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Abstract

Feder and Subi conjectured that for any 2-coloring of the edges of the n-
dimensional cube, we can find an antipodal pair of vertices connected by a path
that changes color at most once. We discuss the case of random colorings, and we
prove the conjecture for a wide class of colorings. Our method can be applied to
a more general problem, where Qn can be replaced by any graph G, the notion
of antipodality by a fixed automorphism φ ∈ Aut(G). Thus for any 2-coloring of
E(G) we are looking for a pair of vertices u, v such that u = φ(v) and there is a
path between them with as few color changes as possible. We solve this problem for
the toroidal grid G = C2a�c2b with the automorphism that takes every vertex to
its unique farthest pair. Our results point towards a more general conjecture which
turns out to be supported by a previous theorem of Feder and Subi.

Keywords — hypercube, n-cube, edge coloring, labelling, antipodal, automorphism,
discrete torus

1 Introduction

The graph of the n-dimensional cube Qn, has vertex set {0, 1}n, two vertices are adjacent
if and only if they differ at precisely one coordinate. We say that an edge faces the i-
th direction if the endpoints of the edge differ in the i-th coordinate. Two vertices are
antipodal if they differ in every coordinate. Two edges are antipodal if the endpoints of
one are the antipodal pairs of the endpoints of the other. A k-coloring of the edges of Qn

is a function from E(Qn) to {1, . . . , k}. In this paper we will investigate 2-colorings, so
we will refer to the two colors as red and blue. We say that a 2-coloring is antipodal if
antipodal edges receive different colors. We begin with the chronologically first conjecture
due to Norine.

Conjecture 1 (S. Norine [2]). If E(Qn) is 2-colored antipodally, then there is a pair of

antipodal vertices connected by a monochromatic path.

While proving Conjecture 1 for a large class of colorings, Feder and Subi formulated
the 1-switch version that does not require the coloring to be antipodal.
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Conjecture 2 (T. Feder, C. Subi [4]). For every 2-coloring of E(Qn) there is a pair of

antipodal vertices joined by a path that changes its color at most once.

Note that even the question whether o(n) color changes suffice is still open [5]. The
smallest example of a coloring where we need a color change is a properly edge-colored
Q2 (a 4-cycle). Feder and Subi call colorings of E(Qn) without properly colored 4-cycles
simple colorings. They proved Conjecture 2 in the case of simple colorings, without a
color change.

Theorem 1 (T. Feder, C. Subi [4]). For every simple 2-coloring of E(Qn) there is a pair

of antipodal vertices connected by a monochromatic path.

Thus in some sense, the properly colored 4-cycles are the reason of the color change.
Leader and Long conjectured the n-long-path version of the previous conjectures. While
Conjecture 2 is stronger than Conjecture 1 (see [4]), if we require shortest (n-long) paths,
they become equivalent (see [5]).

Conjecture 3 (I. Leader, E. Long). [5] The following equivalent statements hold:

• In every 2-coloring of E(Qn), there are antipodal vertices connected by a path of

length n which changes its color at most once.

• In every antipodal 2-coloring of E(Qn) there are antipodal vertices connected by a

monochromatic path of length n.

To state our main result we define the component graph. While we feel that the
definition of the component graph is natural in the first place, we present more motivating
thoughts in the next section where we discuss random colorings.

Definition 1. Let G be a graph, and c a 2-coloring of E(G). The pair (G, c) determines

a graph we call the component graph Comp(G, c). The vertices of Comp(G, c), are the

monochromatic components of G with coloring c. Two vertices are connected in the com-

ponent graph if the corresponding monochromatic components have at least one common

vertex in G.

Comp(G, c) is always simple and bipartite (as we are interested in 2-colorings). It is
connected if and only if G is connected. The most important property of the component
graph is that for any path in G, there is a corresponding walk in Comp(G, c). The length
of the walk is exactly the number of color changes of the path.

