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Abstract

The invariance of physical observables under disformal transformations is considered. It is known

that conformal transformations leave physical observables invariant. However, whether it is true

for disformal transformations is still an open question. In this paper, it is shown that a pure

disformal transformation without any conformal factor is equivalent to rescaling the time coordinate.

Since this rescaling applies equally to all the physical quantities, physics must be invariant under

a disformal transformation, that is, neither causal structure, propagation speed nor any other

property of the fields are affected by a disformal transformation itself. This fact is presented at

the action level for gravitational and matter fields and it is illustrated with some examples of

observable quantities. We also find the physical invariance for cosmological perturbations at linear

and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski

and beyond Horndeski theories under a disformal transformation is made.
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I. INTRODUCTION

Observational cosmology reveals how small our knowledge of the Universe is. For example,

two of the main unsolved mysteries are periods of accelerated expansion of the Universe,

inflation and dark energy, whose underlying sources remain unknown. Plenty of theoretical

models (for an extensive review see [1]) point towards a scalar field as the main responsible

for such an accelerated expansion. Interestingly, despite the good agreement of the standard

ΛCDM model with current data [2, 3], some tension appears from direct measurements

of the time evolution of the Hubble parameter [4]. Furthermore, a recent release of the

CMB observation by Planck [5], which supports inflation, seems to favour those inflationary

models with a non-minimal coupling, a.k.a. the scalar-tensor theory of gravity [6–8] that

includes the so-called f(R) theory [9, 10].

Conformal transformations have been proved to play a very important role in physics [11].

In particular, in the scalar-tensor theory they are not only a useful mathematical tool but

they leave observational physics invariant at a classical level (for a discussion supporting this

point of view see [12–21]; also see [22–25] for a discussion in a different point of view in the

context of F (R) gravity). Consequently, the notion of conformally related frames naturally

appears. The Jordan frame or matter frame, where the scalar field is non-minimally coupled

to the metric g̃µν but matter is minimally coupled, and the Einstein frame or gravitational

frame, where the scalar field is minimally coupled to the metric gµν but matter is dilatonically

coupled to the scalar field. An alternative way to understand conformal transformations in

the scalar-tensor theory is the following. One has a gravitational metric gµν which satisfies

the Einstein equations and a matter metric related to the former by a field dependent

rescaling, say g̃µν = Ω(φ)2gµν .

From this point of view, one may wonder whether there are more general transformations

that lead to a new form of the matter metric. In other words, is there any other way that

matter can non-trivially couple to gravity through a scalar field? This question was studied

by Bekenstein in [26] where a new class of transformations, called disformal transformations,

were proposed. The idea behind such transformations is that matter is coupled to a metric

which is not just a rescaling of the gravitational metric but it is stretched in a particular

direction, given by the gradient of a scalar field.

Disformal transformations can be motivated from brane world models and from massive

2



gravity theories (see [27, 28] and references therein) and have been applied to inflation

[29], dark energy [30–32], varying speed of light models [33–36], atomic physics [37] and

mimetic gravity [38]. Consequently, considerable effort has been made to look for constraints

and how to avoid them, e.g. screening mechanisms, for disformally coupled matter models

[27, 28, 31, 32, 39–44]. In addition, with the recent rediscovery of the Horndeski theory [45–

47], which is the general scalar-tensor theory with second order field equations of motion, and

its generalization, known as beyond Horndeski or GLPV theory [48–51] (see also its further

extension [52]), attention has been paid to its mathematical invariance under disformal

transformations in those theories [53, 54]. If observational physics turns out to be invariant

under disformal transformations that will provide us with a powerful mathematical and

physical tool to classify or work within the Horndeski theory (for example [28, 55]), and to

make progress in our understanding of the symmetries of gravity. In this direction, refs. [56–

58] study the disformal invariance of cosmological perturbations at the linear level with a

positive answer. For a recent development see references [59–61]. In particular, see [59] for

a multi-field extension of disformal transformations.

That being said, a note is in order. It is generally believed that physics does not change

under a non-singular field redefinition. However, a field redefinition of a metric is more subtle

when it comes to interpretations. A simple example would be a conformal transformation

which could lead us from an homogeneous and isotropic expanding universe to a static

spacetime (see Deruelle & Sasaki [14]). The invariance of physically observable quantities

before and after the transformation is not immediately clear. Therefore, and also to clearly

understand how to interpret the results, one has to explicitly check the invariance.

