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Spontaneous symmetry breaking is well understood through the classical “Mexican Hat” picture,
which describe many quantum phases of matter. Recently, several new classes of quantum phases of
matter, such as topological orders and symmetry protected topological (SPT) orders, were discov-
ered. In an attempt to address the transitions between all those phases of quantum matter under
the same framework, we introduced an analogous yet very simple picture for phase transitions in
the context of tensor-networks. Using a very simple iteration process, we found that both symmetry
breaking and some topological phase transitions (for topological orders described by gauge theory
and 1D SPT orders) could be marked by a sudden change in the symmetry structure of the so-called
“environment matrix”. In this process, the environment matrix serves as an “order parameter” that
captures patterns of entanglement in topological phases. The symmetry change in the environment
matrix is very much like the symmetry breaking of conventional order parameters. We applied this
method to both the transverse Ising model (1D and 2D honeycomb), spin-1 model (1D), and the
Toric Code model in a magnetic field (2D honeycomb), and explored the corresponding symmetry
structure changes in their environment matrices in details. With just a few variational parameters
and a few minutes’ run time on a laptop, we could get the corresponding phase transition points
within a few percent error compared with the Quantum Monte Carlo results.

I. INTRODUCTION

In recent years, with the discoveries of quantum Hall
states1,2 and topological insulators,3–8 the field of con-
densed matter physics is focusing more and more on
topological phases of matter. Lots of progress has been
made in the classification of topological order9–12 in in-
teracting bosonic/fermionic systems through tensor net-
work representation of many-body wave function and
the associated fixed-point tensors under wave function
renormalization,13–16 which lead to tensor category the-
ory of topological order.13,14,17,18 In the presence of sym-
metry, tensor network and group cohomology19–21 also
lead to a classification of symmetry protected topologi-
cal (SPT) order.22

However, an important question is how to deter-
mine the topological order or SPT order carried by a
generic wave function or a generic tensor network wave
function.11,12,14,23–32 The tensors in different generic ten-
sor network can look similar, but represent different topo-
logical/SPT prders. This is because topological order
is highly non-local. All its features, including ground-
state degeneracy, braidings and statistics of the quasi-
particles, topological entanglement entropy are global
features. One can only see those features after perform-
ing the wave function renormalization. This makes tra-
ditional theory of using local “order parameters” to de-
scribe topological/SPT orders impossible.

Another difficulty to read topological/SPT orders from
the local tensor is that although the existing matrix-
product representation has reached great success in
1D, its higher-dimension extension is still a numerically
formidable task, and many 2D tensor-network renor-

malization scheme face the infamous “corner double-
line” problem,22,33 which tensor-network renormalization
quickly break down after a few iterations. Thus a compu-
tationally efficient tensor-network method to implement
RG is badly desired. It was in view of this that we de-
veloped our “mean-field” approach based on the environ-
ment matrix.

This paper is structured as follows: In section II, we
first introduce the concept of “environment matrix” and
outline how this method is applied in 1D, with the ex-
ample of the transverse Ising model. In section III, we
make some detailed emphasis on the symmetry structure
of the environment matrix, which leads to a characteri-
zation of different phases. In section IV and V, we detail
how to detect different phases without knowing the sym-
metry structure, which makes our method immediately
applicable to existing 1D numerical methods in identify-
ing different SPT phases. Finally in section VI and VII,
we generalize this method to 2D, and apply it to both the
transverse Ising model and the Toric-Code model with a
B-field on a honeycomb lattice.

II. 1D ENVIRONMENT TENSOR METHOD

The environment tensor method has been widely ap-
plied in 1D systems through the study of Matrix-Product
States (MPS).34,35 Consider the 1D transverse Ising
model on an infinite lattice:

H = −J
∑
<i,j>

σzi σ
z
j − h

∑
i

σxi (1)
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FIG. 1. A matrix-product state. All the physical sites are
represented by dots, and physical/internal degrees of freedom
by vertical/horizontal lines.
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FIG. 2. Approximate the energy through the environment
matrix, E. Note that because the system is translation invari-
ant, we only need to calculate H for two neighboring sites. In
1D, by assuming M to be left-right symmetric, the environ-
ment matrices on the left and right will be the same.

where σ’s are the regular Pauli matrices. Recall that the
wave function of a 1D system could always be written
into a matrix-product form; in particular, if the system
is translationally symmetric, then we have (in Figure 1):

|Ψ〉 =
∑
{mi}

∑
{αi}

Tr[
∏
i

Mmi
αi,αi+1

] |{mi}〉 (2)

where matrices M ’s are independent of the site labels i
and are labeled by the physical degrees of freedoms mi.

In 1D, the environment tensor method is essentially
a variational calculation based on the above matrix-
product state, with matrices M ’s as variational param-
eters. We use the matrices M ’s to obtain the average
energy (see the top of Fig. 2). We minimize the the
average energy to obtain M ’s.

The calculation of average energy is actually a finite
calculation. The key is to use “environment matrix” to
capture the contributions from far-away sites. This is
graphically shown in the bottom of Fig. 2. As can be
seen, there are two environment matrices, one on each
side of the 1D chain.

So in the actual environment tensor method, we use
the matrices M ’s to obtain the environment matrices E,
and then use the matrices M ’s and environment matrices
E’s to obtain the average energy. We then minimize the
average energy to obtain M ’s (and E’s).

For fixed matrices M ’s, the environment matrix could
be obtained through iterations. As shown in Figure 3,
starting from some random initial values E0 that satis-

fies TrE†0E0 = 1, we can update the environment matrix
using a “double-tensor”, which is formed by two M ma-
trices with physical indices contracted. After applying
the “double-tensor”, E0 is changed to λ1E1 where E1

satisfies TrE†1E1 = 1 and λ1 is a scaling factor. After
iterating enough number of times, a final stable “envi-

λE

M*

M

E

αβ α

a ab

FIG. 3. A self-consistent condition that environment matrix
E must satisfy, where λ is a scaling factor. The part enclosed
by the shaded area is the so-called double-tensor Tbβ,aα.

ronment matrix” E∞ = E and a final stable scaling fac-
tor λ∞ = λ would be reached. Note that this process,
after viewing the environment as a vector and the double-
tensor as an operator, is essentially equivalent to picking
out the eigenvector with the largest absolute value of the
eigenvalues of the double tensor. In this way, for each M ,
we can obtain the corresponding environment matrix E
through iterations, and by applying E both on the left
and on the right (see Figure 2), we can get the total en-
ergy. The variational calculation could then be carried
out for different values of h/J , and a phase diagram could
then be obtained.