Theorem 2 (Main theorem). Let G be a graph, φ ∈ Aut(G) an automorphism, c a 2-
coloring of E(G) and 0 ≤ k an integer. If the length of the longest cycle in Comp(G, c)
is less than 2k + 3, then there is a vertex u ∈ V (G) such that there is a path connecting

u and φ(u) that changes colors at most k times.

The relevance of our theorem in the view of Conjecture 2 can be seen by choosing
G = Qn and φ the automorphism that takes every vertex to its antipodal pair. The case
of k = 0 is of particular interest since then the assumption becomes that Comp(Qn, c) has
to be a tree. In [4] Feder and Subi proved that if the coloring is simple, the component
graph is a tree, thus Theorem 2 is a generalization of Theorem 1. It is a simple corollary
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of a theorem of Bollobás that the ratio of the number of colorings where Comp(Qn, c) is
a tree to the number of all colorings of E(Qn) tends to one as n tends to infinity.

The property, that Comp(Qn, c) is a tree is (in an equivalent form) used by Feder
and Subi to prove Theorem 1. Their method is tailored to Qn and does not seem to work
without the additional assumption of the simplicity of the coloring. Our results naturally
point towards the generalization that we can use any automorphism of Qn.

We explore the analogous problem for other graphs and automorphisms as well. If G
is a graph and φ ∈ Aut(G), let d(G, φ) denote the smallest integer such that no matter
how we 2-color E(G) we will always find a pair of vertices (u, v) such that φ(u) = v and
there is a path connecting u and v that changes colors at most d(G, φ) times. Let us
denote the maximum of d(G, φ) over all automorphisms of G by D(G). We conjecture
the following generalization of Conjecture 2.

Conjecture 4. Let G be the Cartesian product of cycles of even length a1, . . . , ak not

all equal to 2. If φ1, φ2, . . . , φk, φ are the automorphisms, that take every vertex to the

unique farthest vertex in the graphs Ca1 , Ca2 , . . . , Cak , G respectively, then d(G, φ) =
maxi d(Cai , φi) = maxiD(Cai) = maxi

ai
2
− 1.

Here a 2-cycle denotes the complete graph on two vertices. The assumption that not
all cycle lengths are equal to 2 is to avoid trivial counterexamples. Conjecture 4 is a
generalization of Conjecture 2 as Qn can be written as the Cartesian product of 4-cycles,
and a 2-cycle if n is odd. We prove Conjecture 4 for k = 2 ie. the rectangular grid graph
on the torus.

The paper is organized as follows. In the next section we discuss random colorings.
The third section contains the proof of the Theorem 2, a similar result in the case of Qn

where we are concerned about induced cycles of Comp(Qn, c), and the limitation of these
theorems to prove Conjecture 2. The fourth section contains the proof of Conjecture 4
in the case of k = 2. Finally in section five we present some open questions similar to
Conjecture 2.

2 Random colorings

Let Qn,p denote the random subgraph of Qn that contains every edge of Qn independently
with probability p. The connectivity of Qn,p is extensively studied. The following two
theorems are relevant in view of Conjecture 2.

Theorem 3 (Erdős, Spencer [3]).

P(Qn,p is connected) =







0 if p < 1/2
1
e

if p = 1/2
1 if p > 1/2

Theorem 4 (Bollobás [1]). The probability that Qn,1/2 contains a connected component

of size at least 2 but at most 2n−1 tends to zero as n tends to infinity.

This means that for p = 1/2 the usual reason of disconnectedness is the presence
of isolated vertices. Thus in a typical coloring of the n-cube, for both colors, there is a
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giant monochromatic component with more than half of the vertices in it (and the other
monochromatic components are isolated vertices). In these cases, the conjecture holds
without a color change, and the reason for it is the size of the largest monochromatic
component. In general we cannot expect this. Consider the following coloring:

Example 1 (Directional coloring). For i ≤ k let the edges of Q2k be colored red if the

edges face the i-th direction, and blue otherwise.

