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Abstract—As penetration of wind power generation increases, 2) Wind Speed Variability: For any subintervat of hour-
system operators must account for its stochastic nature in a |ong intervalt wind speedw, can be written asv, = u; + €,
reliable and cost-efficient manner. These conflicting objdives can [3], where i, ande, are the hourly-average wind speed and

’ T

be traded-off by accounting for the variability and uncertainty of . tra-h iabilit 1 tivel
wind power generation. This letter presents a new methodolgy intra-hour, zero-mean variability around [1], respectively.

to estimate uncertainty sets for parameters of probabilitydistri- 10 parametrizev,, we calculate the average wind spegd)(
butions that capture wind generation uncertainty and variability. ~ for each hourly interval within the studied period using &he

Index Terms—Wind power uncertainty, wind power variability, ~Minute resolution Goodnoe data [5]. Next, we bin the hourly
power system operations. intervals based on their hourly-averaged wind spegdThis
binning is in the range from 0 m/s to 25 m/s (the typical
. INTRODUCTION operating range of wind turbines) and has the width of 1 m/s.
IND power generation (WPG) introduces variability=or each bin we obtain a histogram that represents an emlpiric
and uncertainty in operational planning. As definehtra-hour wind speed distributiofi” (w.|u;) conditioned by
in [1], variability of WPG is the random fluctuation of windthe hourly-average wind speegd;}. Each histogram is then
speed caused by physical processes in the atmosphere wfitileo the Gaussian distribution, yielding estimated meat) (
uncertainty of WPG results from wind forecast errors. To acand standard deviation values*j for every bin. Both the
count for variability and uncertainty, approaches to rolumst histogram and its Gaussian distribution are shown in [Hiy. 1a
commitment (RUC) [[R], chance constrained optimal powdor several values ofu;. Figure[1b) shows that* scales
flow (CC-OPF) [3] and distributionally robust CC-OPF (RCClinearly with u* asc* (u*) = 0.2314-0.197-p* for p* € [0, 25]
OPF) [3],[4] have been formulated and tested. However, the's, which is consistent with velocity distributions forghi
performance of these models depend on the accuracy of Reynolds number atmospheric flows [7]. If there is no error
rameters of probability distributions that define the uteiaty in a given hourly-averaged wind speed foreC@,éx the wind
sets used; therefore, the uncertainty in distribution ip@tars speed variability is estimated using the linear mappifhg:*)
must be accounted for. This letter makes two contributionshown in Fig.[lb). The resulting distribution is then given
i) we use a data-driven analysis to relate intra-hour wirek N[wf;u{, (o—*(u{))Q], and can be used inl[2] and| [3] for
speed variability to the hourly-average wind speed and iincertainty sets accounting for wind speed variability.

using this relationship we construct uncertainty sets taat . e
be interpreted in terms of variability and uncertainty of ®/P 3) Wind Speed Upcertal nty and Variability. W|nd forecast
rrors cause, # ;. The wind forecast error, is calculated

Bienstock et al [[B] show that the CC-OPF formulatio? - i
with Gaussian-distributed deviations of WPG and precise §Pm the NOAA [6] data as:,(AT) = p: — pu; (AT), where

known mean and variance can be extended to the RCC- / AT) ‘? _the fo_rec_ast_for gowmadEAT hours in advan_ce.
formulation, where the parameters of the Gaussian dewigtio he em_plrlc_al distributionf™ (e,; AT) for AT = 1 hqur IS
(both mean and variance) fall within uncertainty sets. Thig o " Fig.LPa). We propose to .represq‘rﬁ(-) with 2
RCC-OPF is implemented and tested on a large-scale syst%?ﬁ'eral'zed Gaussian d'Str'blfB?ff?(')'

in [4]. In this letter, we interpret the set for the mean imier Clo AT i ) — f,f duNles; p, 0™ ()] 1

of the wind power uncertainty, while the set for the variance Frles AT, um, p7) = (ut — > @

is deemed as the wind power variability. This approach diffewhere o* (1) is the fit from Fig.[1b) and the dependence of
from the uncertainty sets on a random variablé in [2] by intrg:™ and = on AT is suppressed. The advantage ff(-)
ducing uncertainty sets on distribution parameters deisgri over a single Gaussian distribution is that it improves the
the random variable. We derive these sets with a data-drive . __#) Conditional wind speed disitrbution
approach such that the resulting RCC-OPF remains tractab — )
[3], [4], yielding a practical approach for modeling WPG. % Ganssian
Although the RCC-OPF model is nominally more conservative
than the CC-OPF model, its solution incurs a lower operating %, 5 10 15 20 25
cost when tested against actual realizations of WEG [4]. Wind speed, m/s

e =5m/s

pe =10 m/s

ue =15m/s

Il. METHODOLOGY

w b) Intra-hour variability
1) Data: We use historical wind speed measurements at 57

minute resolution from the Goodnoe meteorological staiton ;

the Bonneville Power Authority (BPA) systerfil [5] and one- il =028} 0197

hour resolution wind speed forecasts produced by the NOA£” ° ° " \ean (), mfe = #

