
ar
X

iv
:1

50
4.

06
01

2v
3 

 [m
at

h.
O

C
]  

24
 A

ug
 2

01
5

SUBMITTED TO IEEE POWER AND ENGINEERING LETTERS 1

Uncertainty Sets For Wind Power Generation
Yury Dvorkin, Student Member, IEEE, Miles Lubin, Scott Backhaus, Michael Chertkov,Senior Member, IEEE.

Abstract—As penetration of wind power generation increases,
system operators must account for its stochastic nature in a
reliable and cost-efficient manner. These conflicting objectives can
be traded-off by accounting for the variability and uncertainty of
wind power generation. This letter presents a new methodology
to estimate uncertainty sets for parameters of probabilitydistri-
butions that capture wind generation uncertainty and variability.

Index Terms—Wind power uncertainty, wind power variability,
power system operations.

I. I NTRODUCTION

W IND power generation (WPG) introduces variability
and uncertainty in operational planning. As defined

in [1], variability of WPG is the random fluctuation of wind
speed caused by physical processes in the atmosphere while
uncertainty of WPG results from wind forecast errors. To ac-
count for variability and uncertainty, approaches to robust unit
commitment (RUC) [2], chance constrained optimal power
flow (CC-OPF) [3] and distributionally robust CC-OPF (RCC-
OPF) [3],[4] have been formulated and tested. However, the
performance of these models depend on the accuracy of pa-
rameters of probability distributions that define the uncertainty
sets used; therefore, the uncertainty in distribution parameters
must be accounted for. This letter makes two contributions:
i) we use a data-driven analysis to relate intra-hour wind
speed variability to the hourly-average wind speed and ii)
using this relationship we construct uncertainty sets thatcan
be interpreted in terms of variability and uncertainty of WPG.

Bienstock et al [3] show that the CC-OPF formulation
with Gaussian-distributed deviations of WPG and precisely
known mean and variance can be extended to the RCC-OPF
formulation, where the parameters of the Gaussian deviations
(both mean and variance) fall within uncertainty sets. This
RCC-OPF is implemented and tested on a large-scale system
in [4]. In this letter, we interpret the set for the mean in terms
of the wind power uncertainty, while the set for the variance
is deemed as the wind power variability. This approach differs
from the uncertainty sets on a random variable in [2] by intro-
ducing uncertainty sets on distribution parameters describing
the random variable. We derive these sets with a data-driven
approach such that the resulting RCC-OPF remains tractable
[3], [4], yielding a practical approach for modeling WPG.
Although the RCC-OPF model is nominally more conservative
than the CC-OPF model, its solution incurs a lower operating
cost when tested against actual realizations of WPG [4].

II. M ETHODOLOGY

1) Data: We use historical wind speed measurements at 5-
minute resolution from the Goodnoe meteorological stationin
the Bonneville Power Authority (BPA) system [5] and one-
hour resolution wind speed forecasts produced by the NOAA
Rapid Refresh numerical weather prediction model [6] for
the same location. The historical measurements and forecasts
are detrended by using data from the same calendar season
(December–February) and range of hours (00:00–04:00 AM).

2) Wind Speed Variability: For any subintervalτ of hour-
long intervalt wind speedwτ can be written aswτ = µt+ ǫτ
[3], whereµt and ǫτ are the hourly-average wind speed and
intra-hour, zero-mean variability aroundµt [1], respectively.
To parametrizewτ , we calculate the average wind speed (µt)
for each hourly interval within the studied period using the5-
minute resolution Goodnoe data [5]. Next, we bin the hourly
intervals based on their hourly-averaged wind speedµt. This
binning is in the range from 0 m/s to 25 m/s (the typical
operating range of wind turbines) and has the width of 1 m/s.
For each bin we obtain a histogram that represents an empirical
intra-hour wind speed distributionfE(wτ |µt) conditioned by
the hourly-average wind speed (µt). Each histogram is then
fit to the Gaussian distribution, yielding estimated mean (µ∗)
and standard deviation values (σ∗) for every bin. Both the
histogram and its Gaussian distribution are shown in Fig. 1a)
for several values ofµt. Figure 1b) shows thatσ∗ scales
linearly withµ∗ asσ∗(µ∗) = 0.231+0.197·µ∗ for µ∗ ∈ [0, 25]
m/s, which is consistent with velocity distributions for high
Reynolds number atmospheric flows [7]. If there is no error
in a given hourly-averaged wind speed forecastµ

f
t , the wind

speed variability is estimated using the linear mappingσ∗(µ∗)
shown in Fig. 1b). The resulting distribution is then given
asN [wτ ;µ

f
t , (σ

∗(µf
t ))

2], and can be used in [2] and [3] for
uncertainty sets accounting for wind speed variability.

3) Wind Speed Uncertainty and Variability: Wind forecast
errors causeµt 6= µ

f
t . The wind forecast erroret is calculated

from the NOAA [6] data aset(∆T ) = µt − µ
f
t (∆T ), where

µ
f
t (∆T ) is the forecast for hourt made∆T hours in advance.