In this coloring every monochromatic connected component is a k-dimensional sub-
cube. Thus the size of the maximal monochromatic component can be as small as the
square root of the number of vertices. One might suspect that while in general the size
of the maximal monochromatic component is not large enough, but it is not a problem,
as we can have a color change. So maybe there is always a pair of antipodal vertices
connected by a one-switch path, such that one of them is in a monochromatic component
of maximal size. This is not true either as it can be seen in the following example.

Example 2. Let n = m+k, color the edges of Qn as follows: The edges facing in the first

m/2 directions are red except when the last k coordinates are all ones. The edges facing in

the second m/2 directions are red only when the last k coordinates are all zeros. An edge

facing the last k directions is colored red if: when we change the coordinate corresponding

to that edge to one, the resulting vector will have an even number of ones in the last k
coordinates. All the other edges are blue.

We will set k = m/4, but the construction is visualized easier if we usem and k: Ignore
the first m coordinates and we have a k-dimensional cube that is colored according to
its levels. Now taking into account the first m coordinates, every vertex of the k-cube
becomes an m-cube, and is colored by a directional coloring, except for the all-zero and
the all-ones vertex of the k-cube. They become monochromatic red and blue m-cubes
respectively. Thus there are two monochromatic components of size 2m, and all the others
are of size at most 2m/2+1

(

k
k/2

)

. Thus elementary estimates show that if k < m/4 and k
is large enough, we have that the largest monochromatic components are the ones that
form the monochromatic m-cubes. But because of the coloring of the last k coordinates,
we need at least k − 1 color changes (which is Ω(n)) from any vertex of the largest (red
or blue) component to its antipodal pair. So we see that the size of the monochromatic
components is not sufficient to guarantee antipodal pairs joined by a one-switch path.
We have to take into account the way these components connect to each other. A natural
way to do this is to define the component graph, see Definition 1.

It is clear that the component graph is connected if and only if G is connected, and
it is always bipartite. For any vertex in G there are exactly two vertices corresponding to
it in Comp(G, c), the two monochromatic components containing that vertex. The most
useful property of the component graph is that the minimal number of color changes
to get from u to v in the colored graph is the same as the minimum distance between
components corresponding to these vertices in the component graph. It follows from the
above mentioned theorem of Bollobás, that the component graph of Qn is typically a tree,
but the directional coloring is an example showing that it is not always the case: When
Qn is colored directionally, Comp(Qn, c) is a complete bipartite graph.
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3 Qn and the component graph

In this section we prove Theorem 2. Roughly speaking it shows that for the need of high
number of color changes, we need long cycles in Comp(G, c). For convenience we restate
Theorem 2

Theorem 2. Let G be a graph, φ ∈ Aut(G) an automorphism, c a 2-coloring of E(G)
and 0 ≤ k an integer. If the length of the longest cycle in Comp(G, c) is less than 2k+3,
then there is a vertex u ∈ V (G) such that there is a path connecting u and φ(u) that

changes colors at most k times.

Proof. The vertices of Comp(G, c) are subsets of V (G), thus for any a ∈ V (Comp(G, c))
we can define its image under φ as follows: φ(a) := {φ(x) | x ∈ a}. We denote the set of
components of the image of a under φ by

S(a) := {b ∈ V (Comp(G, c)) | ∃x ∈ a : φ(x) ∈ b}.

Having u and φ(u) in the same monochromatic component a, is equivalent to a∩S(a) 6= ∅.
Having a path between u and φ(u) that changes its color at most k times is equivalent to
Bk(a) ∩ S(a) 6= ∅ where Bk(a) is the closed ball of radius k centered at a. Our aim is to
show that there is such an a ∈ V (Comp(G, c)). To do this we need two easy properties
of S(a).

Lemma 1. The following statements hold.