More specifically, we require our matrix-product state
to have a Z2 symmetry that corresponds to spin up-down
flipping, for both the symmetry-breaking and the sym-
metric phases. So even in symmetry breaking phase, we
choose the ground state to be, say, (|↑↑ . . .〉 + |↓↓ . . .〉)
when h/J → 0. Note that this is different from tradi-
tional symmetry breaking description, where the ground
state spontaneously picks one of the ferromagnetic states.

Recall that on-site symmetry of the ground state re-
quires matrices M ’s to transform in a special way w.r.t.
symmetry:36 ∑

m′

gmm′Mm′
= eiθgU†gM

mUg (3)

Here, m is the spin index, matrix gmm′ represents the
on-site symmetry and acts on the spin basis, θ is a phase
factor (set to 0 in this paper), Ug is a unitary matrix act-
ing on internal degrees of freedom, and forms a projective
representation of the symmetry group g.37–39

For internal dimension D (dimension of M) being 2,

we can choose Ug =

(
1 0
0 −1

)
, then equation (3) reduces

to

M↑ = U†gM
↓Ug, (4)

and we thus have: M↑ =

(
a b
b c

)
and M↓ =

(
a −b
−b c

)
.

Here M ’s are symmetric because of left-right symmetry,
and a, b, c are free variational parameters.

With the above symmetry analysis in mind, numerical
simulation could be run on our 1D Ising model. Following
the previous discussion, for each h/J ∈ [0,∞] in equation
(1), we minimize the energy by varying M ’s satisfying
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FIG. 4. Energy as a function of h/J. The h- and J- terms are
also individually plotted in the graph, so the phase transition
could be easily spotted at h/J = 0.83. This result is obtained
when internal dimension D=2, and we’ve chosen the grid so
that sample points are denser close to the transition point.
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FIG. 5. Energy plot when internal dimension increased to
D=4. We can see the phase transition point occured around
h/J = 0.97, a big improvement from Fig. 4.

equation (4). By plotting the two energy terms, a phase
diagram is obtained (see Fig. 4). For internal dimension
D = 2, the phase transition occurred at h/J = 0.83, with
an error of 17%.

We could easily improve the result by increasing the
internal dimension. For internal dimension D = 4, we

can choose Ug in (4) to be

(
I 0
0 −I

)
, where I is the 2× 2

Identity matrix. The most general symmetric M satisfy-
ing (4) has 10 variational parameters. Following the same
variational procedure, we can get the energy plot shown
in Fig. 5. The phase transition occurred at h/J = 0.97,
with a mere 3% error.

Note that in both calculations, we used symmetric ma-
trices M ’s with all real parameters. The typical runtime

on a laptop was just a few seconds in both cases.

III. SYMMETRY STRUCTURE OF THE
ENVIRONMENT MATRIX

From the above plot, we see that there is a phase tran-
sition at h/J ≈ 0.83. To understand the phases on the
two sides of the transition, let us choose another basis

M̃↑ = WM↑W † =
1

2

(
a+ c+ 2b a− c
a− c a+ c− 2b

)
M̃↓ = WM↓W † =

1

2

(
a+ c− 2b a− c
a− c a+ c+ 2b

)
(5)

whereW = 2−1/2
(

1 1
1 −1

)
. In the new basis the meaning

of the M̃ ’s is more clear.
When b = 0, M̃↑ = M̃↓, and the MPS is a pure product

state ⊗(| ↑〉+ | ↓〉) that does not break the Z2 symmetry.
When b 6= 0 and a = c, the MPS is a symmetry breaking
state of the form |Ψ〉 + U |Ψ〉 where U is Z2 symmetry
transformation. But when b 6= 0 and a 6= c, what is the
nature of the MPS?

To answer such a question, we would like to study the
symmetry structure of the environment matrix E. We
find that, depends on which phase we are in, the symme-
try structure of E will be very different.

As we mentioned before, the environment matrix E
and the associated scaling factor λ is calculated via the
iteration (or the self consistent condition) in Fig. 3. In
general, there can be many environment matrices E that
satisfy the self consistent condition. Here we choose those
with largest absolute value of the scaling factor λ. If
there are many environment matrices with the degener-
ate largest absolute value of the scaling factor, we then
choose the environment matrices with minimal “entropy”

S =
∑
i

−si ln si, (6)

where si is the singular values of E. This will give us a
set of environment matrices {E}.

Next, we want to point out that environment matrix
has only internal indices, so for E, the symmetry trans-
formation (3) translates to:

E → U†g · E · Ug. (7)

If the M ’s are invariant under the symmetry transforma-
tion (3), then the set of environment matrices {E} will
be invariant under the above transformation (7).

If the action of transformation (7) is trivial on the set
of environment matrices {E}, then the MPS does not
have symmetry breaking. If the action is non-trivial (i.e.
generate a permutation of the set {E}), then the MPS, in
general, has a symmetry breaking; but this is not guar-
anteed.
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FIG. 6. The entanglement density matrix can be calcu-
lated from the environment matrix. (The correct entangle-
ment density matrix should be calculated from the total the
environment tensor E0 ⊗ E0 + E1 ⊗ E1.)

FIG. 7. The off-diagonal term in environment matrix is
plotted here as a function of a−c and b. We can see the delta-
function-like behavior when a = c. Note the dip at a = c and
b = 0: this point corresponds to the four-fold degeneracy in
the double-tensor, which is in the symmetric phase.