Turning to the case of a disformal transformation, it is no longer just a simple field

redefinition, because it involves derivatives of the scalar field. Thus there may be a higher

level of subtlety than in the case of a conformal transformation. For this reason, we dedicate

this work to study the effects of a pure disformal transformation, its interpretations and the

invariance of physical observables in cosmology.

For the sake of simplicity and clarity, we restrict ourselves to work in the comoving, or

the uniform φ slicing, on which the scalar field is homogeneous. In this sense, we discuss

cosmological disformal transformations by implicitly assuming the existence of φ-constant

spacelike hyper-surfaces, which is a common and reasonable assumption in cosmology. We

show that a pure cosmological disformal transformation without any conformal factor is
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equivalent to rescaling the time coordinate, which could even be regarded as a time coordi-

nate transformation. This is checked at the action level for gravitational and matter fields,

which ensures that physics is invariant under disformal transformations. Consequently, one

can work in the frame one considers most suitable for either computations or interpretations.

The paper is organized as follows. In section II we briefly review disformal transformations

and we focus on pure disformal transformations, which are intuitively shown to be equivalent

to rescaling the time coordinate when applied to cosmology. Afterwards, in section III we

proceed to check that this is the case for gravitational and matter fields at the action level,

with a comparison to Horndeski theory. Let us stress that throughout sections II and III we

focus on the effects of a disformal transformation itself, i.e. no comparison between fields,

c.f. scalar and matter fields is made. Afterwards, in section IV we explicitly compute the

disformal invariance of some observable quantities considering the system as a whole, i.e.

gravitational and matter sector altogether, and we emphasise on the choice of frames and

its invariance. Finally, in section V we summarize our results.

II. PURE DISFORMAL TRANSFORMATION

The general form of a disformal transformation is given by [26]

ḡµν = G(φ,X)gµν + F (φ,X)φ,µφ,ν, (1)

where X = −1
2
gµνφ,µφ,ν and φ,µ ≡ ∂µφ. The first term in the right hand side corresponds

to a conformal transformation, i.e. a rescaling of the metric, whereas the latter is a pure

disformal transformation, i.e. the metric is stretched in the direction of φ,µ. In this work,

we restrict ourselves to the case of a pure disformal transformation, that is G(φ,X) = 1, as

any conformal transformation can be generally done afterwards.

In cosmology it is a reasonable assumption that φ,µ is regular and timelike everywhere,

and hence one can choose the comoving, or the uniform φ slicing on which the scalar field

is homogeneous. Throughout this paper, we take the comoving slicing to simplify the ar-

gument and make clear physical interpretations and consequences. In fact one immediately

notices from (1) that under this pure cosmological disformal transformation only the time-

component of the metric, namely the lapse function, is modified. To see this explicitly, let
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us express a pure “disformation” in the form of the (3 + 1)-decomposition,

g ≡ ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt)

→ ḡ ≡ ds̄2 = −N̄2dt2 + ḡij(dx
i + N̄ idt)(dxj + N̄ jdt) , (2)

where

N̄2 = N2α2 , N̄ i = N i , ḡij = gij , (3)

where for the sake of simplicity we defined

α2 = 1− 2F (φ,X)X. (4)

It should be noted that now X reduces to −(1/2)gttφ̇2 where the scalar field only depends

on the time coordinate but gtt = −N−2 has spatial dependence in general, which implies

the spatial dependence of the disformal factor, F , as well as of α. From (3) we infer that in

order to preserve the Lorentzian signature of the metric one must require α2 > 0 [26], which

is assumed throughout this paper. Due to the fact that just a particular component of the

metric is modified, one may naively think that the causal structure and the propagation

speed are altered as well. In fact, it is rather the opposite as shown later.

A note is in order. Deruelle and Rua [38] showed that a disformal transformation does

not alter Einstein’s equations in general, although the form of such is quite different when

expressed in terms of the transformed metric. One may naively expect this result due to the

fact that a disformal transformation is a re-parametrization of the metric.