1. If a ∈ V (Comp(G, c)), then the vertices of S(a) span a connected subgraph.

2. If a, b ∈ V (Comp(G, c)) are neighbors, then S(a) ∩ S(b) 6= ∅.

Proof. The first statement holds by the following argument. By the definition of S(a), for
any two vertices c1, c2 ∈ S(a) ⊆ V (Comp(G, c)), there are two vertices x1, x2 ∈ φ(a) ⊆
V (G) such that xi ∈ ci for i = 1, 2. As φ(a) is connected there is a path from x1 to x2 in
φ(a), and the components of the vertices of this path give a path from c1 to c2 in S(a).

The second statement follows because if a and b are neighbors in Comp(G, c), then
by the definition of Comp(G, c), there is a vertex x ∈ a ∩ b in G. Thus the components
containing φ(x) are both in S(a) and S(b).

Our strategy is as follows, we will define a0, a1 . . . ∈ V (Comp(G, c)). Let Xi denote
the connected component of V (Comp(G, c))\Bk(ai) containing S(ai). For every i we will
either have that Bk(ai)∩ S(ai) 6= ∅ or Xi ⊂ Xi−1. This way we are done since for every i
we have that Xi 6= ∅. During the following part of the proof, see Figure 1.

Suppose that we already defined a0, . . . , ai and Bk(ai) ∩ S(ai) = ∅. We will define
ai+1 such that either ai+1 ∩ S(ai+1) 6= ∅ or Xi+1 ⊂ Xi. Let us denote the vertices of
the neighborhood of Bk(ai) in Xi by Hi := hi,1, . . . , hi,j. The set of vertices in Hi forms
a cut and is also an independent set as they are of the same distance (exactly k + 1)
from ai (Comp(G, c) is bipartite). There cannot be two vertex disjoint paths connecting
ai and Hi since two such paths would result in a cycle of length at least 2k + 4 by the
following argument: Take the shortest two of such paths, they cannot use any edges from
the subgraph spanned by Xi. The concatenation of these paths is a path of length at
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Bk(ai)
Bk+1(ai)

ai

si

hi,1
hi,2

hi,j

Xi

Hi

S(ai)

Figure 1: Choosing ai+1

least 2k + 2 connecting vertices hi,u and hi,v. Because Xi is connected, there is a path of
length at least 2 using only edges in Xi connecting hi,u and hi,v. As these paths are vertex
disjoint we can form a cycle of length at least 2k + 4, a contradiction. Thus by Menger’s
theorem there is a vertex si such that every path from ai to Hi contains si.

Let us choose ai+1 to be the neighbor of ai in a shortest path connecting ai and si.
This way we have that Hi ⊂ Bk(ai+1). If Bk(ai+1) ∩ S(ai+1) 6= ∅ we are done. Otherwise
S(ai+1) ∩ Hi = ∅ and by lemma 1 we have that S(ai+1) ∩ S(ai) 6= ∅ thus S(ai+1) ⊆ Xi.
And therefore Xi+1 ⊂ Xi also holds as Xi+1 ⊆ Hi = ∅ and the proof is complete.

Remark. Theorem 2 is best possible in the sense that 2k+3 cannot be replaced by 2k+4
as the following example shows. Color the edges of a cycle of length 2k+4 properly, and
choose φ to be the automorphism that takes every vertex to the unique farthest vertex.
The component graph is also a cycle of length 2k + 4 and there is no path connecting
antipodal vertices with k color changes.

Remark. Theorem 2 is not best possible in the sense that there are plenty of component
graphs with cycles larger than 2k + 4 where we can ”catch S(a) with a”. For example
consider the complete bipartite graph Km,m, no matter how large m is, B2(a0) covers the
whole graph. Thus our result can be strengthened in some cases by first decomposing
V (G) into parts of small diameter. The exact characterization of graphs where we can
catch S(a) with a is not known to us.