The reason for the complication is that there are zero-
measure possibilities that some internal bond degrees of
freedom completely decouple from the physical degrees
of freedom. To fix this problem, we may consider the
entanglement density matrix ρm1m2··· ,m′

1m
′
2··· defined in

Fig. 6. We say two environment matrices are equivalent
if they generate the same ρm1m2··· ,m′

1m
′
2···. Let us use

{E}/ ∼ to denote the equivalent class of the environment
matrices. Then if the action (7) is non-trivial on {E}/ ∼,
then the MPS has a symmetry breaking.

With the above general discussion, we now go to our
numerical results for internal dimension D = 2. For the
symmetric phase, using the iteration method in Figure
3 and after energy minimization, we obtain a final E =(
s 0
0 t

)
, which gives an invariant E under eqn (7). As

a result, the total environment tensor has a pure tensor
product form

Etot = E ⊗ E, (8)

For the symmetry-breaking phase, after minimizing
entropy according to eqn. (6), depending on the ini-
tial values of E, the iteration method would give either

� Magnetization D=2 + Magnetization D=4
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FIG. 8. A plot of magnetization and the “fixed-point” order
paramter as a function of h/J . When we increase the internal
dimension, we get a more accurate phase transition point.
In both cases, we get a first-order phase transition. When
internal dimension D = 2, order parameter is just the off-
diagonal term of the environment matrix (represented by blue
dots). When D = 4, order parameter is the norm of the 2× 2
off-diagonal block in the environment matrix (represented by

red circles). The black line curve is 〈σzi 〉 = ±(2− 2h)1/8.

Eg1 =

(
p p
p p

)
or Eg2 =

(
p −p
−p p

)
, which transforms

into each other under eqn (7). Both of these correspond
to environment matrix of the fixed-point wavefunction,
as explained later in this section. If we construct the
total environment tensor

Etot = Eg1 ⊗ Eg1 + Eg2 ⊗ Eg2 , (9)

then the Z2 symmetry is restored, but now the the total
environment tensor does not have a pure tensor product
form.

We are now in the position to answer the question
raised at the begining of this section. We now know that
symmetry-breaking phase is signatured by a non-zero off-
diagonal term in the environment matrix. As shown in
Fig. 7, if we plot this off-diagonal term as a function
of a − c and b in M (see eqn (5)), then we see that the
system is only in symmetry breaking state when a = c
and b 6= 0. So when b 6= 0 and a 6= c, the state is in the
symmetric phase.

Here we’ve also plotted the magnetization as a func-
tion of h/J in Fig. 8. Note that in the graph, we get a
first-order phase transition for both D = 2 and D = 4.
This is because we required our matrices M ’s in the
MPS to have the Z2 symmetry (recall eqn. (5)). This
symmetry requirement favors the symmetric phase, be-
cause symmetry-breaking phase requires a = c, so M is
block-diagonalized, reducing its effective internal dimen-
sion. Thus the phase transition point is shifted leftwards,
leading to a first-order transition. As we increase the in-
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FIG. 9. A self-consistent condition that environment ma-
trix Eg must satisfy, where λg is a scaling factor. The part
enclosed by the shaded area is the symmetry twisted double-
tensor T gbβ,aα.

ternal dimension, we expect the phase transition point to
approach h/J = 1 from the left.

In Fig. 8, we’ve also plotted the order parameter as a
function of h/J . Note that these “order parameters” do
not vary as we change h/J . This is because the environ-
ment matrix is obtained from enough iterations that it re-
ally corresponds to the fully renormalized wavefunction.
The order parameter obtained from the environment ma-
trix then corresponds actually to the order parameter at
the fixed point, thus is always the same until hitting the
phase transition point.

IV. DETECTING PHASES OF MPS WITHOUT
KNOWING THE TRANSFORMATION

PROPERTY OF THE MATRICES

In the above, we have assumed that the matrices in
the MPS has the symmetry and studied how to use the
symmetry breaking of the environment matrix to de-
tect the spontaneous symmetry breaking in MPS. How-
ever, in many calculations, such as the density-matrix-
renormalization-group (DMRG) calculation, the result-
ing matrices in the MPS do not have the symmetry in
the symmetry breaking phase, and in general we do not
even know how the matrices transform under the sym-
metry transformation (since we do not know how the
internal indices should transform under the symmetry).
In this section, we will discuss how to detect the sponta-
neous symmetry breaking in MPS, without knowing how
the matrices in the MPS transforms under the symmetry
transformation.

Assume we have already obtained the matrices in the
MPS. We first calculate the environment matrix E and
the scaling factor λ using Fig. 3. In general, the environ-
ment matrix E is unique even in the symmetry break-
ing state, since the matrices in the MPS obtained from
DMRG in general already break the symmetry. Next,
we insert the symmetry transformation g (see (3)) in the
double-tensor to obtain a twisted double-tensor. The cor-
responding twisted environment matrix is denoted as Eg

and the twisted scaling factor as λg (see Fig. 9).
If |λg| < |λ|, then the corresponding MPS have a spon-

taneous symmetry breaking. In fact, there is a more di-
rect way to detect symmetry breaking. Let P and P g be

the matrices defined via the nth power of double-tensor
(where T and T g are viewed as matrices)

Pab,αβ = Tnbβ,aα, P gab,αβ = (T g)nbβ,aα. (10)

If P and P g have different singular values in large n limit,
then the corresponding MPS break the symmetry explic-
itly.

If |λg| = |λ|, then the two environment matrices Eg

and E are related by the symmetry transformation (see
(3))

E = EgUg, or E−1Eg = U†g . (11)

In fact, we have

E = U†gEUg (12)

If Ug forms a projective representation of the symmetry
group G, then the corresponding MPS does not break the
symmetry and has a non-trivial SPT order protected by
the on-site symmetry. If Ug forms a 1D representation
of the symmetry group G, then the corresponding MPS
does not break the symmetry and has a non-trivial SPT
order protected by translation symmetry (and the on-site
symmetry).

