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ABSTRACT. We study quadri-algebras and dual quadri-algebras. We describe the free
quadri-algebra on one generator as a subobject of the Hopf algebra of permutations FQSym,
proving a conjecture due to Aguiar and Loday, using that the operad of quadri-algebras can be
obtained from the operad of dendriform algebras by both black and white Manin products. We
also give a combinatorial description of free dual quadri-algebras. A notion of quadri-bialgebra
is also introduced, with applications to the Hopf algebras FQSym and WQSym.
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Introduction

An algebra with an associativity splitting is an algebra whose associative product ⋆ can be
written as a sum of a certain number of (generally nonassociative) products, satisfying certain
compatibilities. For example, dendriform algebras [6, 10] are equipped with two bilinear products
≺ and ≻, such that for all x, y, z:

(x ≺ y) ≺ z = x ≺ (y ≺ z + y ≻ z),

(x ≻ y) ≺ z = x ≻ (y ≺ z),

(x ≺ y + x ≻ y) ≻ z = x ≻ (y ≻ z).
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Summing these axioms, we indeed obtain that ⋆ =≺ + ≻ is associative. Another example is given
by quadri-algebras, which are equipped with four products ↖, ↙, ↘ and ↗, in such a way that:

• ←=↖ + ↙ and →=↘ +↗ are dendriform products,

• ↑=↖ +↗ and ↓=↙ +↘ are dendriform products.

Shuffle algebras or the algebra of free quasi-symmetric functions FQSym are examples of quadri-
algebras. No combinatorial description of the operad Quad of quadri-algebra is known, but a
formula for its generating formal series is conjectured in [10] and proved in [17], as well as the
koszulity of this operad. A description of Quad is given with the help of the black Manin product
on nonsymmetric operads ∎, namely Quad =Dend∎Dend, where Dend is the nonsymmetric
operad of dendriform algebras (this product is denoted by ◻ in [5, 11]). It is also suspected that
the sub-quadri-algebra of FQSym generated by the permutation (12) is free. We give here a
proof of this conjecture (Corollary 7). We use for this that Quad is also equal to Dend◻Dend

(Corollary 5), and consequently can be seen as a suboperad of Dend ⊗ Dend: hence, free
Dend⊗Dend-algebras contain free quadri-algebras, a result which is applied to FQSym. We
also combinatorially describe the Koszul dual Quad! of Quad, and prove its koszulity with the
rewriting method of [9, 2, 12].

The last section is devoted to a study of the compatibilities between the quadri-algebra
structure of FQSym and its dual quadri-coalgebra structure: this leads to the notion of quadri-
bialgebra (Definition 10). Another example of quadri-bialgebra is given by the Hopf algebra of
packed words WQSym. It is observed that, unlike the case of dendriform bialgebras, there is
no rigidity theorem for quadri-bialgebras; indeed:

• FQSym and WQSym are not free quadri-algebras, nor cofree quadri-coalgebras.

• FQSym and WQSym are not generated, as quadri-algebras, by their primitive elements,
in the quadri-coalgebraic sense.

Aknowledgments. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017. I would like to thank Bruno
Vallette for his precious comments, suggestions and help.

Notations.

1. We denote by K a commutative field. All the objects (vector spaces, algebras, coalgebras,
operads. . .) of this text are taken over K.

2. For all n ≥ 1, we denote by [n] the set of integers {1,2, . . . , n}.
1 Reminders on quadri-algebras and operads

1.1 Definitions and examples of quadri-algebras

Definition 1 1. A quadri-algebra is a family (A,↖,↙,↘,↗), where A is a vector space
and ↖, ↙, ↘, ↗ are products on A, such that for all x, y, z ∈ A:

(x↖ y)↖ z = x↖ (y ⋆ z), (x↗ y)↖ z = x↗ (y ← z), (x ↑ y)↗ z = x↗ (y → z),
(x↙ y)↖ z = x↙ (y ↑ z), (x↘ y)↖ z = x↘ (y ↖ z), (x ↓ y)↗ z = x↘ (y ↗ z),
(x ← y)↙ z = x↙ (y ↓ z), (x→ y)↙ z = x↘ (y ↙ z), (x ⋆ y)↘ z = x↘ (y ↘ z),

where:

← =↖ +↙, → =↗ +↘, ↑ =↖ +↗, ↓ =↙ +↘,
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⋆ =↖ +↙ +↘ +↗=← +→=↑ + ↓ .

These relations will be considered as the entries of a 3 × 3 matrix, and will be refered as
relations (1,1) . . . (3,3).

2. A quadri-coalgebra is a family (C,∆↖,∆↙,∆↘,∆↗), where C is a vector space and ∆↖,
∆↙, ∆↘, ∆↗ are coproducts on C, such that:

(∆↖ ⊗ Id) ○∆↖ = (Id⊗∆∗) ○∆↖, (∆↙ ⊗ Id) ○∆↖ = (Id⊗∆↑) ○∆↙,
(∆↗ ⊗ Id) ○∆↖ = (Id⊗∆←) ○∆↗, (∆↘ ⊗ Id) ○∆↖ = (Id⊗∆↖) ○∆↘,
(∆↑ ⊗ Id) ○∆↗ = (Id⊗∆→) ○∆↗; (∆↓ ⊗ Id) ○∆↗ = (Id⊗∆↗) ○∆↘;

(∆← ⊗ Id) ○∆↙ = (Id⊗∆↓) ○∆↙,
(∆→ ⊗ Id) ○∆↙ = (Id⊗∆↙) ○∆↘,
(∆∗ ⊗ Id) ○∆↘ = (Id⊗∆↘) ○∆↘,

with:

∆← =∆↘ +∆↗, ∆→ =∆↖ +∆↙, ∆↑ =∆↖ +∆↗, ∆↓ =∆↙ +∆↘,
∆∗ =∆↖ +∆↙ +∆↘ +∆↗.

Remarks.

1. If A is a finite-dimensional quadri-algebra, then its dual A∗ is a quadri-coalgebra, with
∆◇ = ◇

∗ for all ◇ ∈ {↖,↙,↘,↗,←,→, ↑, ↓,⋆}.
2. If C is a quadri-coalgebra (even not finite-dimensional), then C∗ is a quadri-algebra, with
◇ =∆∗◇ for all ◇ ∈ {↖,↙,↘,↗,←,→, ↑, ↓,⋆}.

3. Let A be a quadri-algebra. Adding each row of the matrix of relations:

(x ↑ y) ↑ z = x ↑ (y ⋆ z),
(x ↓ y) ↑ z = x ↓ (y ↑ z),
(x ⋆ y) ↓ z = x ↓ (y ↓ z).

Hence, (A, ↑, ↓) is a dendriform algebra. Adding each column of the matrix of relations:

(x ← y)← z = x ← (y ⋆ z), (x → y)← z = x → (y ← z), (x ⋆ y)→ z = x → (y → z).
Hence, (A,←,→) is a dendriform algebra. The associative (non unitary) product associated
to both these dendriform structures is ⋆.

4. Dually, if C is a quadri-coalgebra, (C,∆↑,∆↓) and (C,∆←,∆→) are dendriform coalgebras.
The associated coassociative (non counitary) coproduct is ∆∗.

Examples.