Remark. The fact that Theorem 2 holds for arbitrary graphs and automorphisms, could
in principle be used when trying to prove Conjecture 2 in the following way: Given a
coloring of E(Qn) we would reduce the size of the cycles in Comp(Qn, c) by deleting
edges from Qn. In general, if we delete a full orbit of an edge in G (an antipodal pair
in Qn), the same function on the vertices remains an automorphism. Thus it is possible
to delete edges of Comp(Qn, c) by deleting a set of edges (and their antipodal pairs) in
Qn. But one shall be careful not to disconnect the resulting graph in such a way, that x
and φ(x) would be in different connected components for all x. It would be nice not to
disconnect the graph at all. We do not know any example of Comp(Qn, c) where we can
not reduce the size of the maximal cycle to 4 this way. But we could not prove either
that it can always be done.

The next theorem shows that in the case of Qn for the necessity of a high number of
color changes we also need long induced cycles.
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a0

a1 da1

ak−1 dak−1

ak

Figure 2: If there are both types of chords.

Theorem 4. If c is a 2-coloring of E(Qn) such that every path connecting antipodal

vertices changes colors at least k > 1 times, then the component graph Comp(Qn, c)
contains an induced cycle of length at least 2k − 2.

Proof. Let x0, . . . , xt be vertices of a path in Qn connecting antipodal vertices with k color
changes, and A := {a0, . . . , ak} be the corresponding path in Comp(Qn, c). For every i,
let yi denote the antipodal pair of xi and B := {b0, . . . , bm1

} be the walk in Comp(Qn, c)
associated to the path y0, . . . , yt. The intersection of the sets A \ {a0, ak} and B must be
empty. Otherwise the whole path A would be in Bk−1(bj) for some j and by definition,
we have a vertex in bj that has its antipodal pair in a component in A. This contradicts
our assumption that we need k color changes from every vertex to its antipodal pair. Let
us denote the shortest path from a0 to ak in the subgraph of Comp(Qn, c) induced by
b0, . . . , bm1

, a0, ak by D := {a0 = d0, d1, . . . , dm2
, dm2+1 = ak}. We have that k ≤ m2 + 1

otherwise we would have a path connecting a0 and ak of length less than k. The vertices
C := {a0, a1, . . . , ak−1, ak, dm2

, dm2−1, . . . , d1} form a cycle in Comp(Qn, c) of length at
least 2k. If there are no chords in C we are done. If there are chords in C we will find a large
induced cycle among the subgraphs of C. Due to the fact that a0 and ak are connected by
shortest paths, there are no chords connecting them to any other vertex of C, moreover
the two subgraphs spanned by {a1, . . . , ak} and {d1, . . . , dm2

} are paths. Thus we can
only have chords connecting vertices from {a1, . . . , ak−1} to vertices in {d1, . . . , dm2

}. But
C can not have a chord connecting a vertex in {a2, . . . , ak−2} to a vertex in {d1, . . . , dm2

}
as a chord of this type would mean that the whole path A would be in Bk−1(dj) where
dj is the endpoint of the chord. So every chord in C is adjacent either to a1 or to ak−1.

If there exist chords adjacent to a1 and ak−1 (see Figure 2) we define da1 and dak−1

to be the neighbors of a1 and ak−1 respectively such that the distance between da1 and
dak−1

is minimal in D. By this minimality, the cycle a1 . . . , ak−1, dak−1
, . . . , da1 is induced,

and of length at least 2k − 2 as otherwise we could reach every a1, . . . , ak from da1 with
paths shorter than k − 1, a contradiction.

If every chord is adjacent only to w.l.o.g. a1, then let da1 denote the neighbor of a1
amongst the di with the largest index, and the cycle C ′ = {a1, a2, . . . , ak, dm,1, dm1−1 . . . , da1}
is induced and must be at least 2k long, otherwise we could reach every a1, . . . , ak from
da1 with a path shorter than k − 1, a contradiction.

Remark. We did not use the structure of Qn, only that the order of the automorphism
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is two. We also feel that the theorem holds with 2k instead of 2k − 2, but as the next
example shows, this is not that relevant in the view of Conjecture 2.