However, there is a particular class of disformal transformations which leads to a depar-

ture from usual General Relativity (GR). In fact, its effect is to give rise to a source term

in Einstein’s equations even in the absence of matter fields. This particular class includes

the Mimetic Dark Matter model [62, 63] where this new source term imitates a dark mat-

ter component. Concretely, the mimetic gravity condition gives a constraint between the

conformal and disformal factors. In our notation it reads

F (φ,X) =
1

2X
G(φ,X)− f(φ), (5)

where f(φ) is an arbitrary positive function of the scalar field alone. For a pure disformal

transformation (G=1) it reduces to

F (φ,X) =
1

2X
− f(φ), (6)
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which plugged back in (3) leads us to a degenerate metric without lapse, that is

ds̄2 = −f(φ)(∂tφ)2dt2 + ḡij(dx
i + N̄ idt)(dxj + N̄ jdt) . (7)

Note that there will no longer be any constraint equation from the variation with respect to

the lapse. The absence of this constraint seems to be the origin of a new “mimetic” degree of

freedom. In this work, we will not pursue this particular case further, leaving its interesting

implications for future work.

In the next subsection IIA we shall see how the physics can be changed/unchanged under

a disformal transformation focusing first on the homogeneous and isotropic background. And

then the discussion is extended to deal with the general situation in the next subsection IIB

obtaining the same conclusion.

A. Cosmological background

Before going in depth let us clarify our starting point in order to avoid any confusion.

We begin with a given action for a given metric and we are interested in the change of

physics under a transformation of the metric. Obviously, we do not want to alter our model,

i.e. our action. For this reason, we must take a passive approach. What we mean by a

passive transformation is the following. For simplicity, let us consider two metrics ḡ = ds̄2

and g = ds2 which are related by a conformal transformation ḡ = Ω2g. Let us assume

that we are given a model with the metric ḡ and the action S[ḡ]. Now, we perform the

transformation to the metric. Basically, we have two options. We can rewrite the action in

terms of the transformed metric S[ḡ] = S[Ω2g], or replace the metric ḡ → g = Ω−2ḡ while

keeping the same functional form of the action, which yields a different value of the action

S[ḡ] 6= S[g]. We call the former a passive transformation and the latter an active one. As

we stated above, we consider the former. From this point of view, we should expect at most

a change in the interpretation of the physics but not a change in observational results. We

will come back to this point later with an explicit form of the action in section III.

That being said, we can readily have an idea of the effect of a disformal transformation

by expressing our original line element in terms of the disformally transformed one. To be

specific, we consider a model with a metric ḡ and by means of a disformal transformation we

choose to work in terms of g, i.e. we passively transform the barred frame to the unbarred
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frame by ḡ = ḡ(g).

Let us focus on a spatially homogeneous and isotropic background with the metric,

ds2 = gµν(t)dx
µdxν = −dt2 + gijdx

idxj , (8)

where we have chosen the cosmic proper time, gtt = −1 (N = 1), and gij = a2(t)Ωij with

Ωij being the metric of a homogeneous and isotropic 3-space. The disformal transformation

(1) ,

ds̄2 = ḡµν(t)dx
µdxν =

(

gµν + F (φ,X)φ,µφ,ν

)

dxµdxν , (9)

with N = 1 (3) can be read as

ds̄2 = ds2 +
(

1− α2(t)
)

dt2 = −α2(t)dt2 + gijdx
idxj . (10)

It should be noted that α here depends only on the time coordinate. This enables us to

perform a time coordinate transformation given by

dt̄ = α(t)dt . (11)

With this new time coordinate, the barred metric is expressed simply as

ds̄2 = −dt̄2 + gijdx
idxj . (12)

As clear from this, the time coordinate t̄ is in fact the cosmic proper time in the barred

frame.

One readily see that the above form of the metric is exactly in the same form as the

unbarred metric with the replacement t → t̄, with the understanding that the scale factor

in the transformed frame, say A(t̄), is regarded as a function of t̄ through its t-dependence,

A(t̄) = a
(

t(t̄)
)

. In the sense of the foregoing discussion, if one were to start from an action

with the barred metric ḡµν , one would find that the form of the action in terms of the

unbarred metric gµν can be interpreted as a rescaling of time from t to t̄, or in a symbolic

form S[ḡ(g); t] = S[g; t̄]. See section III for an explicit proof.

