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Abstract—This paper presents a novel propagation (BP) based
decoding algorithm for polar codes. The proposed algorithm
facilitates belief propagation by utilizing the specific constituent
codes that exist in the factor graph, which results in an express
journey (XJ) for belief information to propagate in each decoding
iteration. In addition, this XJ-BP decoder employs a novel
round-trip message passing scheduling method for the increased
efficiency. The proposed method simplifies min-sum (MS) BP
decoder by 40.6%. Along with the round-trip scheduling, the
XJ-BP algorithm reduces the computational complexity of MS
BP decoding by 90.4%; this enables an energy-efficient hardware
implementation of BP decoding in practice.

I. I NTRODUCTION

Polar codes are proposed by Arikan [1] as a type of
error-correction coding (ECC) method that provably achieves
the capacity of symmetric binary-input discrete memoryless
channels (B-DMCs). With its low error-floor performance [2]
and high regularity in coding structure, polar codes attract
a significant attention and have the potential to become a
standard ECC for the future communication and data storage
systems.

There are two widely-considered approaches to decode
polar codes. These are successive cancellation (SC) and be-
lief propagation (BP) algorithms. The SC algorithm receives
more attention because of its low computational complexity
O(nlogn), where n is the code length. However, decoders
based on SC algorithm suffer from the high latency and limited
throughput due to their serial decoding natures. Recently
several efforts have been taken into reducing the SC decoding
latency [3], [4]. Sarkis et al. utilized the constituent codes
that exist in the polar codes to significantly reduce the SC
decoding latency by avoiding tree traversals [4]. Althoughthe
latency of SC algorithm is substantially improved, the time
complexity of it is stillO(n). Thus with longer polar codes, SC
algorithm is still limited in terms of the throughput. However,
polar codes with longer length are more attractive, becausethe
performance of polar codes is superior to other codes at long
codeword lengths.

Another approach to decode the polar codes is belief
propagation-based (BP) algorithm, which allows decoding
in parallel to achieve much higher throughput in dedicated
hardware implementation. Due to its higher computational
demand, compared with SC algorithms, BP does not receive
much attentions. The first attempt at implementing BP on field
programmable gate array (FPGA) is presented by Pamuk in
[5], where the message passing functions are approximated
by the min-sum (MS) algorithm for efficient hardware design.

However, the performance of BP decoding is degraded because
of the approximations. Thus, Yuan et al. explored scaled min-
sum (SMS) approximation for message passing functions in [6]
to remedy the performance penalty. However, compared with
MS algorithm, SMS incurs one extra scaling operations in each
message passing. Yuan et al. further improved the efficiency
of SMS BP decoders using early termination in [7]. On the
other hand, by removing unnecessary computations for frozen
bits in polar codes, Zhang et al. reduce the complexity for
sum-product (SP) BP decoding in [8] by around25% without
decoding performance degradation.

This paper presents the XJ-BP decoder that substantially
reduces the computational complexity over the conventional
BP MS decoding. Two novel approaches are developed to
achieve the improvements. First approach utilizes specific
constituent codes in the factor graph to reduce the decoding
complexity. In this approach, the rules of the belief propagation
in each iteration are simplified using the characteristics of the
constituent codes. Secondly, all existing BP decoders schedule
the computations in the same manner as mentioned in [5].
Our approach uses an alternative scheduling method stemming
from ideas discussed by Guo et al. at [9]. In [9], polar codes are
proposed to be concatenated with parity check codes to achieve
higher decoding performances. We describe and compare the
two different scheduling methods in this paper to show that
our alternative scheduling method is significantly better than
the conventionally used one in terms of decoding efficiency.

We show that along with the novel scheduling method, the
XJ-BP MS algorithm yields the same decoding performance of
the SMS algorithm with92.8% reduced amount of computa-
tions. Compared with the conventional MS BP decoding, our
proposed method does not only reduce the computations by
90.4% but significantly improves the decoding performance.

The rest of this paper is organized as follows: The back-
ground of polar codes and its conventional decoding methods
are reviewed in the Section II. Section III describes the
proposed algorithm. Section IV discusses the two alternative
scheduling strategies for BP decoding. Numerical simulation
results of the proposed algorithm and the comparisons with the
conventional BP decoding are given in the Section V. Finally,
the paper is concluded in the Section VI.