1. Let V be a vector space. The augmentation ideal of the tensor algebra T (V ) is given four
products defined in the following way: for all v1, . . . , vk, vk+1, . . . , vk+l ∈ V , k, l ≥ 1,

v1 . . . vk ↖ vk+1 . . . vk+l = ∑
σ∈Sh(k,l),

σ−1(1)=1, σ−1(k+l)=k

vσ−1(1) . . . vσ−1(k+l),

v1 . . . vk ↙ vk+1 . . . vk+l = ∑
σ∈Sh(k,l),

σ−1(1)=k+1, σ−1(k+l)=k

vσ−1(1) . . . vσ−1(k+l),

v1 . . . vk ↘ vk+1 . . . vk+l = ∑
σ∈Sh(k,l),

σ−1(1)=k+1, σ−1(k+l)=k+l

vσ−1(1) . . . vσ−1(k+l),

v1 . . . vk ↗ vk+1 . . . vk+l = ∑
σ∈Sh(k,l),

σ−1(1)=1, σ−1(k+l)=k+l

vσ−1(1) . . . vσ−1(k+l),
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where Sh(k, l) is the set of (k, l)-shuffles, that is to say permutations σ ∈ Sk+l such that
σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l). The associated associative product is the
usual shuffle product.

2. The augmentation ideal of the Hopf algebra FQSym of permutations introduced in [13]
and studied in [4] is also a quadri-algebra, as mentioned in [1]. For all permutations α ∈Sk,
β ∈ Sl, k, l ≥ 1:

α↖ β = ∑
σ∈Sh(k,l),

σ−1(1)=1, σ−1(k+l)=k

(α⊗ β) ○ σ−1,

α↙ β = ∑
σ∈Sh(k,l),

σ−1(1)=k+1, σ−1(k+l)=k

(α⊗ β) ○ σ−1,

α↘ β = ∑
σ∈Sh(k,l),

σ−1(1)=k+1, σ−1(k+l)=k+l

(α⊗ β) ○ σ−1,

α↗ β = ∑
σ∈Sh(k,l),

σ−1(1)=1, σ−1(k+l)=k+l

(α⊗ β) ○ σ−1.

As FQSym is self-dual, its coproduct can also be split into four parts, making it a quadri-
coalgebra. As the pairing on FQSym is defined by ⟨σ, τ⟩ = δσ,τ−1 for any permutations
σ, τ , we deduce that if σ ∈ Sn, n ≥ 1, with the notations of [13]:

∆↖(σ) = ∑
σ−1(1),σ−1(n)≤i<n

Std(σ(1) . . . σ(i))⊗ Std(σ(i + 1) . . . σ(n)),
∆↙(σ) = ∑

σ−1(n)≤i<σ−1(1)

Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)),
∆↘(σ) = ∑

1≤i<σ−1(1),σ−1(n)

Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)),
∆↗(σ) = ∑

σ−1(1)≤i<σ−1(n)

Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)).
The compatibilites between these products and coproducts will be studied in Proposition
11. For example:

(12)↖ (12) = (1342), ∆↖((3412)) = (231) ⊗ (1), ∆↖((2143)) = (213) ⊗ (1),
(12)↙ (12) = (3142) + (3412), ∆↙((3412)) = (12) ⊗ (12), ∆↙((2143)) = 0,
(12)↘ (12) = (3124), ∆↘((3412)) = (1)⊗ (312), ∆↘((2143)) = (1) ⊗ (132),
(12)↗ (12) = (1234) + (1324), ∆↗((3412)) = 0, ∆↗((2143)) = (21) ⊗ (21).

The dendriform algebra (FQSym,←,→) and the dendriform coalgebra (FQSym,∆←,∆→)
are decribed in [6, 7]; the dendriform algebra (FQSym, ↑, ↓) and the dendriform coalgebra(FQSym,∆↑,∆↓) are decribed in [8]. Both dendriform algebras are free, and both den-
driform coalgebras are cofree, by the dendriform rigidity theorem [6]. Note that FQSym

is not free as a quadri-algebra, as (1)↖ (1) = 0.
3. The dual of the Hopf algebra of totally assigned graphs [3] is a quadri-coalgebra.

1.2 Nonsymmetric operads

We refer to [12, 14, 17] for the usual definitions and properties of operads and nonsymmetric
operads.

Notations and reminders.
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• Let V be a vector space. The free nonsymmetric operad generated in arity 2 by V is
denoted by F(V ). If we fix a basis (vi)i∈I of V , then for all n ≥ 1, a basis of F(V )n is
given by the set of planar binary trees with n leaves, whose (n − 1) internal vertices are
decorated by elements of {vi ∣ i ∈ I}. The operadic composition is given by the grafting of
trees on leaves. If V is finite-dimensional, then for all n ≥ 1, F(V )n is finite-dimensional,
and:

dim(F(V )n) = 1

n
(2n − 2
n − 1

)dim(V )n.
• Let P a nonsymmetric operad and V a vector space. A structure of P-algebra on V is a

family of maps:

{ P(n)⊗ V ⊗n Ð→ V

p⊗ v1 ⊗ . . .⊗ vn Ð→ p.(v1, . . . , vn),
satisfying some compatibilities with the composition of P.

• The free P-algebra generated by the vector space V is, as a vector space:

FP(V ) =⊕
n≥0

P(n)⊗ V ⊗n;
the action of P on FP(V ) is given by:

p.(p1 ⊗w1, . . . , pn ⊗wn) = p ○ (p1, . . . , pn)⊗w1 ⊗ . . . ⊗wn.

• Let P = (Pn)n≥1 be a nonsymmetric operad. It is quadratic if :

– It is generated by GP = P2.

– Let πP ∶ F(GP) Ð→ P be the canonical morphism from F(GP) to P; then its kernel
is generated, as an operadic ideal, by Ker(πP)3 =Ker(πP) ∩F(GP)3.

If P is quadratic, we put GP = P2, and RP =Ker(πP)3. By definition, these two spaces entirely
determine P, up to an isomorphism.

Examples.

1. The nonsymmetric operad Quad of quadri-algebras is quadratic. It is generated by
GQuad = V ect(↖,↙,↘,↗), and RQuad is the linear span of the nine following elements:

❅❅
↖

↖ − ��
↖

⋆
, ❅❅

↖

↗ − ��
↗

←
, ❅❅

↗

↑ − ��
↗

→
,

❅❅
↖

↙ − ��
↙

↑
, ❅❅

↖

↘ − ��
↘

↖
, ❅❅

↗

↓ − ��
↘

↗
,

❅❅
↙

← − ��
↙

↓
, ❅❅

↙

→ − ��
↘

↙
, ❅❅

↘

⋆ − ��
↘

↘
.

As dim(F (GQuad)3) = 32, dim(Quad3) = 32 − 9 = 23.
2. The nonsymmetric operad Dend of dendriform algebras is quadratic. It is generated by
GDend = V ect(≺,≻), and RDend is the linear span of the three following elements:

❅❅
≺

≺ − ��
≺

⋆
, ❅❅

≺

≻ − ��
≻

≺
, ❅❅

≻

⋆ − ��
≻

≻
.