Let us apply the above approach to a MPS state of
spin-1 chian, where the matrix M l, l = x, y, z are given
by the Pauli matrices: M l = σl. The double-tensor is
given by (see Fig. 3)

Tbβ,aα = σxbaσ
x
βα − σ

y
baσ

y
βα + σzbaσ

z
βα (13)

The action of the double-tensor Tbβ,aα on the environ-
ment matrix Ebβ → Tbβ,aαEaα can be written in a matrix
form

E →
∑
l

σlEσl. (14)

We see that E = 2−1/2σ0 (the 2-by-2 identity matrix) is
the non-degenerate environment matrix with λ = 3.

Now, let us show that the MPS has a Zx2×Zz2 symmetry
where Zx2 is generated by Rx – the 180◦ spin rotation in
Sx-direction and Zz2 is generated by Rz – the 180◦ spin
rotation in Sz-direction. Under the symmetry twists Rx
and Rz, the corresponding double-tensors are

TRx

bβ,aα = −σxbaσxβα − σ
y
baσ

y
βα + σzbaσ

z
βα

TRz

bβ,aα = +σxbaσ
x
βα − σ

y
baσ

y
βα − σ

z
baσ

z
βα. (15)

The corresponding twisted environment matrices are
given by

ERx = 2−1/2σx, ERz = 2−1/2σz. (16)

with λRx = λRz = −3. We see that

URx
= σx, URz

= σz, (17)
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FIG. 10. Applying imaginary time evolution in a layered
structure.

Since |λRx | = |λRz | = |λ| and

E = U†Rx
EURx

, E = U†Rz
EURz

, (18)

we found that the Zx2 ×Zz2 symmetry is not broken. We
also see that URx

, URz
generate a projective representa-

tion of Zx2 × Zz2 . So the MPS is a SPT state protected
by Zx2 × Zz2 .

V. A TENSOR NETWORK APPROACH FOR
1D MODEL

In this section, we are going to use an infinite time-
evolving block decimation (iTEBD) approach40 to study
1D models, such as the transverse Ising model (1). We
are going study symmetry breaking by testing if |λg| =
|λ| or |λg| < |λ|.

A. The iTEBD method

The iTEBD method is a tensor network version of
the DMRG approach. The fundamental idea behind the
iTEBD method is to use imaginary time evolution to get
the ground state of a two-body Hamiltonian, and to use
Singular Value Decomposition (SVD) to control the in-
ternal dimensions.

Consider any 1D Hamiltonian with only nearest-
neigbour interactions, we can always separate it into two
parts, labeled by HA and HB :

H =
∑
i

Hi,i+1 =
∑
i∈odd

Hi,i+1 +
∑
i∈even

Hi,i+1

= HA +HB . (19)

This way, either HA or HB would have no overlapping
terms within itself. When the time step δt is very tiny,
we have:

e−δtH ≈ e−δtHAe−δtHB ≡W. (20)

We could then apply imaginary-time evolution layer by
layer, as shown in Fig. 10. Now within each layer, time-
evolution only operates on non-overlapping neighboring
sites. Thus the entire problem reduces to a two-site prob-
lem.

The two-site time-evolution is done through Singular
Value Decomposition, see Fig. 11. We first apply the

U α,βm’βαA
m

α β

B

γ

γβ

α γ

i,i+1

α β
m k

B

γ

γβ
k

βS λ

Vk’ γλ,

W

βαA
m’ k’

m’ k’ m’ k’ m’ k’

FIG. 11. Time-evolution on two sites. Step 1: apply time-
evolution operator. Step 2: apply SVD and truncate the sin-
gular matrix to only contain D largest singular values (S̄ de-
notes the singular matrix after truncation). Step 3: seperate
the singular values into the two sites.

time-evolution operator (labeled by Wi,i+1) on two sites,
resulting in a rank-4 tensor, Tm′α,k′γ :

Tm′α,k′γ = Wm′k′,mkA
m
αβB

k
βγ . (21)

Then we do SVD to split the rank-4 tensor:

Tm′α,k′γ = Um′α,βS
′
βλVk′γ,λ. (22)

Note that after applying SVD, the internal dimension
has grown on the inner link. We could get back our
original internal dimension by keeping only the D largest
singular values of S′. We’ll call the truncated matrix
S̄. Finally, we absorb diagnomal matrix S̄ into the two
on-site matrices, thus completing one step of evolution:

Ām
′

αβ = Um′α,β

√
S̄β , B̄k

′

βγ = Vk′β,γ

√
S̄β . (23)

This completes one step in time evolution.
One improvement can be made on the above time-

evolution step. Note that in the truncation process
above, we implicitly assumed that all bond indices are
equally important; however, we know that’s not the case.
The “environment indices” α, γ do not contribute equally,
and their weights could be naturally included by us-
ing the singular values Sα, Sγ from the previous time-
evolution step. (This is because in the previous step, α
and γ were inner link indices, and each index naturally
carries a weight according to the previous step of SVD.)

Thus the improved time-evolution step works as fol-
lows: 1. First, we scale the “environment indices” using
singular values Sα obtained from last step:

Amαβ →
√
SαA

m
αβ , Bmβγ →

√
SγA

m
βγ . (24)

2. Then apply the time-evolution step described before.
3. Lastly, we scale the “enviornment indices” back, by
doing the following:

Āmαβ →
√
S−1α Āmαβ , B̄mβγ →

√
S−1γ B̄mβγ . (25)

B. The iTEBD results for transverse Ising model

After applying the imaginary-time evolution steps de-
scribed above, we will eventually obtain the tensor that
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FIG. 12. The three up-down symmetric curves describe the
magnetization of transverse Ising model 〈σzi 〉 as a function of
h with J = 1. The “+” points are for internal dimension
D = 1, “+×” for D = 2, and filled-box for D = 10. The other

three curves describe
|λ|−|λg|
|λ| . The “×” points are for D = 1,

“�” for D = 2, and open-circle near (1,0) are for D = 10.