II. POLAR CODES

A. Construction of Polar Codes

Polar codes are constructed by taking advantage of the po-
larization effect to achieve the capacity of symmetric channel.
Encoded recursively using the special procedure as discovered
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in [1], the polar codes polarize the post-decoding reliability of
the information bits. An(n, k) polar code is constructed by
assigningk information bits and(n− k) ’0’s at more reliable
positions and unreliable positions, respectively. Those fixed ’0’
bits are usually referred as frozen bits. Then-bit message bits
including frozen bits and information bits are denoted asu in
this paper. Then-bit transmitted codewordx is the product of
u and the generator matrixG, whereG = F⊕m. F⊕m is the

m-th Kronecker power ofF =

[

1 0

1 1

]

andm = log2 n.

B. Belief propagation decoding

Belief propagation decoding is a message passing algo-
rithm that, through the factor graph, refines the estimations of
the codewordx or messageu in iterations.

The factor graph of a polar code could be represented by
the structure of its encoder. An example of factor graph of
a polar code withn = 8 is given in Fig. 1a. As the figure
shows, there arem stages in the factor graph,m = log2(n).
The bits on the most left column correspond to the message.
In the figure, the black nodes and white nodes in the left
column are denoted as the frozen bits and the information bits
respectively. With recursive encoding by the 2-bit polarization
unit through the factor graph, the nodes on the most right
column correspond to the codeword. There are two messages
passing through each node. The message propagated from
right to left through node(i, j) is designated byLi,j . The
other message passed from the other direction is referred
as Ri,j . Those messages are presented in the log-likelihood
ratios (LLRs). Conventionally, those LLRs are updated through
a series of check node processing elements (PE) as shown
in Fig. 1b. The computations to update LLRs through iterations
are written as follows:

Li,j = G(Li,j+1, Li+2j−1,j+1 +Ri+2j−1,j)

Li+2j−1,j = G(Ri,j , Li,j+1) + Li+2j−1,j+1
(1)

Ri,j+1 = G(Ri,j , Li+2j−1,j+1 +Ri+2j−1,j)

Ri+2j−1,j+1 = G(Ri,j , Li,j+1) +Ri+2j−1,j

(2)

where G(x, y) = ln ((1 + xy)/(x+ y)) is the propagation
function to update messages. In practice, the functionG in
Eq. (1) and (2) needs to be simplified by min-sum approxi-
matingG(x, y) ≈ sign(x)sign(y)min(|x|, |y|) or scaled min-
sum approximatingG(x, y) ≈ α·sign(x)sign(y)min(|x|, |y|),
whereα is the parameter scaling theG function.

The messagesLi,m+1 on the most right column are as-
signed by LLRs from the channel outputs. The messagesRi,1

on the first left column are the pre-decoding LLRs ofû.
Decoding starts by assigning∞ and 0 to the frozen bits and
information bits correspondingly. Those nodes on the most left
column are also referred as leaf nodes in this paper. The BP
decoding is performed by operating processing elements from
left to right over and over to refine eitherLi,1 or Ri,m+1 to
estimate the transmitted messageû or transmitted codeword̂x
by:

LLRû
i = Li,1 (3)

LLRx̂
i = Ri,m+1 + Li,m+1 (4)

whereLLRû
i and LLRx̂

i are the log-likelihood ratios of the
messageu and the transmitted codewordx, respectively. They
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Fig. 1. (a) Conventional BP factor graph ofn = 8 polar codes, and (b)
processing element of conventional BP algorithm.

are defined as:

LLRû
i = ln P (y|ui=0)

P (y|ui=1) , LLR
x̂
i = ln P (y|xi=0)

P (y|xi=1) (5)

whereP (y|x) represents the probability thaty is received as
x is given in the transmitter.