The nonsymmetric-operad Quad of quadri-algebras, being quadratic, has a Koszul dual
Quad!. The following formulas for the generating formal series of Quad and Quad! has been
conjectured in [1] and proved in [17], as well as the koszulity:

5



Proposition 2 1. For all n ≥ 1, dim(Quad(n)) = 2n−1

∑
j=n

( 3n

n + 1 + j)(
j − 1
j − n). This is se-

quence A007297 in [16].

2. For all n ≥ 1, dim(Quad!(n)) = n2.
3. The operad of quadri-algebras is Koszul.

2 The operad of quadri-algebras and its Koszul dual

2.1 Dual quadri-algebras

Algebras on Quad! will be called dual quadri-algebras. This operad Quad! is described in [17]
in terms of the white Manin product. Let us give an explicit description.

Proposition 3 A dual quadri-algebra is a family (A,↖,↙,↘,↗), where A is a vector space
and ↖,↙,↘,↗∶ A⊗A Ð→ A, such that for all x, y, z ∈ A:

(x↖ y)↖ z = x↖ (y ↖ z) = x↖ (y ↙ z) = x↖ (y ↘ z) = x↖ (y ↗ z),
(x↗ y)↖ z = x↗ (y ↖ z) = x↗ (y ↙ z),
(x↖ y)↗ z = (x↗ y)↗ z = x↗ (y ↘ z) = x↗ (y ↗ z),
(x↙ y)↖ z = x↙ (y ↖ z) = x↙ (y ↗ z),
(x↘ y)↖ z = x↘ (y ↖ z),
(x↙ y)↗ z = (x↘ y)↗ z = x↘ (y ↗ z),
(x↖ y)↙ z = (x↙ y)↙ z = x↙ (y ↙ z) = x↙ (y ↘ y),
(x↘ y)↙ z = x(↗ y)↙ z = x↘ (y ↙ z),
(x↖ y)↘ z = (x↙ y)↘ z = (x↘ y)↘ z = (x↗ y)↘ z = x↘ (y ↘ z).

These groups of relations are denoted by (1)!, . . . , (9)!. Note that the four products ↖,↙,↘,↗
are associative.

Proof. We put G = V ect(↖,↙,↘,↗) and E the component of arity 3 of the free nonsym-
metric operad generated by G, that is to say:

E = V ect
⎛⎜⎝ ��

f

g
, ❅❅

f

g ∣ f, g ∈ {↖,↙,↘,↗}⎞⎟⎠ .

We give G a pairing, such that the four products form an orthonormal basis of G. This induces
a pairing on E: for all x, y, z, t ∈ G,

⟨ ❅❅x

y
, ❅❅

z

t ⟩ = ⟨x, z⟩⟨y, t⟩, ⟨ ��
x

y
, ��

z

t ⟩ = −⟨x, z⟩⟨y, t⟩,
⟨ ��

x

y
, ❅❅

z

t ⟩ = 0, ⟨ ❅❅x

y
, ��

z

t ⟩ = 0.
The quadratic nonsymmetric operad Quad is generated by G = V ect(↖,↙,↘,↗) and the sub-
space of relations R of E corresponding to the nine relations (1,1). . .(3,3). The quadratic non-
symmetric operad Quad! is generated by G ≈ G∗ and the subspaces of relations R⊥ of E. As
dim(R) = 9 and dim(E) = 32, dim(R⊥) = 23. A direct verification shows that the 23 relations
given in (1)!, . . . , (9)! are elements of R⊥. As they are linearly independent, they form a basis of
R⊥. ◻
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Notations. We consider:

R =
∞

⊔
n=1

[n]2.
The element (i, j) ∈ [n]2 ⊂ R will be denoted by (i, j)n in order to avoid the confusions. We
graphically represent (i, j)n by putting in grey the boxes of coordinates (a, b), 1 ≤ a ≤ i, 1 ≤ b ≤ j,
of a n × n array, the boxes (1,1), (1, n), (n,1) and (n,n) being respectively up left, down left,
up right and down right. For example:

(2,1)3 = ∎∎ , (1,1)2 = ∎ , (3,2)4 =
∎∎∎∎∎∎

.

Proposition 4 Let AR = V ect(R). We define four products ↖, ↙, ↘, ↗ on AR by:

(i, j)p ↖ (k, l)q = (i, j)p+q , (i, j)p ↗ (k, l)q = (k + p, j)p+q,
(i, j)p ↙ (k, l)q = (i, p + l)p+q, (i, j)p ↘ (k, l)q = (k + p, l + p)p+q.

Then (AR,↖,↙,↘,↗) is a dual quadri-algebra. It is graded by putting the elements of [n]2 ∈R
homogeneous of degree n, and the generating formal series of AR is:

∞

∑
n=1

n2Xn =
X(1 +X)
(1 −X)3 .

Moreover, AR is freely generated as a dual quadri-algebra by (1,1)1.
Proof. Let us take (i, j)p, (k, l)q and (m,n)r ∈R. Then:

• Each computation in (1)! gives (i, j)p+q+r .
• Each computation in (2)! gives (p + k, j)p+q+r .
• Each computation in (3)! gives (p + q +m,j)p+q+r.
• Each computation in (4)! gives (i, p + l)p+q+r.
• Each computation in (5)! gives (p + k, p + l)p+q+r.
• Each computation in (6)! gives (p + q +m,p + l)p+q+r.
• Each computation in (7)! gives (i, p + q + n)p+q+r.
• Each computation in (8)! gives (p + k, p + q + n)p+q+r.
• Each computation in (9)! gives (p + q +m,p + q + n)p+q+r.

So AR is a dual quadri-algebra. We now prove that AR is generated by (1,1)1. Let B be the
dual quadri-subalgebra of AR generated by (1,1)1, and let us prove that (i, j)n ∈ B by induction
on n for all (i, j)n ∈ R. This is obvious in n = 1, as then (i, j)n = (1,1)1. Let us assume the
result at rank n − 1, with n > 1.

• If i ≥ 2 and j ≤ n − 1, then (1,1)1 ↗ (i − 1, j)n−1 = (i, j)n. By the induction hypothesis,(i − 1, j)n−1 ∈ B, so (i, j)n ∈ B.

• If i ≤ n − 1 and j ≥ 2, then (1,1)1 ↙ (i, j − 1)n−1 = (i, j)n. By the induction hypothesis,(i, j − 1)n−1 ∈ B, so (i, j)n ∈ B.

• Otherwise, (i = 1 or j = n) and (i = n or j = 1), that is to say (i, j)n = (1,1)n or (i, j)n =(n,n)n. We remark that (1,1) ↖ (1,1)n−1 = (1,1)n and (1,1)1 ↘ (n−1, n−1)n−1 = (n,n)n.
By the induction hypothesis, (1,1)n−1 and (n − 1, n − 1)n ∈ B, so (1,1)n and (n,n)n ∈ B.
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Finally, B contains R, so B = AR.