Rapid Refresh numerical weather prediction model [6] for [ o Fmpiric Lin Fit @ Torccast @ Range |

the same location. The historical measurements and fdeeca#sg. 1: a) Empirical distributionfZ (w:|u*) (histograms) and their

are detrended by using data from the same calendar seaSenssian best fits for a few*. b) Empirical relationship between

(December—February) and range of hours (00:00—-04:00 AMJ:* and u* and its linear fito™ (1.").

¢

t. dev (o*
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a) Wind speed forecast error distribution (e;)
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Fig. 2: a) Empirical distributiorf® (e;; AT) (histogram), the best fit

single Gaussian distribution (black) and the best fit distion £ (-)
(red) from Eq.[[l) forAT= 1 h. b) /= and u/ ™ versusAT for
pl =10 m/s. ¢)o* (/7)) ando*(u ) for the data in b).

a) General Electric 2.5 MW wind turbine power curve and its slope (s)
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Fig. 3: a) Typical wind power turbine curye(x) with four nominal
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c) Range [0, ,0,] on of =1.59 m/s

multiple turbines by using an aggregated wind power curve
[1Q]. The conversion of the rangﬁ{’,u{ﬂ is given by:
f =51l 1= [p(ed ™) p(uf 1)), 3)

Figure[3b) shows(;{ ~) andp(u{ *) corresponding tqs] ~
and ./ 7, respectively, from Fig]2b). In Figl] 2b), the growth
Of'p(utf_‘_) at larger AT is eventually clipped byp(w) as
u{* enters Region lll of the turbine curve. If the entire range
(1!, uf ] is in Region 111, then the rang@(u! ™), p(ud )]
collapses to zero width around the maximum output.

The conversion of the rande* (u{ 7), o* (1 7)] is shaped
by the RCC-OPF formulation in[[4]. Note thai, can
be obtainedvp(u:) € [p(ui ™), p(ul™)] using the relation
o*(u) from Fig.[Ab) and the slope of the turbine curve
aso, = s(u) - o*(ue). However, using the wind turbine
power curve from Figl13a) results in difficult nonconvexity i
distributionally robust formulations (e.g., Eq. (27)-]28 [4]).
To avoid this nonconvexity, we assume that the range on the
mean value in (Eq.]3) and range on the standard deviation are
independent. Therefore, the range on the standard dewatio
is given by:

o, = min s(u)o”(p) 4)

P pelnd )

of = max  s(uot(u) ©)
n€lpd =t

Figure[3c) shows the conversion to the robust interval on the
standard deviation of WPG for the data in Higj. 2c).

IIl. CONCLUSION

We have presented a data-driven method to develop robust
intervals for distribution parameters, which preservesghys-
ical relationship between instantaneous and hour-avevagk
speed and power. This method is suitable for uncertaingyiget
the RUC [2] and RCC-OPFK [3]._[4], which can be interpreted

operating regions/ [9]. b) Ranges for the on the mean WPG (iia terms variability and uncertainty of WPG. The case study
forecast error) computed using EdJ (3) for the data in Eig. 26 [4] shows that the RCC-OPF model with these uncertainty

¢) Ranges on WPG standard deviation (variability) computsicig
Egs. [@) and[{5) for the data in b).

goodness-of-fit to empirical datal[8] by encapsulating adin
superposition of Gaussian distributions over a range offtmea

[1~, uT] that represents the wind uncertainty. Furthermaie, [gr
explains that other single non-Gaussian distributions loan
modelled usingf©(-). The best fitu~ and x™ are computed

by solving the optimization problem:
argmig/[fc(et; AT, 5=, u*) = [P (e; AT)*der,  (2)
BT
which minimizes the mean square difference betwgén.)

and f9(-) and ensures a better fit to the historical data than a
single Gaussian distribution, as shown in [Elg. 2a). We pratr 3]

the range[u/ ~, uf *], wherey/ ™ = pf +p~ and p/ " =

M{ + T, as the bounds of the uncertainty set for the meaa

wind speed. Fig12b) displays/ ~ and x/ ™ for x/ =10 m/s

for different AT. Using o*(u*) from Fig.[db), we compute

sets outperforms several benchmarks in terms of several cos
and reliability metrics.
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