−1

ω(x)
−e

ν(x)−1

ν(x)

))

=

(
√

ν(x)

log x
+O

(

1
√

ν(x) log x

))(
√

log x

ν(x)
− 1

)

+O

(
√

ν(x)

log x

(
√

log x

ω(x)
−
√

log x

ν(x)

))

= 1 +O

(

1

ν(x)

)

,

which, in turn, increases the exponent by 1. �
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