The line curve is 〈σzi 〉 = ±(2− 2h)1/8.
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FIG. 13. The difference of the scaling factors
|λ|−|λg|
|λ| of

transverse Ising model as a function of h with J = 1. The
“+” points are for D = 2, “×” for D = 4, “+×” for D = 8,
and “�” for D = 16.
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FIG. 14. The magnetization of transverse Ising model 〈σzi 〉
as a function of h with J = 1. The “+” points are for D = 2,
“×” for D = 4, “+×” for D = 8, “�” for D = 16, and “�” for
D = 32. The line curve is 〈σzi 〉 = ±(2− 2h)1/8.
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FIG. 15.
|λ|−|λg|
|λ| for the spin-1 model as a function of Jx

with Jy = Jz = 1, Jzz = 0.4, calculated by the iTEBD method
with D = 8. The “+” points are for symmetry twist g = Rx,

“×” for g = Ry, and “�” for g = Rz. When
|λ|−|λg|
|λ| = 0,

the corresponding symmetry g is not broken. We see that
the phase near Jx = 1 has the full symmetry. The phase for
smaller Jx has only the Ry symmetry. The phase for larger
Jx has only the Rx symmetry.

J

zz

x

J
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 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

FIG. 16. The phase diagram for the spin-1 model in Jx-Jzz
plane, with Jy = Jz = 1, calculated by the iTEBD method

with D = 8. The points mark which
|λ|−|λg|
|λ| = 0. The “+”

points are for symmetry twist g = Rx, “×” for g = Ry, and
“�” for g = Rz. The green shaded area and the white area at
the top have the full Rx, Ry, Rz symmetry. The gold shaded
area has only the Ry symmetry, and the blue shaded area has
only the Rx symmetry.

describes the ground state wave function very well. The
next issue is to identify the symmetry breaking order
and/or SPT order in the ground state, using the method
discussed before.

For the transverse Ising model, Fig. 12 describes the

calculated
|λ|−|λg|
|λ| and the magnetization 〈σzi 〉, using the

iTEBD approach with various D. Fig. 13 and Fig. 14
are the results near the transition point. The transition
point is found to be hc ≈ 1.08 for D = 2, hc ≈ 1.0188 for
D = 4, hc ≈ 1.0101 for D = 8, hc ≈ 1.0047 for D = 16,
and hc ≈ 1.0015 forD = 32. The exact transition point is

at hc = 1. We see that “order parameter”
|λ|−|λg|
|λ| works

very well, in identify symmetry breaking transitions.
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α β
γ

mi

M

FIG. 17. A tensor-network state. All the physical sites are
represented by dots, physical degrees of freedom by vertical
lines, and internal degrees of freedom by in-plane links.

C. The iTEBD calculation of 1D model with
symmetry-breaking and/or SPT orders

In this section, we are going to use the iTEBD ap-
praoch to study spin-1 model with Zx2 × Zz2 symmetry:

H =
∑
i

[JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1 + Jzz(S

z
i )2]

(26)

The Zx2 is generated by 180◦ spin-rotation Rx around
the Sx axis. The Zz2 is generated by 180◦ spin-rotation
Rz around the Sz axis. The RxRz = Ry is the 180◦

spin-rotation around the Sy axis.
We chooseD = 8 and calculated the tensorMm

αβ for the
ground state. To determine if Mm

αβ describes a symmetry
breaking state or not, it is not correct to directly test if
Mm
αβ has the symmetry or not. This is because even when

Mm
αβ is not invariant under any symmetry transformation

of the form (3), Mm
αβ can still describe a symmetric state.

So to determine symmetry of the ground state, we

instead calculated the quantity
|λ|−|λg|
|λ| for symmetry

twists g = Rx, Ry, Rz (see Fig. 15). We determined

the phase diagram by examine where and which
|λ|−|λg|
|λ|

vanishes. The gold shaded area in Fig. 16 only has the

Rx symmetry, since only
|λ|−|λRx |
|λ| = 0. The blue shaded

area in Fig. 16 only has the Ry symmetry since only
|λ|−|λRy |
|λ| = 0. The green shaded area and the white area

have
|λ|−|λg|
|λ| = 0 for g = Rx, Ry, Rz and have the full

Rx, Ry, Rz symmetry. In fact the green area is a phase
with a non-trivial SPT order (the Haldane phase).

VI. APPLICATION TO 2D MODEL WITH
SYMMETRY BREAKING TRANSITION

Now we want to generalize the above simple picture to
2D. Consider the transverse Ising model on an infinite
honeycomb lattice, with spins living on vertices. The
Hamiltonian remains the same as equation (1). Since the
ground state of a gapped system in 2D could be faithfully
described by a tensor-network state,41–45 for a translation
invariant system, we have (see Figure 17):

|Ψ〉 =
∑
{mi}

∑
{α,β,γ}

tTr[⊗iMmi

α,β,γ ] |{mi}〉 (27)

H

Ev

Ev

Ev

Ev

FIG. 18. The average energy with total environment tensor
Etot in 2D. Here, Etot consists of four environment matrices,
surrounding the two physical sites.

m Ev
Ev

Ev

FIG. 19. The self-consistent iteration process for environ-
ment in 2D.

where tensors M ’s are again labeled by the physical de-
grees of freedoms mi, and tTr (tensor trace) contracts
over all internal degrees of freedom on connected links
labeled by α, β and γ. Again, we want to do variational
calculations with a simple picture involving the total en-
vironment tensor Etot, which now consists of four envi-
ronment matrices, see Figure 18.

The key question now is how do we obtain a good envi-
ronment matrix, as we did in 1D (recall Figure 3)? Here
we introduce a simple yet powerful iteration process: as-
sume we have a three-fold rotational symmetry for ten-
sor M , then the iteration needs two input matrices, and
gives out only one output, see Figure 19. As before, af-
ter enough numbers of iterations, we would reach a final
stable “environment matrix”.

It might be surprising, at first sight, why such a naive
iteration process would give a reliable environment ma-
trix. The key however is to realize that this iteration ac-
tually gives an environment matrix for the infinite Bethe
lattice, which is a very good first approximation for our
honeycomb lattice (see Figure 20). As shown in the
graph, the iteration process is actually equivalent to a
self-consistent update for a large cluster of lattice points,
and thus its legitimacy.