Let C be the free Quad!-algebra generated by a single element x, homogeneous of degree 1.
As a graded vector space:

C =⊕
n≥1

Quad!
n ⊗ V ⊗n,

where V = V ect(x). So for all n ≥ 1, by Proposition 2, dim(Cn) = n2 = dim(An). There exists
a surjective morphism of Quad!-algebras θ from C to A, sending x to (1,1)1. As x and (1,1)1
are both homogeneous of degree 1, θ is homogeneous of degree 0. As A and C have the same
generating formal series, θ is bijective, so A is isomorphic to C. ◻

Examples. Here are graphical examples of products. The result of the product is drawn in
light gray:

∎∎
↖ ∎ =

∎∎

∎

∎∎

,
∎∎

↙ ∎ =

∎∎

∎

∎∎
∎∎
∎∎
∎∎ ,

∎∎
↘ ∎ =

∎∎

∎

∎∎∎∎
∎∎∎∎
∎∎∎∎
∎∎∎∎ ,

∎∎
↗ ∎ =

∎∎

∎

∎∎∎∎

.

Roughly speaking, the products of x ∈ [m]2 ⊂R and y ∈ [n]2 ⊂R are obtained by putting x and
y diagonally in a common array of size (m+n)× (m+n). This array is naturally decomposed in
four parts denoted by nw, sw, se and ne according to their direction. Then:

1. x↖ y is given by the black boxes in the nw part.

2. x↙ y is given by the boxes in the sw part which are simultaneously under a black box and
to the left of a black box.

3. x↘ y is given by the black boxes in the se part.

4. x↗ y is given by the boxes in the ne part which are simultaneously over a black box and
to the right of a black box.

Here are the results of the nine relations applied to x =
∎∎

, y = ∎ and z =

∎∎∎
∎∎∎

:

(1)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎

(2)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎

(3)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎∎∎∎∎

(4)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎
∎∎
∎∎∎∎

(5)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎
∎∎∎∎
∎∎∎∎∎∎∎∎

(6)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎

(7)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎
∎∎
∎∎
∎∎∎∎
∎∎
∎∎ (8)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎
∎∎∎∎
∎∎∎∎
∎∎∎∎∎∎∎∎
∎∎∎∎
∎∎∎∎ (9)! ∶

∎∎

∎
∎∎∎
∎∎∎

∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎
∎∎∎∎∎∎∎∎

Remarks.

1. A description of the free Quad!-algebra generated by any set D is done similarly. We put:

R(D) = ∞⊔
n=1

[n]2 ×Dn.
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The four products are defined by:

((i, j)p, d1, . . . , dp)↖ ((k, l)q , e1, . . . , eq) = ((i, j)p+q , d1, . . . , dp, e1, . . . , eq),
((i, j)p, d1, . . . , dp)↙ ((k, l)q , e1, . . . , eq) = ((i, p + l)p+qd1, . . . , dp, e1, . . . , eq),
((i, j)p, d1, . . . , dp)↘ ((k, l)q , e1, . . . , eq) = ((k + p, l + p)p+qd1, . . . , dp, e1, . . . , eq)
((i, j)p, d1, . . . , dp)↗ ((k, l)q , e1, . . . , eq) = ((k + p, j)p+qd1, . . . , dp, e1, . . . , eq).

2. We can also deduce a combinatorial description of the nonsymmetric operad Quad!. As a
vector space, Quad!

n = V ect([n]2) for all n ≥ 1. The composition is given by:

(i, j)m ○ ((k1, l1)n1
, . . . , (kn, ln)nm) = (n1 + . . . + ni−1 + ki, n1 + . . . + nj−1 + lj)n1+...+nm .

In particular:

↖ = (1,1)2, ↙ = (1,2)2, ↘ = (2,2)2, ↗ = (2,1)2.
Corollary 5 We define a nonsymmetric operad Dias in the following way:

• For all n ≥ 1, Diasn = V ect([n]). The elements of [n] ⊆Diasn are denoted by (1)n, . . . , (n)n
in order to avoid confusions.

• The composition is given by:

(i)m ○ ((j1)n1
, . . . , (jm)nm) = (n1 + . . . + ni−1 + ji)n1+...+nm .

This is the nonsymmetric operad of associative dialgebras [10], that is to say algebras A with two
products ⊢ and ⊣ such that for all x, y, z ∈ A:

x ⊣ (y ⊣ z) = x ⊣ (y ⊢ z) = (x ⊣ y) ⊣ z,
(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),
(x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z = x ⊢ (y ⊢ z).

We denote by ◻ and ∎ the two Manin products on nonsymmetric-operads of [17]. Then:

Quad! =Dias⊗Dias =Dias ◻Dias =Dias ∎Dias,

Quad =Dend ∎Dend =Dend ◻Dend.

Proof. We denote by Dias′ the nonsymmetric operad generated by ⊣ and ⊢ and the relations:

��
⊣

⊣
= ��

⊣

⊢
= ❅❅

⊣

⊣
, ��

⊢

⊣
= ❅❅

⊣

⊢
, ��

⊢

⊢
= ❅❅

⊢

⊣
= ❅❅

⊢

⊢
.

First, observe that:

(1)2 ○ (I, (1)2) = (1)2 ○ (I, (2)2) = (1)2 ○ ((1)2, I) = (1)3,
(1)2 ○ ((2)2, I) = (2)2 ○ (I, (1)2) = (2)3,
(2)2 ○ (I, (2)2) = (2)2 ○ ((1)2, I) = (2)2 ○ ((2)2, I) = (3)3.

So there exists a morphism θ of nonsymmetric operad from Dias′ to Dias, sending ⊣ to (1)2
and ⊢ to (2)2. Note that θ(I) = (1)1.

Let us prove that θ is surjective. Let n ≥ 1, i ∈ [n], we show that (i)n ∈ Im(θ) by induction
on n. If n ≤ 2, the result is obvious. Let us assume the result at rank n − 1, n ≥ 3. If i = 1, then:

(1)2 ○ ((1)1, (1)n−1) = (1)n.
9



By the induction hypothesis, (1)n−1 ∈ Im(θ), so (1)n ∈ Im(θ). If i ≥ 2, then:

(2)2 ○ ((1)1, (i − 1)n−1) = (i)n.
By the induction hypothesis, (1)n−1 ∈ Im(θ), so (i)n ∈ Im(θ).

It is proved in [10] that dim(Dias′n) = dim(Diasn) = n for all n ≥ 1. As θ is surjective, it is
an isomorphism. Moreover, let us consider the following map:

{ Dias⊗Dias Ð→ Quad!

(i)n ⊗ (j)n Ð→ (i, j)n.
It is clearly an isomorphism of nonsymmetric operads. It is proved in [17] that Dias ◻Dias =
Quad!. As RDias is generated the quadratic nonsymmetric algebra generated by (1)2 and (2)2
and the following relations:

❅❅
b

a − ��
c

d
, (a, b, c, d) ∈ E =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((1)2, (1)2, (1)2, (1)2), ((1)2, (1)2, (1)2, (2)2),((2)2, (1)2, (2)2, (1)2), ((1)2, (2)2, (2)2, (2)2),((2)2, (2)2, (2)2, (2)2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

Dias ∎Dias is generated by (1,1)2, (1,2)2, (2,1)2 and (2,2)2 with the relations:

❅❅
b

a − ��
c

d
, (a, b, c, d) ∈ E′,

E′ = {((a1, a2)2, (b1, b2)2, (c1, c2)2, (d1, d2)2) ∣ (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ E}.
This gives 25 relations, which are not linearly independent, and can be regrouped in the following
way:

❅❅
11

11

= ��
11

11

= ��
11

12

= ��
11

21

= ��
11

22

, ❅❅
11

21

= ��
21

11

= ��
21

12

,

❅❅
21

11

= ��
21

21

= ❅❅
21

21

= ��
21

22

, ❅❅
11

12

= ��
12

21

= ��
12

11

,

❅❅
11

22

= ��
22

11

, ❅❅
21

12

= ❅❅
21

22

= ��
22

21

,

❅❅
12

11

= ��
12

12

= ��
12

22

= ❅❅
12

12

, ❅❅
12

21

= ��
22

12

= ❅❅
12

22

,

��
22

22

= ❅❅
22

11

= ❅❅
22

12

= ❅❅
22

21

= ❅❅
22

22

.

where we denote ij instead of (i, j)2. So Dias∎Dias is isomorphic to Quad! via the isomorphism
given by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Quad! Ð→ Dias ∎Dias

↖ Ð→ (1,1)2,
↙ Ð→ (1,2)2,
↘ Ð→ (2,2)2,
↗ Ð→ (2,1)2.