Turning our attention back to Conjecture 2, while Theorem 2 and Theorem 4 settle
a wide class of special cases. They are insufficient to guarantee even a o(n) bound on the
number of color changes. In the case of Theorem 2, we saw in Example 1 that there are
colorings of Qn where Comp(Qn, c) contains exponentially large cycles. For Theorem 4
the following example shows that there are colorings of Qn with induced cycles of length
Ω(n).

Example 3. Let n = 2k and the edges of Qn be colored as follows. An edge facing the first

k directions is colored red if: when we change the coordinate corresponding to that edge to

one, the sum of the first k coordinates of the resulting vector is an odd number. An edge

facing the last k directions is colored red if: when we change the coordinate corresponding

to that edge to one, the sum of the last k coordinates of he resulting vector is an odd

number. All the other edges are blue.

The component graph which belongs to this coloring can be understood as follows.
If we fix the last k coordinates (no matter how) the resulting cube is colored alternately
according to its levels. We can say the same thing if we fix the first k coordinates.
Thus a red component contains vertices such that the first k coordinates are always
between two consecutive levels in a k-dimensional cube, and the second k coordinates
are between (possibly some other) two consecutive levels of a k-dimensional cube. The
blue components also look like this. Thus we can represent a component by a vector of
length two: if the component contains vertices between the levels (a, a + 1) in the first
k coordinates and between the levels (b, b+ 1) in the second k coordinates, we represent
the component with the vector (a, b). Red components are represented with vectors (a, b)
such that a ≡ b ≡ 0 (mod 2), and the blue ones with a ≡ b ≡ 1 (mod 2). It is easy to
check that two components (a, b) and (c, d) are connected by an edge in Comp(Qn, c) if
and only if |a− c| = 1 = |b− d|. Thus the component graph resembles a rectangular grid,
and when k is large, it is straightforward to find an induced cycle of length roughly 4k
in it.

4 A generalization to torus-like graphs

Theorem 2 suggests that Conjecture 2 is a question of the following type. Given a graph
G and an automorphism φ ∈ Aut(G), what is the minimal number k of color changes,
such that for every 2-coloring of E(G), there is a vertex u and a path connecting u to φ(u)
which changes colors at most k times? Let us call this parameter d(G, φ). It is immediate
that for a cycle C2k and for the automorphism ψ that takes every vertex of the cycle to
the unique furthest vertex, d(C2k, ψ) = k− 1. Thus we see that in general this parameter
can be arbitrarily large. When trying to explore various graphs and automorphisms, it
is natural to look for a group, and consider its Cayley graph (without orientation and
coloring) so we have a graph and a considerable amount of its automorphisms. With this
in mind, observe that Qn and C2k are both special cases of cayley graphs of the following
groups. Let a1, . . . , an be integers.
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G(a1, . . . , an) := {x1, . . . , xn|∀i, j : xixj = xjxi, x
ai
i = 1}

Let us choose for the Cayley graph the natural generating set {x1, . . . , xn}. This way,
the parameters (a1, . . . , an) determine a graph. We get Qn with (2, 2, . . . , 2), and C2k with
(2k). We restrict our attention to even ai since in the odd case, the furthest vertex is

not unique. The multiplication with x
a1/2
1 · . . . · xan/2n is an automorphism which takes

every vertex to its antipodal pair (the unique farthest vertex). Note that the graph we
get from the vector (a1, . . . , an) is the Cartesian product of cycles Ca1 , . . . , Can, with the
assumption that C2 is a single edge. While we could just consider the Cartesian products
of cycles in the first place, we think that the above mentioned way of arriving to these
graphs motivates their study. Note that by using the longest cycle, it is straightforward to
color the edges of Ca1� . . .�Can such that we need maxi(ai/2)−1 color changes. Observe
that the Cartesian product of two edges is C4, so we can think of Qn as the Cartesian
product of 4-cycles (and an additional edge if n is odd). This leads us to formulate
Conjecture 4.