This indicates an important fact that a (cosmological) disformal transformation (3) is

essentially equivalent to a rescaling of the time coordinate (11). Since this rescaling applies

to all the physical quantities equally in the transformed frame, it implies the invariance of

the physics under the disformal transformation. In other words, since we work with the
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same action but expressed in terms of new variables, observed physics should not change.

If this reasoning is valid, it is straightforward that in particular neither the causal structure

nor the propagation speed are modified under the disformal transformation.

a. Wave propagation. We now consider the effect of a disformal transformation on the

propagation of waves. For simplicity, let us focus on a scalar wave of comoving wavenumber

k living in the barred frame,
[

1

a3
d

N̄dt

(

a3
d

N̄dt

)

+
c̄2sk

2

a2

]

φ̄k(t) = 0 , (13)

where c̄s is the sound velocity. Applying the passive disformal transformation (3), it becomes
[

1

a3α

d

Ndt

(

a3

α

d

Ndt

)

+
c̄2sk

2

a2

]

φ̄k(t) =
1

α2

[

α

a3
d

dt

(

a3

α

d

dt

)

+
α2c̄2sk

2

a2

]

φ̄k(t) = 0 , (14)

where in the last step we set N = 1 so that we chose t to be the cosmic proper time of the

unbarred frame. Thus it appears that the sound velocity is changed to cs,ap = αc̄s, where

cs,ap stands for apparent sound speed. However, recalling that the cosmic proper time in

the barred frame is given by dt̄ = αdt, the actual sound velocity in the transformed frame

should be read off from the equation rewritten in terms of t̄,
[

1

a3
d

dt̄

(

a3
d

dt̄

)

+
c̄2sk

2

a2

]

φk(t̄) = 0 , (15)

where φk(t̄) = φ̄k

(

t(t̄)
)

or equivalently φ̄k(t) = φk(t̄(t)). Here it is important to note that

no scalar function is modified by such a passive disformal transformation. Essentially, the

functional form has apparently changed but not its value as indicated above. It is apparent

that the physical sound velocity c̄s is the same in both frames. In fact, this is similar to that

pointed out by Ellis and Uzan in [64, 65]. We further use this result in section IV.

b. Causal structure. Bearing in mind the above result, let us discuss the causal struc-

ture. Consider the norm of a vector kµ in the barred frame, i.e.

k2 ≡ ḡµν k̄
µk̄ν = −N̄2(k̄t)2 + gij k̄

ik̄j, (16)

where k2 > 0, = 0 or < 0 for a spacelike, null or time-like vector, respectively. Actually, k2 is

a scalar and consequently is invariant under passive disformal transformations. By imposing

such a condition, the invariance of the causal structure is automatic. Conversely, the vector

components must change in order to balance the transformation of the metric and to keep

k2 invariant.
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Let us briefly discuss its consequences. The passive disformal transformation (3) in k2

leads us to

k2 = ḡµν k̄
µk̄ν

= (gµν + F (φ,X)φ,µφ,ν) k̄
µk̄ν = −α2(k̄t)2 + gij k̄

ik̄j , (17)

where again we have set N = 1 so that t is the proper time in the unbarred frame. From the

above we can identify the transformation rule for the vector components under the disformal

transformation, that is

k̄t = α−1kt and k̄i = ki. (18)

The covariant components transform according to

k̄t = αkt and k̄i = ki. (19)

A straightforward consequence is that the sound speed is seemingly modified, i.e.

c−1
s ≡ dkt

d|k| = α
dk̄t

d|k| = αc−1
s,ap , (20)

where cs,ap is the apparent sound speed, similar to the case of a scalar wave equation.

Actually, this change in the sound speed is an artifact of working with time t not proper to

the barred frame. With the proper time t̄ in the barred frame given by (11), we can rewrite

k2 as

k2 = −(k̄t̄)2 + gijk̄
ik̄j , (21)

where k̄t̄ = αk̄t. Notice that the physical sound speed is frame independent as well, namely

c̄−1
s ≡ dk̄t̄

d|k| = c−1
s . (22)

Before ending this subsection, let us stress again that we consider passive disformal trans-

formations throughout this paper unless otherwise stated.