By Koszul duality, as Dias! =Dend, we obtain the results for Quad. ◻
2.2 Free quadri-algebra on one generator

As Quad =Dend◻Dend, Quad is the suboperad of Dend⊗Dend generated by the component
of arity 2. An explicit injection of Quad into Dend⊗Dend is given by:

10



Proposition 6 The following defines a injective morphism of nonsymmetric operads:

Θ ∶
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Quad Ð→ Dend⊗Dend

↖ Ð→ ≺ ⊗ ≺
↙ Ð→ ≺ ⊗ ≻
↘ Ð→ ≻ ⊗ ≻
↗ Ð→ ≻ ⊗ ≺ .

Corollary 7 The quadri-subalgebra of (FQSym,↖,↙,↘,↗) generated by (12) is free.

Proof. Both dendriform algebras (FQSym, ↓, ↑) and (FQSym,←,→) are free. So the
Dend⊗Dend-algebra (FQSym⊗FQSym, ↑ ⊗ ←, ↓ ⊗ ←, ↓ ⊗ →, ↑ ⊗ →) is free. By restriction,
the Dend⊗Dend-subalgebra of FQSym⊗FQSym generated by (1)⊗(1) is free. By restriction,
the quadri-subalgebra A of FQSym⊗FQSym generated by (1) ⊗ (1) is free.

Let B be the quadri-subalgebra of FQSym generated by (12) and let φ ∶ A Ð→ B be the
unique morphism sending (1)⊗(1) to (12). We denote by FQSymeven the subspace of FQSym

formed by the homogeneous components of even degrees. It is clearly a quadri-subalgebra of
FQSym. As (12) ∈ FQSymeven, A ⊆ FQSymeven. We consider the map:

ψ ∶
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

FQSymeven Ð→ FQSym⊗FQSym

σ ∈S2n Ð→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(σ(1)−1
2

, . . . ,
σ(n)−1

2
) ⊗ (σ(n+1)

2
, . . . ,

σ(2n)
2
)

if σ(1), . . . , σ(n) are odd and σ(n + 1), . . . , σ(2n) are even,

0 otherwise.

Let σ ∈ S2m, τ ∈S2n. Let us prove that ψ(σ ◇ τ) = ψ(σ) ◇ ψ(τ) for ◇ ∈ {↖,↙,↘,↗}.
First case. Let us assume that ψ(σ) = 0. There exists 1 ≤ i ≤m, such that σ(i) is even, and

an element m+ 1 ≤ j ≤m+n, such that σ(j) is odd. Let τ ∈ S2n. Let α be obtained by a shuffle
of σ and τ[2n]. If the letter σ(i) appears in α in one of the position 1, . . . ,m+n, then ψ(α) = 0.
Otherwise, the letter σ(i) appears in one of the positions m + n + 1, . . . ,2m + 2n, so σ(j) also
appears in one of these positions, as i < j, and ψ(α) = 0. In both case, ψ(α) = 0, and we deduce
that ψ(σ ◇ τ) = 0 = ψ(σ) ◇ψ(τ).

Second case. Let us assume that ψ(τ) = 0. By a similar argument, we show that ψ(σ ◇ τ) =
0 = ψ(σ) ◇ψ(τ).

Last case. Let us assume that ψ(σ) ≠ 0 and ψ(τ) ≠ 0. We put σ = (σ1, σ2) and τ = (τ1, τ2),
where the letters of σ1 and τ1 are odd and the letters of σ2 and τ2 are even. Then ψ(σ ↖ τ) is
obtained by shuffling σ and τ[2n], such that the first and last letters are letters of σ, and keeping
only permutations such that the (m + n) first letters are odd (and the (m + n) last letters are
even). These words are obtained by shuffling σ1 and τ1[2m] such that the first letter is a letter
of σ1, and by shuffling σ2 and τ2[2m], such that the last letter is a letter of σ2. Hence:

ψ(σ ↖ τ) = ψ(σ) ↑ ⊗← ψ(τ) = ψ(σ)↖ ψ(τ).
The proof for the three other quadri-algebra products is similar.

Consequently, ψ is a quadri-algebra morphism. Moreover, ψ○φ((1)⊗(1)) = ψ(12) = (1)⊗(1).
As A is generated by (1) ⊗ (1), ψ ○ φ = IdA, so φ is injective, and A is isomorphic to B. ◻
2.3 Koszulity of Quad

The koszulity of Quad is proved in [17] by the poset method. Let us give here a second proof,
with the help of the rewriting method of [9, 2, 12].

Theorem 8 The operads Quad and Quad! are Koszul.
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Proof. By Koszul duality, it is enough to prove that Quad! is Koszul. We choose the order

↘<↗<↙<↖ for the four operations, and the order ❅❅ < �� for the two planar binary trees
of arity 3. Relations (1)!, . . . , (9)! give 23 rewriting rules:

��
↖

↖
, ��

↖

↙
, ��

↖

↘
, ��

↖

↗ Ð→ ❅❅
↖

↖
, ��

↗

↖
, ��

↗

↙ Ð→ ❅❅
↖

↗
,

❅❅
↗

↖
, ��

↗

↘
, ��

↗

↗ Ð→ ❅❅
↗

↗
, ��

↙

↖
, ��

↙

↗ Ð→ ❅❅
↖

↙
,

��
↘

↖ Ð→ ❅❅
↖

↘
, ��

↘

↗
, ❅❅
↗

↙ Ð→ ❅❅
↗

↘
,

��
↙

↙
, ��

↙

↘
, ❅❅
↙

↖ Ð→ ❅❅
↙

↙
, ��

↘

↙
, ❅❅
↙

↖ Ð→ ❅❅
↙

↘
,

��
↘

↘
, ❅❅
↘

↖
, ❅❅
↘

↙
, ❅❅
↘

↗
, Ð→ ❅❅

↘

↘
.

There are 156 critical monomials, and the 156 corresponding diagrams are confluent. Hence,
Quad! is Koszul. We used a computer to find the critical monomials and to verify the confluence
of the diagrams. ◻

3 Quadri-bialgebras

3.1 Units and quadri-algebras

Let A,B be a vector spaces. We put A⊗B = (K ⊗B)⊕ (A⊗B)⊕ (A⊗K). Clearly, if A,B,C
are three vector spaces, (A⊗B)⊗C = A⊗(B⊗C).