Conjecture 4. Let G be the Cartesian product of cycles of even length a1, . . . , ak not

all equal to 2. If φ1, φ2, . . . , φk, φ are the automorphisms, that take every vertex to the

unique farthest vertex in the graphs Ca1 , Ca2 , . . . , Cak , G respectively, then d(G, φ) =
maxi d(Cai , φi) = maxiD(Cai) = maxi

ai
2
− 1.

Note that Conjecture 4 is a generalization of Conjecture 2 and suggests that the reason
that we need a single color change is that Qn is made of 4-cycles. Also note that when
we are not allowed to alternately color these 4-cycles, Theorem 1 shows that we can not
force a color change, as expected. We prove Conjecture 4 for k = 2.

Theorem 5. If 1 ≤ a ≤ b 6= 1 and G = C2a�C2b is the Cartesian product of two cycles

of even length, then there are vertices u, v ∈ V (G) such that their distance is a + b, and
there is a path between u and v which changes its color at most b− 1 times.

Proof. Let us represent the vertices of G by ordered pairs, (x, y) where x ∈ {1, . . . , 2a}
and y ∈ {1, . . . , 2b}. The coordinates are understood modulo 2a and 2b respectively. Thus
we are looking for a pair of vertices of the form (x, y) and (x+a, y+b), and a path between
them that changes color at most b−1 times. Observe that it is enough to show that there
are vertices of the form (x, y) and (x + a, y + a) and a path between them that changes
colors at most a − 1-times. Since given such a path, we can get from (x + a, y + a) to
(x+a, y+b) using only b−a edges, thus we have at most b−a new color changes resulting
in at most a total of b−1 color changes as required. Let us call a path j-ascending diagonal
that starts at (x, y) if it connects vertices (x, y), (x + 1, y + 1), . . . , (x + j, y + j) and is
of length 2j. Similarly we define the j-descending diagonal that starts at (x, y) to be a
path connecting vertices (x, y), (x− 1, y + 1), . . . , (x− j, y + j) and is of length 2j.

We will prove slightly more. Either the coloring is such that every cycle of length
four is colored properly, or there are vertices (x, y) and (x + a, y + a), connected by an
ascending or a descending diagonal that changes colors at most a− 1 times.

Let us call a j-ascending diagonal starting at (x, y) lazy if it has the fewest color
changes amongst all such j-diagonals, and the subgraph that is a (j − 1)-ascending diag-
onal starting at (x, y) is also lazy. It is called lazy, since it does not change its color, until
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its necessary. Such a diagonal exists by induction on j. For j = 1 it is trivial. Suppose
that for j − 1 we have a lazy j − 1-ascending diagonal that starts at (x, y), continue this
path with the last two edges of a j-ascending diagonal that starts at (x, y) and changes
its color the minimal number of times. It is easy to check that the resulting path will be
a lazy j-ascending diagonal.

Take a lazy a-ascending and a lazy a-descending diagonal starting from the vertices
of the cycle (1, 1), (2, 1), . . . , (2a, 1). Let us denote the set of these diagonals D. We will
bound the cumulative number of color changes of diagonals in D. For every color change
of such a diagonal we associate a 4-cycle. If an ascending diagonal that started at (x, y)
changes colors at (x+ i, y+ i) or between (x+ i, y+ i) and (x+ i+1, y+ i+1) we say that
the diagonal changes colors at the 4-cycle spanned by (x+ i, y+ i), (x+ i+1, y+ i), (x+
i, y + i+ 1), (x+ i+ 1, y + i+ 1). Thus a 4-cycle can get 0, 1 or 2 color changes from an
ascending diagonal. We associate a 4-cycle to every color change of a descending diagonal
similarly. Every 4-cycle has a unique ascending and a unique descending diagonal in D
which might contribute to the number of color changes at that cycle, so there can be at
most 4 color changes at a 4-cycle.

Lemma 2. For every 4-cycle we associated at most two color changes.