AA

B B

B B

C C

C C

CC

C C

FIG. 20. The iteration process on Bethe lattice. Note that
this is a top-down view, and we have only shown one layer of
tensor-network state. Starting from an environment surroud-
ing C tensor, we could iterate to get environment for B, and
then to A. The circled region is the region of interest.
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Total Energy J-term h-term

1 2 3 4
h�J

-4

-3

-2

-1
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Energy�J

FIG. 21. Energy as a function of h/J for the 2D transverse
Ising model. As in the 1D case, h- and J- terms are individu-
ally plotted in the graph as well. We can see from the graph
that our simulation shows a weak first-order phase transition,
with phase transition point at h/J = 2.09.

Just like in the 1D case, here we would also like to
require our tensor-product state to have a Z2 symmetry
corresponding to the spin up-down symmetry. Similar to
the matrix-product state, on-site symmetry of the ground
state also requires tensor M in the tensor-network state
to transform in a special way:∑
m′

gmm′Mm′

α,β,γ = eiθg
∑

α′,β′,γ′

Mm
α′,β′,γ′Uαα

′

g Uββ
′

g Uγγ
′

g .

(28)

This is just a tensor generalization of condition (3). As
before, m is the physical spin label, gmm′ represents the
on-site symmetry and acts in the spin space, Ug forms a
projective representation of the symmetry group g, and
is a unitary matrix acting on internal degrees of freedom
labeled by α, β and γ.

For internal dimension of D = 2, we can choose Ug =(
1 0
0 −1

)
. The most general symmetric tensor Mmi

α,β,γ

satisfying eqn. (28) has 4 variational parameters and
looks like the following:

M↑,α=1
β,γ =

(
a b
b c

)
M↑,α=2
β,γ =

(
b c
c d

)
,

M↓,α=1
β,γ =

(
a −b
−b c

)
M↑,α=2
β,γ =

(
−b c
c −d

)
. (29)

Here we again assume M ’s to be symmetric, because of
rotational symmetry.

With the above M tensors, numerical simulation could
again be run on the 2D Ising model. Following what
we did in 1D, we vary h/J in equation (1) and mini-
mize the energy for each value of h/J . By plotting the
two energy terms, a phase diagram could also be ob-
tained (see Fig. 21). For internal dimension D = 2, the
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FIG. 22. Magnetization and order parameter as a function
of h/J for the 2D transverse Ising model. When D = 2,
the order parameter plotted (represented by red crosses) is
p/(s+ t), which goes to zero in the symmetric phase.

phase transition point occured at h/J = 2.09, which was
within 2% error from Quantum Monte Carlo prediction
of h/J = 2.13.46 The typical runtime on a laptop was
just a few seconds. If we increase the internal dimension
to D = 4 and use a completely symmetric tensor with
10 variational paramters, then we get a phase transition
point at h/J = 2.12, within 1% error from the afore-
mentioned Quantum Monte Carlo calculation. Here all
variational parameters are real.

Following what we did in D = 1, here we would also
like to comment on the symmetry structure of the envi-
ronment matrix E. Recall that E is obtained through
iterations (or self consistent condition) in Fig. 19, which
picks out the E with the largest absolute value of scal-
ing factor λ. One important difference/simplification in
2D is that unlike in 1D, in general, we do not have any
degeneracies for E through the iteration equation (Fig.
19), since the equation is non-linear. Thus in general E
obtained is unique, and we do not need eqn. (6) to fix
the basis.

With the above discussion, we can go into the sym-
metry structure for our environment matrix E (See Fig.
22). For internal dimension being 2, using the iteration
method mentioned above and after energy minimization,

we have in the symmetric phase E =

(
s 0
0 t

)
, which gives

an invariant E under eqn. (7). As a result, the total en-
vironment tensor is just the direct-product of them:

Etot = E ⊗ E ⊗ E ⊗ E. (30)

As for the symmetry breaking phase, depending on the

initial values of E, we get either Eg1 =

(
s̃ p
p t̃

)
or Eg2 =(

s̃ −p
−p t̃

)
, which transforms into each other under eqn.
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αβγ

ml

M
δ η

T

FIG. 23. Tensor-product state with spins living on links.
Here physical sites are represented by dots.

(7). If we construct the total environment tensor

Etot =
∑
g

Eg ⊗ Eg ⊗ Eg ⊗ Eg, (31)

then the Z2 symmetry is restored, but now again the total
environment tensor does not have a pure tensor product
form, as was the case in 1D.

VII. APPLICATION TO 2D MODEL WITH
TOPOLOGICAL ORDER

We now move on to the non-trivial example of Toric-
Code model in a B-field, with spins living on links of an
infinite 2D honeycomb lattice. The Hamiltonian is as
follows:

H = −A
∑
v

∏
i∈v

σzi −B
∑
p

∏
j∈p

σxj − h
∑
k

σzk (32)

where σ’s are the usual Pauli matrices. We will first
consider the phase diagram by fixing A→∞ and varying
h/B between [0,∞]. When h/B = 0, we have the original
Toric-Code model, whose ground state is an equal-weight
superposition of all closed loops of down-spins (in the
background of up-spins). When h/B → ∞, we have the
spin-polarized state where all spins are pointing up.

Later in this section, we will also consider the case
when h/B → −∞ so the ground state is the fully packed
loop state, which is an equal weight superposition of all
loop configurations that are fully packed (every vertex
has a loop passing through). The question of whether
the fully packed loop state has topological order or not
will then be explored.

As in the previous example, we now try to use a tensor-
network state to represent the ground state of the above
Hamiltonian. Here since all spins live on links of the
lattice, we will need two tensors T and M to represent
our variational ground state (see Figure 23):

|Ψ〉 =
∑
{ml}

∑
{α,β,γ,δ,η}

tTr[⊗vTα,β,γ ⊗lMml

δ,η ] |{ml}〉 (33)

where v labels different vertices, l labels different links,
α, β, γ, δ, η label internal degrees of freedom, ml label
physical degrees of freedom of link l, and tTr contracts
over all connected internal indices. Note that due to the
B term in the Hamiltonian 32, we will need to include an

H Ev

Ev

EvEv

Ev

Ev

FIG. 24. Variational energy for Toric-Code model in a B-
field.

entire plaquette in our variational calculation, as shown
in Figure 24.