B. Non-linear considerations

In this subsection we shall extend the previous discussion by taking into account the

spatial dependence of the scalar field, which leads to the spatial dependence of the metric
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and the disformal factor. Here we assume that the perturbation expansion is valid, i.e., we

assume the existence of a spatially homogeneous background solution on which the physical

spacetime can be constructed. Note that, however, the perturbation can be fully nonlinear.

In this case, it is crucial to require the existence of a comoving slicing, i.e. the normal vector

of constant φ hyper-surfaces is assumed to be time-like everywhere, which ensures that time

is the only component stretched by a disformal transformation. Even so, there is still a

spatial dependence of the disformal factor through X due to the fluctuations of the metric.

Under this assumption, the previous discussion can be generalized, in practice, by in-

troducing a local Lorentz frame where the spatial dependence of the disformal factor can

be neglected since the scalar field can be considered spatially homogeneous in this frame.

Consequently, the essential effect due to a disformal transformation is a mere change of the

local Lorentz lapse function, which in turn can be absorbed by a redefinition of the local

time coordinate. Hence, it implies the equivalence between a disformal transformation and a

rescaling of time. In this way, the previous discussion for the background can be generalised

a priori to include non-linear perturbations without any difficulty.

III. ACTION INVARIANCE

Thus far, we have shown that at the metric level a disformal transformation is equivalent

to rescaling time. The next point to deal with is to show whether this expectation holds at

the action level for gravitational and matter fields. Before going into details, let us clarify

the notation. We start from a metric ḡµν , which we refer to it as the barred frame, and we

consider the change of the action under a passive disformal transformation, that is we re-

express the action in terms of the disformally related metric gµν , which we call the unbarred

frame. We shall do the same procedure for all fields. In the next subsection we consider the

Einstein-scalar action in the (3+1)-decomposition including nonlinear cosmological pertur-

bations. Afterwards, we consider the action for several kinds of matter fields in the same

decomposition of the metric.
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A. Einstein-scalar action

Let us address the disformal transformation of the gravitational action, for the sake of

simplicity the Einstein-Hilbert action with a canonical scalar field. At the end of this section

we clearly show that the same procedure applies to its scalar-tensor theory extensions. For

this purpose, a crucial point is to work in the comoving, or the uniform φ slicing (δφ = 0)

which ensures that only the time derivative of the scalar field plays a role in the disformal

transformation as no perturbations of the scalar field are present on this slicing.[? ] It is

appropriate to work within the (3+1)-decomposition of the unbarred/barred metrics which

are given by

ds2 = −N2(t,x)dt2 + hij(t,x)dx
idxj and ds̄2 = −N̄2(t,x)dt2 + hij(t,x)dx

idxj, (23)

where N , N̄ and hij are the unbarred/barred lapse and the spatial metric, respectively.[? ]

Note that we set to zero the shift vector, N̄ i = N i = 0, by choosing a particular set of spatial

coordinates. This fact will make the disformal transformation much clearer afterwards,

though one can include a non-vanishing shift vector without essential difficulties. In this

decomposition the action reads

Sg =
1

2

∫

d3xdtN̄
√
h
{

R(3) + K̄ijK̄
ij − K̄2 + N̄−2 (∂tφ)

2 − 2V (φ) + 2∇̄µ

(

n̄µ∇̄νn̄
ν − n̄ν∇̄νn̄

µ
)}

,

(24)

where (3)R, K̄ij and n̄µdx
µ = −N̄dt respectively are the spatial Ricci scalar, the extrinsic

curvature and the normal vector of the spatial hyper-surface. The extrinsic curvature and

the gradient of the normal vector given in terms of (23) read

Kij =
1
2N̄
∂thij , K̄ = hijK̄ij , (25)

and

∇̄µn̄ν = δ0µδ
i
νN̄,i + δiµδ

j
νK̄ij. (26)

In this way, we can explicitly express the action in terms of the N̄ and hij , i.e.

Sg =
1

2

∫

d3xdtN̄
√
h

{

R(3) + K̄ijK̄
ij − K̄2 + N̄−2 (∂tφ)

2 − 2V (φ)

+
2√
hN̄

∂t(
√
hK̄)− 2√

hN̄
∂i(

√
hhij∂jN̄)

}

, (27)
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where we have kept the last two total derivative terms as they contribute if a non-minimal

coupling is present.