C. Constituent codes

As mentioned above, the polar codes are encoded re-
cursively through multiple coding stages. Thus, any polar
code could be regarded as constituted by two shorter po-
lar codes. For example, in the Fig. 1a, the polar code of
bits {(i, 4)|i = 1, 2, ..., 8} comprises the polar code of bits
{(i, 3)|i = 1, 2, 3, 4} and the polar code of{(i, 3)|i =
5, 6, 7, 8} with one more stage polarization. And the polar
code of bits {(i, 3)|i = 1, 2, 3, 4} and the polar code of
{(i, 3)|i = 5, 6, 7, 8} further consist of shorter polar codes.
Those shorter polar codes which exist in the composition of a
polar code are referred as the constituent codes. Some specific
constituent codes are discovered in [4] to reduce the latency
of SC decoding of polar codes. In this paper, the exploitation
of constituent codes is discussed in simplifying BP decoding
algorithms. The details of the exploration are given in the
following.

III. S IMPLIFIED BELIEF PROPAGATION DECODING

In this section, we present different types of constituent
codes which can help reduce the complexity of BP decoding
algorithm. The general idea of our algorithm is to refine the
estimation of the transmitted codewordx̂ without traversing the
entire factor graph in each iteration. The various constituent
codes are studied in this section to simplify the factor graph
so as to reduce the decoding the complexity.
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Fig. 2. (a) An example ofN 0 codes in shadow andN 1 codes in gray. (b) An example ofNREP codes in shadow andNSPC codes in gray. And (c) the
simplified factor graph for the example ofNREP andNSPC codes.

A. All-frozen N 0 codes

First type of the useful constituent codes are the codes
whose left leaf nodes are all frozen bits. These codes are
referred asN 0 codes. Fig. 2a shows an example ofN 0 code,
where the shadowed nodes of{(1, 2), (2, 2)} compose aN 0

code. For those codes, there is no necessity to compute their
LLRs, since the codeword is fixed by the frozen bits already.
If the frozen bits are set to0, the nodes ofN 0 codes are also
0 in the encoding factor graph. Thus, by setting messagesRi,j

of nodesN 0 codes as∞ before the decoding, the decoding
can be performed in each iteration without operating redundant
processing elements left to theN 0 codes.

B. All-information N 1 codes

As the counterpart of theN 0 codes,N 1 codes have their
all leaf nodes of information bits. An existence ofN 1 code in
then = 8 polar code example is given in Fig. 2a. In the figure,
the grayed codeword{(7, 2), (8, 2)} is aN 1 code whose leaf
nodes are all information bits.

From the aspect of the factor graph, the refinement does
originate from checking information provided by the frozen
bits on leaf nodes. Since there is no frozen bits on the leaf
nodes, it is implied that the messages do not get refined
by further message passing throughN 1 codes. From the
Eq. (1) and (2), it also shows that theRi,j+1 andRi+2j−1,j+1

are not updated with consistent zeros ofRi,j andRi+2j−1,j .
Thus the computations forN 1 codes could be removed through
BP decoding.

C. Repetition NREP codes

Another observation from the factor graph is that there
exist considerable amount of constituent codes which only
have a single information bit on the last leaf nodes. Those
codes duplicate the only information bit by multiple times to
construct the codeword. The repetition codes are referred as
NREP codes. The example given in Fig. 1a does contain a
NREP code as shows in Fig. 2b, where the shadowed nodes
{(1, 3), (2, 3), (3, 3), (4, 3)} constitute aNREP code.

Since we already know thatNREP codes are formed by
duplication, the conventional factor graph can be simplified so

as to avoid message passing through multiple message stages.
The corresponding example of the factor graph of theNREP

code is given in the Fig. 2c, where the top 4 shadowed nodes
constitute a repetition code. Since each node is a duplication
of others, they share the belief messages with others in the
factor graph. The message passing rule of theNREP codes
follows the theory of factor graph [10] as:

Ri,j =
∑

k 6=i

Lk,j (6)

For a repetition code with lengthl, the complexity of
conventional BP isO(l log l). Whereas the complexity of the
proposed updating rule isO(l). Specifically, the proposed
algorithm for length-l NREP codes takes(2l − 1) two-input
additions. Indiscriminately treating nodes ofNREP codes as
normal nodes by using conventional BP consumes(2l log2 l)
comparisons operations and same amount of additions.

D. Single parity check NSPC codes

The other type of constituent codes exists in polar codes
is the single parity check code. For those constituent codes
that only have a single frozen bit on the first leaf node, the
codewords are actually single parity check (SPC) codes, the
sums of whose codewords are always zero in binary field. The
SPC codes are also referred asNSPC .