Proof. Every diagonal can change its color at most two times at a given 4-cycle. Thus
it is enough to show that given a 4-cycle, if the unique ascending diagonal within D
that passes through it, changes its color two times, then the unique descending diagonal
passing through it does not change its color. If a lazy ascending diagonal changes its color
two times at the 4-cycle (x+ i, y+ i), (x+ i+1, y+ i), (x+ i, y+ i+1), (x+ i+1, y+ i+1),
it had to happen the following way: We arrived (w.l.o.g.) with color blue to (x+ i, y+ i),
then the next edge must cause a color change, thus both edges leaving (x + i, y + i) are
red. But then we again have to change colors, so the edges arriving to (x+ i+1, y+ i+1)
must have color blue. Thus a lazy decreasing diagonal will not change its colors at this
4-cycle as it is not necessary.

This is already enough to prove the existence of a diagonal of length a with the number
of color changes being at most a. There are 4a diagonals in D, and their cumulative
number of color changes is at most two times the number of 4-cycles they pass through.
Thus the average number of color changes of diagonals in D is at most 4a2/4a = a.

To go down from a color changes to a − 1, it is enough to improve our bound on
the number of color changes at a single 4-cycle. Consider the cycles at the start of every
diagonal in D, namely the cycles spanned by (j, 1), (j + 1, 1), (j, 2), (j + 1, 2) for j ∈
{1, . . . , 2a}. Since these are the first 4-cycles, no diagonal can change its color two times
at these. If both the ascending and the descending diagonal have to change its color at
such a cycle, it has to be colored properly. Thus if the coloring is such that there is a
4-cycle that is not colored properly, we can rotate the torus so that it is spanned by
the vertices (1, 1), (1, 2), (2, 1), (2, 2) and we are done. If every 4-cycle is colored properly,
every edge of the form ((i, j), (i + 1, j)) is colored with the first color, and every other
edge is colored with the second. Thus we can connect every pair of vertices by a single
color change.
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5 Open questions

Since Theorem 2 can be applied to any automorphism, it is natural to ask whether
Conjecture 2 is true for any automorphism of Qn.

Question 1. Is it true that for any φ ∈ Aut(Qn) and any 2-coloring of E(Qn), there is

a vertex u such that u and φ(u) are connected by a path that changes its color at most

once?

Feder and Subi proved that if no 4-cycle is colored properly, we do not need a color
change in Qn. Is something similar true in general?

Question 2. Let G be the Cartesian product of even cycles of length a1, . . . , ak not all

equal to 2, φ be the automorphism that takes every vertex to its unique furthest vertex

in the graph G and aj = maxi ai. Is it true that if we consider only colorings without

properly colored non nullhomotopic aj cycles, there is always a vertex u such that u and

φ(u) are connected by a path that changes its color less than d(G, φ) times?

In Conjecture 4 we restricted ourselves to cycles of even length, to have a similar
automorphism that we had at Qn. Is this necessary?

Question 3. If G is the Cartesian product of cycles a1, . . . , ak not all from the set

{2, 3, 5}, is it true that D(G) = maxiD(Cai)?

The restriction on the sizes of the cycles is to avoid trivial counterexamples. We have
that D(C2) = D(C3) = D(C5) = 0 but it is easy to color Ci�Cj for i, j ∈ {2, 3, 5} and
give an automorphism in such a way that we need a color change. These counterexamples
are caused by the trivial phenomenon that if we would be interested in m colorings, at
the Cartesian product of m cycles (even if their length is small) we would need m − 1
color changes.

Leader and Long asked whether o(n) color changes suffice in Qn. We were unable to
answer this question, but we were also unable to find colorings of Qn where the average
number of color changes to get to the antipodal point is larger than c

√
n. Not even when

we relaxed the condition that every vertex is trying to get to its antipodal pair. An
example where the average number of color changes is c

√
n is when the cube is colored

alternately according to its levels.

Question 4. Is it true that for every sequence of colorings of E(Qn), the average number

of color changes to get from a vertex to its antipodal pair is O(
√
n)?
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