Let us now perform a disformal transformation to the unbarred frame where the action

takes the form,

Sg =
1

2

∫

d3xdtαN
√
h

{

R(3) + α−2
(

KijK
ij −K2 +N−2 (∂tφ)

2)− 2V (φ)

+
2√
hαN

∂t(
√
hα−1K)− 2√

hαN
∂i

(√
hhij∂j(αN)

)

}

,

(28)

where we used the fact that N̄(t, xi) = α(φ,X)N(t, xi) from Eq. (3) and that Kij =
1
2N
∂thij.

At this point, we have to be careful due to the hidden dependence of the old lapse in the

disformal factor, i.e.

α(φ,X) = α(t, N) = α(t, xi), (29)

which does not allow us to do a straightforward time redefinition. However, we can split the

lapse and disformal factor into the background and the perturbed values. In our notation

they are defined by

N(t, xi) = en(t,x
i) and α(t, xi) = α0(t)e

σ(t,xi), (30)

where α0(t) is the background value of the disformal factor which is only a function of time.

Likewise, the barred lapse is decomposed by N̄(t, xi) = α0(t)e
n̄(t,xi). Note that thanks to this

decomposition we can absorb the background disformal transformation in a time redefinition

(11) given by

dt̄ = α0(t)dt. (31)

As a result, physics is invariant at the background level. It should be noted that this is valid

as long as perturbation theory applies.

c. Implications for cosmological perturbations. For simplicity we do not consider a non-

minimal coupling here and, therefore, we drop the total derivative terms in (28). In this

way, the action in the unbarred frame is now given by

Sg =
1

2

∫

d3x dt̄
√
h en(t,x

i)+σ(t,xi)

{

R(3) + e−2[n(t,xi)+σ(t,xi)]
(

EijE
ij −E2 + (∂t̄φ)

2
)

− 2V (φ)

}

,

(32)
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where we defined Eij ≡ 1
2
∂t̄hij and E = hijEij , following the notation of Maldacena [66], so

that every quantity is expressed in terms of the new time t̄ but for the perturbed lapse n(t, xi)

and the perturbed disformal factor σ(t, xi). We deliberately kept the old time dependence in

the latter for the reason shown below. In the Hamiltonian formalism, the lapse is a Lagrange

multiplier and, hence, a redefinition of it has no effect in the dynamics. For this reason, let

us redefine the lapse so that it absorbs the perturbed disformal factor, i.e.

n(t, xi) + σ(t, xi) = n̄(t, xi). (33)

In terms of this lapse, the Hamiltonian constraint is given by

R(3) − e−2n̄(t,xi)
[

EijE
ij −E2 + (∂t̄φ)

2
]

− 2V (φ) = 0, (34)

which at the background level has the same solution as (24) but given in terms of the

redefined time t̄. Due to this fact, the perturbed barred lapse must be exactly equal to the

unbarred one but expressed in terms of the redefined time t̄, in other words

n̄(t, xi) = n(t̄, xi). (35)

Consequently, the action (32) takes exactly the same form as (24) but in terms of the

redefined time t̄.

We may go further and consider a non-minimal coupling or a Horndeski-type Lagrangian.

The lapse N is always accompanied by a factor α which at the background level is successfully

absorbed by the time redefinition and at the perturbation level gives rise to a factor en̄(t,x
i).

For example, consider one of the total derivative terms in (28) which in presence of a non-

minimal coupling gives a non-trivial contribution to the action as

Sg ⊃
∫

d3xdt αN
√
hΩ(φ,X)

1√
hαN

∂t(
√
hα−1K), (36)

where Ω(φ,X) is the non-minimal coupling. Absorbing the background value of the disformal

function and integrating by parts we are led to

Sg ⊃ −
∫

d3xdt̄
√
h e−n̄(t,xi)E ∂t̄Ω, (37)

where the factor X changes as well according to

X =
1

2α2N2
(∂tφ)

2 =
e−2n̄(t,xi)

2
(∂t̄φ)

2. (38)
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In this way, the function n̄(t, xi) appears exactly in the same place where the original lapse

n(t, xi) is in the original action (24). The only difference is the time coordinate t̄ which is

used in any other variables except for the perturbed lapse, which gives us no other choice

but to conclude that n̄(t, xi) = n(t̄, xi).