As Fig. 2b shows, the leaf nodes of the grayed constituent
codeword{(5, 3), (6, 3), (7, 3), (8, 3)} are all information bits
except the first one. Similar toNREP codes, it is unnecessary
to evaluate through all conventional computations to update
the messagesR of those nodes. Since the codeword is a SPC
code, the factor graph of theNSPC codes could be modeled
as a parity check node connected with all bits of the codeword.
The modified factor graph of theNSPC code in the example
is shown in Fig. 2c. In the figure, an additional parity check
nodes is added to propagate the belief information among the
nodes. With the consistency on using min-sum algorithm, the
parity check update is written as:

Ri,j =
∏

k 6=i

sgn(Lk,j) ·min
k 6=i

|Lk,j | (7)



Similar as the repetition codes, the complexity of the
modified message passing algorithm isO(l) for length-l single
parity check code which is superior to the complexity of
the conventional algorithm,O(l log l). Thus with longer con-
stituent codes, more computation are saved with the proposed
algorithm.

Noticeably, theN 0 andN 1 codes are not usually included
in NSPC andNREP codes in reality. Simplifications of mes-
sage passing on those four different types of constituent codes
are all applied simultaneously. The distributions of exclusive
constituent codes in a(1024, 512) are shown in Table I. As the
table shows, there are considerable amount of constituent codes
in the polar code. There are more number ofNREP andNSPC

codes thanN 0 andN 1 codes. Thus an efficient BP algorithm
design for theNREP and NSPC codes could substantially
further reduce the BP decoding complexity. Also notice that
the distribution of the constituent codes does also depend on
the code rate and polar codes with rate of0.5 contain relatively
less number of constituent codes. With higher code rate, it is
more attractive to apply the proposed methods to simplify the
message passing. The details of complexity analysis will be
presented in Section V-B.

TABLE I. N UMBER OF ALL CONSTITUENT CODES WITH DIFFERENT

SIZES IN A (1024, 512)POLAR CODE WITH RATE OF0.5

Constituent codes sizes All
4 8 16 32 64 128

N
0 3 3 2 2 0 1 11

N
1 3 3 2 1 0 0 9

N
REP 16 8 4 1 1 1 31

N
SPC 15 5 3 1 1 0 25

With the constituent codes applied to reduce computations,
the journey for message passing is simplified so that the LLRs
of û are not immediately available from BP iterations. Thus in
the proposed algorithm, we focus on refining the estimationsof
transmitted codeword̂x instead of messageŝu. The estimated
LLRs of x̂, the soft estimations of transmitted codewordx
in log likelihood ratio, are represented by Eq. (4). As afore-
mentioned,Li,m+1 are LLRs from the channel outputs. So in
our algorithm,Ri,m+1 is refined in iterations to accomplish
decoding. The details how the computations are scheduled
to accommodate the simplification is presented in the next
section.

IV. SCHEDULING

This section presents the two different ways to schedule
the computations of conventional BP decoding algorithm.
Next the scheduling plan for the proposed BP decoding is
illustrated. Finally, we present a method to terminate early the
BP decoding iterations.

A. Round-trip BP updating

The computations of all existing conventional BP decoders
are based on the processing element of Fig. 1b. In the other
proposed BP processing elements, the messages are computed
simultaneously for both directions of left-to-right and right-
to-left. Fig. 3a shows the computations scheduled by the
conventional BP decoding. As the figure shows, each iteration
consists ofm stages of computations, wherem = log2(n)
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Fig. 3. Two types of scheduling methods in BP decoders. (a) Computations
scheduled in the conventional BP decoders, and (b) Computations scheduled
in a round-trip updating fashion.

is the number of stages in the factor graph. For each stage,
the messages of both directionRi+1,j andLi,j of each stage
are computed. And the computations are repeated in one-way
direction from left to right iteratively. However, this scheduling
method lacks efficiency. For instance, it is inefficient to update
Li,1 in step 1 before having updatedLi,2 in step 2.