Now we start by introducing our tensor ansatz in the
simple case of internal dimension 2. In order to enforce
the condition that A→∞ and the rotational symmetry
of the system, we need the following tensors T and M :

Tα,β,γ =


1, if α = β = γ = 0;

x, else if α+ β + γ = 0 (mod 2);

0, otherwise;

M↑δ,η =

(
1 0
0 0

)
, M↓δ,η =

(
0 0
0 1

)
. (34)

where spin-up and spin-down’s are labeled by arrows.
Note that when x = 1, it represents the regular Toric-
Code ground state47, whereas when x = 0, it represents
the all-spins-up state.

Before going into our variational calculations, we first
note that our model in equation (32) could be mapped
into a transverse Ising model by introducing a new pla-
quette spin operator µp, where spins live on the plaque-
ttes and p is the plaquette label.48 By doing the following
mapping:

∏
j∈p σ

x
j → µxp , σzi → µzpµ

z
p′ , and consider only

the A→∞ sector, our Hamiltonian reduces to:

H = −B
∑
p

µxp − h
∑

<p,p′>

µzpµ
z
p′ , (35)

which is the familiar transverse Ising model. Note that
this Ising model is now on a 2D triangular lattice.

With the above tensor network ansatz, we could run
our variational scheme on the Toric-Code model. Just
like in the Ising model cases, we vary h/B in eqn (32)
(recall that we hold A → ∞) and minimize the energy
for each value of h/B. The environment tensor was cal-
culated in the same way as before (See Fig. 19). The only
difference here is that since the Hamiltonian (32) have a
six-body interaction term, we have to include more sites
into our mean-field calculation(See Figure 24). By plot-
ting the two energy terms as a function of h/B, we get
a phase diagram, which is plotted in Fig. 25. For in-
ternal dimension D = 2, we got a phase transition point
at B/h = 3.33, with an error of 30% to the Quantum
Monte Carlo result of B/h = 4.768.46 This is not sur-
prising as we only have one variational parameter. With
internal dimension of 3 and only two variational param-
eters, our result quickly improved to a phase transition
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FIG. 25. Energy as a function of h/B for the 2D Toric Code
model in a magnetic field. Here we only plotted the region
when h/B > 0. We can see from the graph that our simu-
lation shows a weak first-order phase transition, with phase
transition point at h/J = 0.3.

Ev
σz

σz

σz
σz

σz

T

M
σz σz

T
M
M

FIG. 26. Internal Z2 symmetry of the tensors T and M for
our Toric-Code model. Here T has a σz ⊗ σz ⊗ σz symme-
try, and M has a σz ⊗ σz symmetry, both of which square
to identity. Note that this symmetry transformation could
independently act on top and bottom layers of the tensor-
network, thus the environment matrix transforms under a
Z2 × Z2 group.

point at B/h = 4.407, with an error of less than 8% to the
Quantum Monte Carlo result. Note that the Quantum
Monte Carlo value was obtained on the mapped equiva-
lent model (see equation (35)) on a 2D triangular lattice.

Now in order to understand the above result better
and to further explore the case when h/B < 0, we need
to understand the symmetry structure of both our tensor-
product state and the environment tensor obtained. Note
here that although the ground state doesn’t have a phys-
ical Z2 symmetry, the tensor ansatz T and M (34) still
need to have an internal Z2 symmetry, namely the “nec-
essary symmetry condition”49 (See Figure 26):

Tα,β,γ =
∑

α′,β′,γ′

Tα′,β′,γ′σαα
′

z σββ
′

z σγγ
′

z

Mml

δ,η =
∑
δ′,η′

Mδ′,η′σ
δδ′

z σηη
′

z . (36)

Here, the internal symmetry is represented by σz⊗σz⊗σz
for tensor T , and σz ⊗ σz for tenor M , where σz is the
Pauli matrix. Since both symmetry actions square to
identity, we refer to the above internal symmetry as a Z2

symmetry.

The physical reason for tensor ansatz to have the above
“necessary symmetry condition” is that we want to make
sure local variations of the tensors correspond to local
perturbations of the Hamiltonian. Tensors that violates
the above condition correspond to non-local perturbation
in their Hamiltonian and thus can not be used to describe
physical phase transitions49.

It’s easy to check that tensors in equation (34) have the
above symmetry. We would then like to ask, with the T
and M tensors satisfying eqn (36), what is the symmetry
structure of the environment matrix? Note that unlike
the Ising model, here the internal symmetry of the two
layers of our tensor-network can act independently, as
shown in Figure 26. Thus the environment matrix no
longer transforms under eqn (7), but transforms under a
Z2 × Z2 group:

E → U†g · E, or E · Ug, or U†g · E · Ug. (37)

As in the Ising model, we expect that in different phases,
the environment matrices E’s are either invariant under
the above transformation, or undergoes a permutation.

Our numerical result indeed shows the above feature.
When internal dimension D = 2, we use the tensor ansatz
in eqn (34) and iteration process (see Fig. 19) to get the
environment matrix E. In the confined phase (including

spin-polarized state), we obtain E =

(
1 0
0 0

)
, which is

invariant under eqn. (37). As a result, the total environ-
ment tensor is just the direct product of them:

Etot = E ⊗ E ⊗ E ⊗ E ⊗ E ⊗ E.

In the deconfined phase (including string-net state), how-

ever, we have either Eg1 =

(
s 0
0 t

)
or Eg2 =

(
s 0
0 −t

)
,

which transforms into each other under eqn. (37). We
could again construct a total environment tensor

Etot =
∑
g

Eg ⊗ Eg ⊗ Eg ⊗ Eg ⊗ Eg ⊗ Eg

that respects the Z2×Z2 symmetry, but it does not have
a pure tensor product form, as was the case for Ising
model.