Proposition 9 1. Let A be a quadri-algebra. We extend the four products on A⊗A in the
following way: if a, b ∈ A,

a↖ 1 = a, a↗ 1 = 0, 1↖ a = 0, 1↗ a = 0,

a↙ 1 = 0, a↘ 1 = 0, 1↙ a = 0, 1↘ a = a.

The nine relations defining quadri-algebras are true on A⊗A⊗A.

2. Let A,B be two quadri-algebras. Then A⊗B is a quadri-algebra with the following products:

• if a, a′ ∈ A ⊔K, b, b′ ∈ B ⊔K, with (a, a′) ∉K2 and (b, b′) ∉K2 :

(a⊗ b)↖ (a′ ⊗ b′) = (a ↑ a′)⊗ (b ← b′), (a⊗ b)↗ (a′ ⊗ b′) = (a ↑ a′)⊗ (b → b′),
(a⊗ b)↙ (a′ ⊗ b′) = (a ↓ a′)⊗ (b ← b′), (a⊗ b)↘ (a′ ⊗ b′) = (a ↓ a′)⊗ (b → b′).

• If a, a′ ∈ A:

(a⊗ 1)↖ (a′ ⊗ 1) = (a↖ a′)⊗ 1, (a⊗ 1)↗ (a′ ⊗ 1) = (a↗ a′)⊗ 1,

(a⊗ 1)↙ (a′ ⊗ 1) = (a↙ a′)⊗ 1, (a⊗ 1)↘ (a′ ⊗ 1) = (a↘ a′)⊗ 1.

• If b, b′ ∈ B:

(1⊗ b)↖ (1⊗ b′) = 1⊗ (b↖ b′), (1⊗ b)↗ (1⊗ b′) = 1⊗ (b↗ b′),
(1⊗ b)↙ (1⊗ b′) = 1⊗ (b↙ b′), (1⊗ b)↘ (1⊗ b′) = 1⊗ (b↘ b′).
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Proof. 1. It is shown by direct verifications.

2. As (A, ↑, ↓) and (B,←,→) are dendriform algebras, A⊗B is a Dend⊗Dend-algebra, so
is a quadri-algebra by Proposition 6, with ↖=↑ ⊗ ←, ↙=↓ ⊗ ←, ↘=↓ ⊗ → and ↗=↑ ⊗ →. The
extension of the quadri-algebra axioms to A⊗B is verified by direct computations. ◻

Remark. There is a second way to give A⊗B a structure of quadri-algebra with the help of
the associativity of ⋆:

If a ∈ A or a′ ∈ A, b, b′ ∈K ⊕B,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(a⊗ b)↖ (a′ ⊗ b′) = (a↖ a′)⊗ (b ⋆ b′),
(a⊗ b)↙ (a′ ⊗ b′) = (a↙ a′)⊗ (b ⋆ b′),
(a⊗ b)↘ (a′ ⊗ b′) = (a↘ a′)⊗ (b ⋆ b′),
(a⊗ b)↗ (a′ ⊗ b′) = (a↗ a′)⊗ (b ⋆ b′);

if b, b′ ∈K ⊕B,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1⊗ b)↖ (1⊗ b′) = 1⊗ (b↖ b′),
(1⊗ b)↙ (1⊗ b′) = 1⊗ (b↙ b′),
(1⊗ b)↘ (1⊗ b′) = 1⊗ (b↘ b′),
(1⊗ b)↗ (1⊗ b′) = 1⊗ (b↗ b′).

A⊗K and K ⊗B are quadri-subalgebras of A⊗B, respectively isomorphic to A and B.

3.2 Definitions and example of FQSym

Definition 10 A quadri-bialgebra is a family (A,↖,↙,↘,↗, ∆̃↖, ∆̃↙, ∆̃↘, ∆̃↗) such that:

• (A↖,↙,↘,↗) is a quadri-algebra.

• (A, ∆̃↖, ∆̃↙, ∆̃↘, ∆̃↗) is a quadri-coalgebra.

• We extend the four coproducts in the following way:

∆↖ ∶
⎧⎪⎪⎨⎪⎪⎩
A Ð→ A⊗A
a Ð→ ∆̃↖(a) + a⊗ 1,

∆↗ ∶
⎧⎪⎪⎨⎪⎪⎩
A Ð→ A⊗A
a Ð→ ∆̃↗(a),

∆↙ ∶
⎧⎪⎪⎨⎪⎪⎩
A Ð→ A⊗A
a Ð→ ∆̃↙(a), ∆↘ ∶

⎧⎪⎪⎨⎪⎪⎩
A Ð→ A⊗A
a Ð→ ∆̃↘(a) + 1⊗ a.

For all a, b ∈ A: For all a, b ∈ A:

∆↖(a↖ b) =∆↑(a)↖∆←(b) ∆↗(a↖ b) =∆↑(a)↖∆→(b)
∆↖(a↙ b) =∆↑(a)↙∆←(b) ∆↗(a↙ b) =∆↑(a)↙∆→(b)
∆↖(a↘ b) =∆↑(a)↘∆←(b) ∆↗(a↘ b) =∆↑(a)↘∆→(b)
∆↖(a↗ b) =∆↑(a)↗∆←(b) ∆↗(a↗ b) =∆↑(a)↗∆→(b)
∆↙(a↖ b) =∆↓(a)↖∆←(b) ∆↘(a↖ b) =∆↓(a)↖∆→(b)
∆↙(a↙ b) =∆↓(a)↙∆←(b) ∆↘(a↙ b) =∆↓(a)↙∆→(b)
∆↙(a↘ b) =∆↓(a)↘∆←(b) ∆↘(a↘ b) =∆↓(a)↘∆→(b)
∆↙(a↗ b) =∆↓(a)↗∆←(b) ∆↘(a↗ b) =∆↓(a)↗∆→(b)
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Remark. In other words, for all a, b ∈ A:

∆̃↖(a↖ b) = a′↑ ↑ b⊗ a′′↑ + a′↑ ↑ b′← ⊗ a′′↑ ← b′′←,

∆̃↙(a↖ b) = a′↓ ↑ b⊗ a′′↓ + a′↓ ↑ b′← ⊗ a′′↓ ← b′′←,

∆̃↘(a↖ b) = a′↓ ⊗ a′′↓ ← b + a′↓ ↑ b′→ ⊗ a′′↓ ← b′′→,

∆̃↗(a↖ b) = a′↑ ⊗ a′′↑ ← b + a′↑ ↑ b′→ ⊗ a′′↑ ← b′′→,

∆̃↖(a↙ b) = a′↑ ↓ b⊗ a′′↑ + a′↑ ↓ b′← ⊗ a′′↑ ← b′′←,

∆̃↙(a↙ b) = b⊗ a + b′← ⊗ a ← b′′← + a′↓ ↓ b⊗ a′′↓ + a′↓ ↓ b′← ⊗ a′′↓ ← b′′←,

∆̃↘(a↙ b) = b′→ ⊗ a ← b′′→ + a′↓ ↓ b′→ ⊗ a′′↓ ← b′′→,

∆̃↗(a↙ b) = a′↑ ↓ b′→ ⊗ a′′↑ ← b′′→,

∆̃↖(a↘ b) = a ↓ b′← ⊗ b′′← + a′↑ ↓ b′← ⊗ a′′↑ → b′′←,

∆̃↙(a↘ b) = b′← ⊗ a → b′′← + a′↓ ↓ b′← ⊗ a′′↓ → b′′←,

∆̃↘(a↘ b) = b′→ ⊗ a → b′′→ + a′↓ ↓ b′→ ⊗ a′′↓ → b′′→,

∆̃↗(a↘ b) = a ↓ b′′→ ⊗ b′′→ + a′↑ ↓ b′→ ⊗ a′′↑ → b′′→,

∆̃↖(a↗ b) = a ↑ b′← ⊗ b′′← + a′↑ ↑ b′← ⊗ a′′↑ → b′′←,

∆̃↙(a↗ b) = a′↓ ↑ b′← ⊗ a′′↓ → b′′←,

∆̃↘(a↗ b) = a′↓ ⊗ a′′↓ → b + a′↓ ↑ b′→ ⊗ a′′↓ → b′′→,

∆̃↗(a↗ b) = a⊗ b + a′↑ ⊗ a′′↑ → b + a ↑ b′′→ ⊗ b′′→ + a′↑ ↑ b′→ ⊗ a′′↑ → b′′→.

Consequently, we obtain four dendriform bialgebras [6]:

(A,←,→,∆←,∆→), (A, ↓op, ↑op,∆op
↓ ,∆

op
↑ ), (A,→op,←op,∆↑,∆↓), (A, ↑, ↓,∆op

→ ,∆
op
← ).

Proposition 11 The augmentation ideal of FQSym is a quadri-bialgebra.

Proof. As an example, let us prove the last compatibility. Let σ, τ be two permutations,
of respective length k and l. Then ∆↗(σ ↗ τ) is obtained by shuffling in all possible ways the
words σ and the shifting τ[k] of τ , such that the first letter comes from σ and the last letter
comes from τ[k], and then cutting the obtained words in such a way that 1 is in the left part
and k + l in the right part. Hence, the left part should contain letters coming from σ, including
1, and starts by the first letter of σ, and the right part should contain letters coming from τ[k],
including k + l, and ends with the last letter of τ[k]. there are four possibilities:

• The left part contains only letters from σ and the right part contains only letters form
τ[k]. This gives the term σ ⊗ τ .

• The left part contains only letters from σ, and the right part contains letters from σ and
τ[k]. This gives the term σ′↑ ⊗ σ′′↑ → τ .

• The left part contains letters from σ and τ[k], and the right part contains only letters form
τ[k]. This gives the term σ ↑ τ ′→ ⊗ τ ′′→.

• Both parts contains letters from σ and τ[k]. This gives the term σ′↑ ↑ τ
′
→ ⊗ σ′′↑ → τ ′′→.

So:
∆↗(σ ↗ τ) = σ ⊗ τ + σ′↑ ⊗ σ′′↑ → τ + σ ↑ τ ′→ ⊗ τ ′′→ + σ′↑ ↑ τ ′→ ⊗ σ′′↑ → τ ′′→.

The other compatibilities are proved following the same lines. ◻
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3.3 Other examples

Let FQuad(V ) be the free quadri-algebra generated by V . As it is free, it is possible to define
four coproducts satisfying the quadri-bialgebra axioms in the following way: for all v ∈ V ,

∆̃↖(v) = ∆̃↙(v) = ∆̃↘(v) = ∆̃↗(v) = 0.
It is naturally graded by puting the elements of V homogeneous of degree 1.

Proposition 12 For any vector space V , FQuad(V ) is a quadri-bialgebra.

Proof. We only have to prove the nine compatibilities of quadri-coalgebras. We consider:

B(1,1) = {a ∈ FQuad(V ) ∣ (∆↖ ⊗ Id) ○∆↖(a) = (Id⊗∆) ○∆↖(a)}.
First, for all v ∈ V :

(∆↖ ⊗ Id) ○∆↖(v) = v ⊗ 1⊗ 1 = (Id⊗∆) ○∆↖(v),
so V ⊆ B(1,1). If a, b ∈ B(1,1) and ◇ ∈ {↖,↙,↘,↗}:

(∆↖ ⊗ Id) ○∆↖(a ◇ b) = ((∆↑ ⊗ Id) ○∆↑(a)) ◇ (∆← ⊗ Id) ○∆←(b))
= ((Id⊗∆) ○∆↑(a)) ◇ ((Id⊗∆) ○∆←(b))
= (Id⊗∆)(∆↑(a) ◇∆←(b))
= (Id⊗∆) ○∆↖(a ◇ b).

So a◇b ∈ B(1,1), and B(1,1) is a quadri-subalgebra of FQuad(V ) containing V : B(1,1) = FQuad(V ),
and the quadri-coalgebra relation (1.1) is satisfied. The eight other relations can be proved in
the same way. Hence, FQuad(V ) is a quadri-bialgebra. ◻

Remarks.

1. We deduce that (FQuad(V ),←,→,∆←,∆→) and (FQuad(V ), ↑, ↓,∆op
→ ,∆

op
← ) are bidendri-

form bialgebras, in the sense of [6, 7]; consequently, (FQuad(V ),←,→) and (FQuad(V ), ↑, ↓)
are free dendriform algebras.

2. When V is one-dimensional, here are the respective dimensions an, bn and cn of the homo-
geneous components, of the primitive elements, and of the dendriform primitive elements,
of degree n, for these two dendriform bialgebras:

n 1 2 3 4 5 6 7 8 9 10

an 1 4 23 156 1 162 9 162 75 819 644 908 5 616 182 49 826 712

bn 1 3 16 105 768 6 006 49 152 415 701 3 604 480 31 870 410

cn 1 2 10 64 462 3 584 29 172 245 760 2 124 694 18 743 296

These are sequences A007297, A085614 and A078531 of [16].

3. Let V be finite-dimensional. The graded dual FQuad(V )∗ of FQuad(V ) is also a quadri-
bialgebra. By the bidendriform rigidity theorem [6, 7], (FQuad(V )∗,←,→) and (FQuad(V )∗, ↑
, ↓) are free dendriform algebras. Moreover, for any x, y ∈ V , nonzero, x↖ y and x↘ y are
nonzero elements of PrimQuad(FQuad(V )), which implies that (FQuad(V )∗,↖,↙,↘,↗)
is not generated in degree 1, so is not free as a quadri-algebra. Dually, the quadri-coalgebra
FQuad(V ) is not cofree.

We now give a similar construction on the Hopf algebra of packed words WQSym, see [15]
for more details on this combinatorial Hopf algebra.
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Theorem 13 For any nonempty packed word w of length n, we put:

m(w) =max{i ∈ [n] ∣ w(i) = 1}, M(w) =max{i ∈ [n] ∣ w(i) =max(w)}.
We define four products on the augmentation ideal of WQSym in the following way: if u, v are
packed words of respective lengths k, l ≥ 1:

u↖ v = ∑
Pack(w(1)...w(k))=u,

Pack(w(k+1)...w(k+l)=v,
m(w),M(w)≤k

w, u↗ v = ∑
Pack(w(1)...w(k))=u,

Pack(w(k+1)...w(k+l)=v,
m(w)≤k<M(w)

w,

u↙ v = ∑
Pack(w(1)...w(k))=u,

Pack(w(k+1)...w(k+l)=v,
M(w)≤k<m(w)

w, u↘ v = ∑
Pack(w(1)...w(k))=u,

Pack(w(k+1)...w(k+l)=v,
k<m(w),M(w)

w.