Another way to schedule the computations is to sepa-
rately update right-to-left messages and left-to-right messages.
Fig. 3b shows the schedule of messages updated in this fashion.
As the figure shows, the computations of each iteration are
separated to two parts. In the first part, theLi,j messages are
updated from columnm+1 to the most left nodes existing in
the modified factor graph. The second is following to update
the other direction messageRi,j from left to the column
m+1. Since in each iteration there is a round trip through the
factor graph, this scheduling scheme is referred as round-trip
scheduling in this paper. Though each iteration of this modified
scheduling contains a round-trip visit of nodes instead of one-
way traverse, the amount of computations is same as that of the
conventional scheduling, because only half of messages, either
Li,j or Ri,j , are updated in each direction. Furthermore, the
round-trip scheduling significantly improves the efficiency in
terms of number of iterations. Section V-B will discuss the
number of iterations in details.

In this paper, we employ the proposed round-trip schedul-
ing to updateRi,m+1 as discussed above in order to promote
the efficiency. In contrast with conventional BP decoding, for
constituentNREP andNSPC codes, Eq. (6) and (7) instead
of Eq. (2) are used to update messagesRi,j .

B. Early Termination

In this paper, we apply early termination technique to
determine whether the decoding is successfully done or not.
Polar codes belong to the block codes. For block codes,H
matrix could be used for codeword detection. According to
the coding theory [11], the parity check matrixH could be
derived given generator matrixG′. HereG′ is a k × n matrix
consisting rows of matrixG corresponding to the positions of
the information bits. Then the termination of a decoding is
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Fig. 4. Decoding performance of the proposed BP decoding algorithm for
(1024, 512) polar code with rate= 0.5 and max number of iteration of60.

indicated by the equation:

x̂H = 0 (8)

where x̂ is the hard decision of the transmitted codeword
estimations, i.e.

x̂i =

{

0, LLRx̂
i > 0

1, otherwise
(9)

V. SIMULATION AND DISCUSSION

In this section, we set up simulations to verify the pro-
posed algorithm. Compared with the conventional BP decoding
algorithm, the complexity and performance of the proposed
algorithm are also analyzed and discussed in this section. As
an example,(1024, 512) polar code is used to emulate the
proposed decoder with max number of iterations of 60.

A. Decoding Performance

Fig. 4 shows the decoding performances of four decod-
ing strategies. They are the conventional min-sum (MS) BP
algorithm with conventional scheduling, the conventionalMS
BP algorithm with round-trip scheduling, the scaled min-sum
(SMS) algorithm proposed in [7] with conventional scheduling
and the proposed algorithm. As the results show, the min-
sum BP decoding with the round-trip computation scheduling
considerably outperforms the conventional min-sum algorithm.
The performance of the min-sum BP algorithm with round-
trip updating is very close to that of the scaled min-sum
algorithm [7].

We also show that the proposed XJ-BP algorithm yields
almost same performance as the conventional BP algorithm
with round-trip scheduling does. It means that the simplifica-
tions for constituent codes do not result in any degradationin
decoding performance.

B. Computation Complexity Analysis

After showing the decoding performance of the proposed
algorithm, here we discuss the complexity reduction by the
proposed XJ-BP algorithm.
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Fig. 5. Average numbers of iterations of the proposed BP decoding algorithm
for (1024, 512) polar code with rate= 0.5.

First of all, the average numbers of iterations of those
algorithms are summarized in the Fig. 5. It is shown in
the figure that with the round-trip scheduling computations,
the efficiency of the BP algorithm is significantly increased.
Noticeably scaled min-sum BP algorithm reduces the number
of iterations. However the reduction is at the cost of the
additional scaling computation in each node update. The
interesting phenomenon from this experiment is that the round-
trip scheduling significantly improves the iteration efficiency
without the additional computational complexity cost. Under
the condition of highEb/N0 = 3.5, the round-trip BP schedul-
ing only takes3.98 average iterations to complete decoding.
As mentioned in Section IV, the amounts of computations
for conventional scheduling and round-trip scheduling in each
iteration are the same. Compared with24.5 average number of
iterations consumed by the conventional MS BP decoding, the
decoding efficiency is immediately improved by83.7% without
considering the simplification on factor graph yet. Also, itis
addressed that the proposed XJ-BP algorithm does not reduce
the number of iterations compared with the traditional BP but
with round-trip scheduling.