The empirical distributionfE (et; ∆T ) for ∆T = 1 hour is
shown in Fig. 2a). We propose to representfE(·) with a
generalized Gaussian distribution,fG(·):

fG(et; ∆T, µ−, µ+) =

∫ µ+

µ−
dµN [et;µ, σ

∗(µ)]

(µ+ − µ−)
, (1)

whereσ∗(µ) is the fit from Fig. 1b) and the dependence of
µ+ and µ− on ∆T is suppressed. The advantage offG(·)
over a single Gaussian distribution is that it improves the
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Fig. 1: a) Empirical distributionfE(wt|µ
∗) (histograms) and their

Gaussian best fits for a fewµ∗. b) Empirical relationship between
σ∗ andµ∗ and its linear fitσ∗(µ∗).
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Fig. 2: a) Empirical distributionfE(et; ∆T ) (histogram), the best fit
single Gaussian distribution (black) and the best fit distributionfG(·)
(red) from Eq. (1) for∆T= 1 h. b) µf−

t and µ
f+
t versus∆T for

µ
f
t = 10 m/s. c)σ∗(µf−

t ) andσ∗(µf+
t ) for the data in b).

Fig. 3: a) Typical wind power turbine curvep(µ) with four nominal
operating regions [9]. b) Ranges for the on the mean WPG (i.e.
forecast error) computed using Eq. (3) for the data in Fig. 2c).
c) Ranges on WPG standard deviation (variability) computedusing
Eqs. (4) and (5) for the data in b).

goodness-of-fit to empirical data [8] by encapsulating a linear
superposition of Gaussian distributions over a range of means
[µ−, µ+] that represents the wind uncertainty. Furthermore, [8]
explains that other single non-Gaussian distributions canbe
modelled usingfG(·). The best fitµ− andµ+ are computed
by solving the optimization problem:

argmin
µ−,µ+

∫
[fG(et; ∆T, µ−, µ+)− fE(et; ∆T )]2det, (2)

which minimizes the mean square difference betweenfE(·)
andfG(·) and ensures a better fit to the historical data than a
single Gaussian distribution, as shown in Fig. 2a). We interpret
the range[µf−

t , µ
f+
t ], whereµ

f−
t = µ

f
t + µ− and µ

f+
t =

µ
f
t + µ+, as the bounds of the uncertainty set for the mean

wind speed. Fig. 2b) displaysµf−
t andµf+

t for µf
t = 10 m/s

for different ∆T . Using σ∗(µ∗) from Fig. 1b), we compute
the bounds onσ∗ asσ∗(µf−

t ) andσ∗(µf+
t ), which are shown

in Fig. 1c). The ranges[µf−
t , µ

f+
t ] and[σ∗(µf−

t ), σ∗(µf+
t )], if

converted to wind generation as explained below, can be used
in the RCC-OPF formulation from [3], [4].

4) Conversion to Wind Power: We illustrate the conversion
to wind power using the single wind turbine power curvep(µ)
shown in Fig. 3a), [9]. This procedure can be generalized to

multiple turbines by using an aggregated wind power curve
[10]. The conversion of the range[µf−

t , µ
f+
t ] is given by:

[µf−
t , µ

f+
t ] → [p(µf−

t ), p(µf+
t )]. (3)

Figure 3b) showsp(µf−
t ) andp(µf+

t ) corresponding toµf−
t

andµf+
t , respectively, from Fig. 2b). In Fig. 2b), the growth

of p(µf+
t ) at larger∆T is eventually clipped byp(w) as

µ
f+
t enters Region III of the turbine curve. If the entire range

[µf−
t , µ

f+
t ] is in Region III, then the range[p(µf−

t ), p(µf+
t )]

collapses to zero width around the maximum output.
The conversion of the range[σ∗(µf−

t ), σ∗(µf+
t )] is shaped

by the RCC-OPF formulation in [4]. Note thatσp can
be obtained∀p(µt) ∈ [p(µf−

t ), p(µf+
t )] using the relation

σ∗(µ) from Fig. 1b) and the slopes of the turbine curve
as σp = s(µt) · σ

∗(µt). However, using the wind turbine
power curve from Fig. 3a) results in difficult nonconvexity in
distributionally robust formulations (e.g., Eq. (27)-(28) in [4]).
To avoid this nonconvexity, we assume that the range on the
mean value in (Eq. 3) and range on the standard deviation are
independent. Therefore, the range on the standard deviations
is given by:

σ−

p = min
µ∈[µf−

t ,µ
f+

t ]
s(µ)σ∗(µ) (4)

σ+
p = max

µ∈[µf−

t ,µ
f+

t ]
s(µ)σ∗(µ) (5)

Figure 3c) shows the conversion to the robust interval on the
standard deviation of WPG for the data in Fig. 2c).

III. C ONCLUSION

We have presented a data-driven method to develop robust
intervals for distribution parameters, which preserves the phys-
ical relationship between instantaneous and hour-averagewind
speed and power. This method is suitable for uncertainty sets in
the RUC [2] and RCC-OPF [3], [4], which can be interpreted
in terms variability and uncertainty of WPG. The case study
in [4] shows that the RCC-OPF model with these uncertainty
sets outperforms several benchmarks in terms of several cost
and reliability metrics.
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