In doing the above, we have really constructed a nu-
merical way to detect topological orders. In the partic-
ular case above, Z2 topological order is signatured by a
“symmetry breaking” in the environment matrix, which
breaks the original Z2×Z2 symmetry of E (see eqn (37))
down to Z2 (see eqn (7)).

With this realization, a natural question to ask is: if
we now consider negative magnetic field with h/B →
−∞, will the fully packed loop state has Z2 topological
order? To answer this question, let us first write down
the ground state wave function of the fully packed loop



12

FIG. 27. The above graph shows a “string crystal” state,
where blue lines represent spin-downs forming vertical strings,
and red lines represent spin-ups forming the background.

state in tensor form:

Tα,β,γ =


0, if α = β = γ = 0;

1, else if α+ β + γ = 0 (mod 2);

0, otherwise;

M↑δ,η =

(
1 0
0 0

)
, M↓δ,η =

(
0 0
0 1

)
. (38)

Note the difference between this and eqn (34): here we
require loops to cover each vertex, so T0,0,0 = 0.

Now to see whether this state has Z2 topological order
or not, all we need to do is to calculate its environment
matrix through iteration (see Fig. 19). Depending on the

initial condition, we obtain either Eg1 =

(
0.38 0

0 0.62

)
or Eg2 =

(
0.38 0

0 −0.62

)
, which again transforms into

each other under eqn (37). This means that we are still
in the deconfined phase, and packed loop state has Z2

topological order.
One may worry that the simple test above would fail to

differentiate the “string crystal” state (see Fig. 27) where
string configuration is stationary, from the fully packed
loop state where the string configurations are fluctuating.
This worry turns out to be unnecessary through careful
study below.

Consider a “string crystal” state, with vertical strings
formed by down-spins (shown in Fig. 27). We would like
to study the symmetry structure of the environment ma-
trix for this state. Note that unlike the previous tensor-
network ansatz in eqn (34) and (38), here the tensors no
longer have three-fold rotational symmetry.

Our method could be easily generalized to non-
rotationally symmetric tensors by introducing a three-
step iteration process, shown in Fig. 28. (Recall that
this is different from the symmetric iteration process in
Fig. 19.) In this three-step iteration process, we intro-
duce three different environment matrices, which then
iterate in a cyclic fashion. Now, any physical quantities
could again be calculated by sandwiching the operator in
between two layers of tensor network states, surrounded
by three different types of environment matrices shown in

m EC
EA

EB

m EA
EB

EC

m EB
EC

EA

FIG. 28. The self-consistent iteration process for environ-
ment matrix when the tensors do not have rotational symme-
try. We introduce three different environment matrices, EA,
EB and EC . One cycle of iteration consists of three steps:
1. Input EA and EB to update EC ; 2. Input EB and EC

to update EA; 3. Input EC and EA to update EB . After
iterating for enough number of steps, all three self-consistent
equation will be simultaneously satisfied.

H EA

EB

ECEB

EA

EC

FIG. 29. Expectation value of an operator with non-
rotational-symmetric tensor networks. Note here that there
are three different types of environment matrices.

Fig. 29, and all of our previous analysis follows. (Again
compare this with Fig. 18, where there was only one type
of environment matrix.)

With the above three-step iteration process, the envi-
ronment matrix of our “string crystal” state could then
be obtained as follows:

EA =

(
1 0
0 0

)
, EB = EC =

(
0 0
0 1

)
. (39)

Note that the above EB and EC do not really break the
Z2 × Z2 symmetry shown in eqn (37). This is because
the iteration process for EB and EC are both linear, so
an overall minus sign does not affect the iteration result.
Thus EB and EC could only be determined up to a sign,
which is a fictitious gauge degree of freedom and have no
physical meaning. Thus EB → −EB does not correspond
to breaking the Z2 × Z2 symmetry, and “string crystal”
state indeed does not possess Z2 topological order.

VIII. CONCLUSIONS

In this paper, we proposed a new signature for phase
transitions between tensor-network states using the en-
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vironment matrices. Different phases are distinctively
labeled by different symmetry structures in the environ-
ment matrices. Thus through carefully studying differ-
ent symmetry structures of the environment matrix, we
could identify different phases and obtain the detailed
phase boundaries for both symmetry-breaking transitions
and topological phase transitions. This greatly helps us
in identifying topological orders or SPT orders from a
generic tensor-network state.

The environment matrix is obtained through a very
simple iteration process using the tensor-network state,
in both 1D and 2D. This iteration process provides a
self-consistent environment matrix that summarizes the
contributions from far away sites, and is like a “mean-
field” theory for tensor-networks. In the same line of
thinking, the environment matrix serves like an “order
parameter”. What’s special about this “mean-field” the-
ory is that it’s suitable for studying long-range entangled
states, and is thus suitable for tackling topological phase
transitions.

In 1D, we demonstrated that this new signature could
be easily combined with existing numerical methods like
DMRG or iTEBD to identify SPT phases. We first ob-
tain the ground state in a matrix-product form by ap-
plying these 1D numerical methods. Then we calculate
the environment matrix, either through direct iteration
process or through a twisted iteration process (where the

symmetry transformation g is sandwiched in between the
double tensor in the iteration process). By simply com-
paring the scaling factors in the two iteration process, we
could identify which SPT phase we are in, thus provid-
ing an easy way to identify SPT orders directly from a
matrix-product state.

In 2D, the iteration process gives a very efficient way
of calculating variational energies, which in turn leads
to a simple numerical methods in obtaining gound state
wave function by minimizing the energy. If we require the
ground state tensors to have the proper on-site symmetry,
iteration process could give us environment matrices that
have drastically different symmetry structures, labeling
different (topological) phases. Note that the on-site sym-
metry doesn’t have to be a physical symmetry— internal
gauge symmetry is also valid.

The above numerical method is very general and could
be easily applied to many interesting systems in higher
dimension including 3D systems. This will open new
doors in numerical study of higher dimensional systems.
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