Secondly, we evaluate the reduction of computations in
each iteration resulting from the proposed XJ approach for
message passing. As mentioned above, computations for nodes
of N 0 andN 1 codes could be removed directly. The compu-
tations ofNREP and NSPC codes are reduced by XJ-BP.
The numbers of total operations (2-input addition or 2-input
comparison) are shown in the Table. II. In the table, polar codes
are set at rate= 0.5 and the channel polarization is done under
the binary erasure channel (BEC) model with erasure ratio of
0.3. It is shown that the total number of computations could
be reduced by about 40% in each iteration using the proposed
simplified BP algorithm. And we found that this ratio is kept
at about 40% even with significantly longer code length. In
another word, the proposed simplification saves around40%
amount of computations regardless of lengths of the polar
codes.

Another factor that affects the simplification is the code
rate. Table. III shows the number of computations for proposed
algorithm decoding a polar code of length 1024 at different
typical code rates. As the table shows, the proposed algorithm



TABLE II. N UMBER OF COMPUTATIONS OFXJ-BPALGORITHM WITH

ALL POLAR CODES AT RATE= 0.5

Polar code sizes
128 256 512 1024 2048

Conventional BP 1792 4096 9216 20480 45056
XJ-BP 1040 2488 5536 12160 27304

Ratios [%] 58.0% 60.9% 60.1% 59.4% 60.6%

TABLE III. C OMPUTATIONS OFXJ-BPALGORITHM IN EACH

ITERATION AT DIFFERENT CODE RATES

Code Rates
1/2 2/3 3/4 5/6 7/8

conventional BP 20480 20480 20480 20480 20480
XJ-BP 12160 11488 10680 9376 8936

Ratios [%] 59.4% 56.1% 52.3% 45.8% 44.6%
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Fig. 6. Average numbers of computations consumed to decode each codeword
of by the proposed BP decoding algorithm for(1024, 512) polar code with
rate= 0.5.

saves more computation resource to decode polar code with
higher code rates. This is because that more constituent codes
exist in the factor graph with more unbalanced number of
frozen bits and information bits.

Finally, the overall complexity reduction is evaluated by
considering both the reduced number of iterations and sim-
plified computations in each iteration. Take the (1024, 512)
codes as an example, Fig. 6 shows the average numbers of
computations to decode one codeword at different levels of
Eb/N0. Due to the extra scaling operations, SMS consumes
around 34% more computations over the conventional MS
decoding algorithm, although SMS outperforms conventional
BP in terms of decoding performance. Compared with con-
ventional BP decoding, the round-trip scheduling reduces the
number of computations by83.7% at Eb/N0 = 3.5 resulting
from the reduced number of iterations. Based on round-trip
scheduling, the proposed method does not yield any further
improvement on number of necessary iterations. However
the XJ-BP decoding simplifies factor graph so as to reduce
the computations in each iteration by40.6%. As a results,
the overall complexity is reduced by90.4% using XJ-BP,
compared with conventional BP decoding.

C. Discussions

From the aspect of practical implementation, the conven-
tional BP processing element symmetrically computes updates
for messagesRi,j andLi,j. Traditional computations forRi,j

as shown in Eq. (2) are as same as those forLi,j in Eq. (1).
In practical implementation for the proposed algorithm, the
processing elements should be designed as only to deal with
functions G(x, y + z) and G(x, y) + z to satisfy only one-
direction message computations.

The message updating rules are different between normal
nodes and nodes of the constituent codes in mathematics. But
the basic operations of additions and comparisons for them
are similar. Thus the proposed processing elements could be
multiplexed between normal and specific constituent codes.

VI. CONCLUSION

In this paper, a novel method is proposed to simplify
belief propagation decoding algorithms for polar codes. By
modifying the BP rules for the specific constituent codes, the
proposed method significantly simplifies the factor graph of
message passing in each iteration. Additionally, a novel round-
trip scheduling approach is developed based on the obser-
vations that BP decoding algorithm works more efficiently
with it. The computational efficiencies of different BP-based
decoding strategies are evaluated by counting numbers of
basic operations. The results show that the proposed XJ-BP
algorithm reduces the computational complexity of MS BP
decoding by 90.4% while yielding the same performance as
that of the SMS BP decoding algorithm.
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