We define four coproducts on the augmentation ideal of WQSym in the following way: if u is a
packed word of length n ≥ 1,

∆↖(u) = ∑
u(1),u(n)≤i<max(u)

u∣[i] ⊗ Pack(u∣[max(u)]∖[i]),
∆↙(u) = ∑

u(n)≤i<u(1)

u∣[i] ⊗Pack(u∣[max(u)]∖[i]),
∆↘(u) = ∑

1≤i<u(1),u(n)

u∣[i] ⊗Pack(u∣[max(u)]∖[i]),
∆↗(u) = ∑

u(1)≤i<u(n)

u∣[i] ⊗Pack(u∣[max(u)]∖[i]).

These products and coproducts make WQSym a quadri-bialgebra. The induced Hopf algebra
structure is the usual one.

Proof. For all packed words u, v of respective lengths k, l ≥ 1:

u ⋆ v = ∑
Pack(w(1)...w(k))=u,

Pack(w(k+1)...w(k+l)=v

w.

So ⋆ is the usual product of WQSym, and is associative. In particular, if u, v,w are packed
words of respective lengths k, l, n ≥ 1:

u ⋆ (v ⋆w) = (u ⋆ v) ⋆w = ∑
Pack(x(1)...x(k))=u,

Pack(x(k+1)...x(k+l)=v,
Pack(x(k+l+1),...,x(k+l+n))=w

x.

Then each side of relations (1,1) . . . (3,3) is the sum of the terms in this expression such that:

m(x),M(x) ≤ k m(x) ≤ k <M(x) ≤ k + l m(x) ≤ k < k + l <M(x)
M(x) ≤ k <m(x) ≤ k + l k <m(x),M(x) ≤ k + l k <m(x) ≤ k + l <M(x)
M(x) ≤ k < k + l <m(x) k <M(x) ≤ k + l <m(x) k + l <m(x),M(x)

So (WQSym,↖,↙,↘,↗) is a quadri-algebra.

For all packed word u of length n ≥ 1:

∆̃(u) = ∑
1≤i<max(u)

u∣[i] ⊗Pack(u∣[max(u)]∖[i]).
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So ∆̃ is the usual coproduct of WQSym and is coassociative. Moreover:

(∆̃⊗ Id) ○ ∆̃(u) = (Id⊗ ∆̃) ○ ∆̃(u) = ∑
1≤i<j<max(u)

u∣[i] ⊗ Pack(u∣[j]∖[i]) ⊗ Pack(u∣[max(u)]∖[j]).

Then each side of relations (1,1) . . . (3,3) is the sum of the terms in this expression such that:

u(1), u(n) ≤ i u(1) ≤ i < u(n) ≤ j u(1) ≤ i < j < u(n)
u(n) ≤ i < u(1) ≤ j i < u(1), u(n) ≤ j i < u(1) ≤ j < u(n)
u(n) ≤ i < j < u(1) i < u(n) ≤ j < u(1) j < u(1), u(n)

So (WQSym,∆↖,∆↙,∆↘,∆↗) is a quadri-coalgebra.

Let us prove, as an example, one of the compatibilities between the products and the co-
products. If u, v are packed words of respective lengths k, l ≥ 1, ∆↗(u ↗ v) is obtained as
follows:

• Consider all the packed words w such that Pack(w(1) . . . w(k)) = u, Pack(w(k+1) . . . w(k+
l)) = v, such that 1 ∉ {w(k + 1), . . . ,w(k + l)} and max(w) ∈ {w(k + 1), . . . ,w(k + l)}.

• Cut all these words into two parts, by separating the letters into two parts according to
their orders, such that the first letter of w in the left (smallest) part, and the last letter of
w is in the right (greatest) part, and pack the two parts.

If u′ ⊗ u′′ is obtained in this way, before packing, u′ contains 1, so contains letters w(i) with
i ≤ k, and u′′ contains max(w), so contains letters w(i), with i > k. Four cases are possible.

• u′ contains only letters w(i) with i ≤ k, and u′′ contains only letters w(i) with i > k. Then
w = (u(1) . . . u(k)(v(1) +max(u)) . . . (v(l) +max(u)) and u′ ⊗ u′′ = u⊗ v.

• u′ contains only letters w(i) with i ≤ k, whereas u′′ contains letters w(i) with i ≤ k and
letters w(j) with j > k. Then u′ is obtained from u by taking letters < i, with i ≥ u(1),
and u′′ is a term appearing in Pack(u∣[k]∖[i]) ⋆ v, such that there exists j > k − i, with
u′′(j) =max(u′′). Summing all the possibilities, we obtain u′↑ ⊗ u′′↑ → v.

• u′ contains letters w(i) with i ≤ k and letters w(j) with j > k, whereas u′′ contains only
letters w(i) with i > k. With the same type of analysis, we obtain u ↑ v′→ ⊗ v′′→.

• Both u′ and u′′ contain letters w(i) with i ≤ k and letters w(j) with j > k. We obtain
u′↑ ↑ v

′
→ ⊗ u′′↑ → v′′→.

Finally:
∆↗(u↗ v) = u⊗ v + u′↑ ⊗ u′′↑ → v + u ↑ v′→ ⊗ v′′→ + u′↑ ↑ v′→ ⊗ u′′↑ → v′′→.

The fifteen remaining compatibilites are proved following the same lines. ◻
Examples.

(12)↖ (12) = (1423),
(12)↙ (12) = (1312) + (2312) + (2413) + (3412),
(12)↘ (12) = (1212) + (1213) + (2313) + (2314),
(12)↗ (12) = (1223) + (1234) + (1323) + (1324).

Corollary 14 (WQSym,→,←) and (WQSym, ↓, ↑) are free dendriform algebras.

Remarks.
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1. If A is a quadri-algebra, we put:

PrimQuad(A) =Ker(∆̃↖) ∩Ker(∆̃↙) ∩Ker(∆̃↘) ∩Ker(∆̃↗).
For any vector space V , A = FQuad(V ) is obviously generated by PrimQuad(A), as V ⊆
PrimQuad(A).

2. Let us consider the quadri-bialgebra FQSym. Direct computations show that:

PrimQuad(FQSym)1 = V ect(1),
P rimQuad(FQSym)2 = (0),
P rimQuad(FQSym)3 = (0),
P rimQuad(FQSym)4 = V ect((2413) − (2143), (2413) − (3412));

moreover, the homogeneous component of degree 4 of the quadri-subalgebra generated by
PrimQuad(FQSym) has dimension 23, with basis:

(1234), (1243), (1324), (1342), (1423), (1432), (2134), (2314), (2314), (2431),
(3124), (3214), (3241), (3421), (4123), (4132), (4213), (4231), (4312), (4321),

(2143) + (2413), (3142) + (3412), (2143) − (3142).
So FQSym is not generated by PrimQuad(FQSym), so is not isomorphic, as a quadri-
bialgebra, to any FQuad(V ). A similar argument holds for WQSym.
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