In summary, a cosmological disformal transformation in the comoving, or the uniform φ

slicing is equivalent to a rescaling of the time coordinate even at higher orders in perturbative

expansion. Therefore, as long as perturbation theory is valid, cosmological perturbations

are invariant under a disformal transformation. This result is in agreement with [56–58]

where it was found that scalar and tensor power spectra are frame independent at leading

order in the perturbation.

B. Towards a Horndeski Lagrangian

Once we know how the gravitational action transforms, it is appropriate to take a look

at the resulting Horndeski-type action if we stick to the original time, i.e., without rescaling

the time coordinate. The beyond-Horndeski or GLPV Lagrangian can be written in terms

of geometrical quantities [48–50] and it consists of the following four terms:

L2 = A2(φ,X), (39)

L3 = A3(φ,X)K, (40)

L4 = A4(φ,X)R(3) +B4(φ,X)(KijK
ij −K2), (41)

L5 = A5(φ,X)

(

R
(3)
ij K

ij − R(3)K

2

)

+B5(φ,X)
(

K3 − 3KKijK
ij + 2KijK

ikKj
k

)

. (42)

The GLPV Lagrangian reduces to the Horndeski Lagrangian when the functions B4 and B5

are respectively related to A4 and A5 by

B4(φ,X) = A4 − 2XA4,X and B5(φ,X) = −1

2
XA5,X . (43)

A glance at the disformally transformed action in terms of the original time (28) tells us

that the existence of an Einstein frame from the Horndeski theory point of view is closely

related to the absence of the term L5. In addition, we can identify the following terms for

a cosmological background with a canonical scalar field with a potential:

A2(φ,X) = α−1X − αV , A3(φ,X) = 0 , A4(φ,X) = α and B4(φ,X) = α−1, (44)
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where we remind the reader that α(φ,X) =
√

1− 2XF (φ,X). The first condition in (43),

which a Horndeski Lagrangian must satisfy, implies that the disformal factor must fulfil

α−1 = α− 2Xα,X , (45)

which means F (φ,X) = F (φ). As a result, only a field dependent disformal transformation

leads us to a Horndeski Lagrangian. This is also pointed out by Bettoni and Liberati in [54]

with a general treatment. In other words, a general disformal transformation of the Einstein-

scalar theory does not satisfy the condition that the field equations are at most second order

in time derivatives. This implies the existence of higher time derivatives and hence of

Ostrogradsky ghosts. Nevertheless, despite the apparent appearance of Ostrogradsky ghosts

for a X dependent disformal transformation, no real ghost should actually be present as the

theory in the transformed frame is equivalent to the healthy Einstein-scalar theory. This

is discussed by Zumalacárregui and García-Bellido in [53] where they show the existence of

hidden constraints. We leave its application to cosmology for future work.

C. Matter action

Now let us consider matter fields. We work under the same decomposition of the metric

given by (23) but only considering the background dynamics. As explained in section IIB,

the generalisation to include perturbations is straightforward.

d. Scalar field. Let us start with a scalar field χ with mass m whose action, in the

barred frame, is given by

S = −1

2

∫

d4x
√−ḡ

(

ḡµν∂µχ∂νχ+m2χ2
)

, (46)

which in terms of the barred metric (23) yields

S =
1

2

∫

d3x dtN̄
√

h̄
{

N̄−2(∂tχ)
2 − h̄ij∂iχ∂jχ−m2χ2

}

. (47)

By means of a disformal transformation (3) we find that the action in the unbarred frame

reads

S =
1

2

∫

d3x dt αN
√
h
{

N−2α−2(∂tχ)
2 − hij∂iχ∂jχ−m2χ2

}

, (48)

where we used that N̄(t) = α(t)N(t). Note that one may argue that the sound speed in the

unbarred frame is modified compared to that in the barred frame. However, there is a factor
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α in front of every dt which can be successfully absorbed by the time redefinition (11) that

leads us to

S =
1

2

∫

d3x dt̄N
√
h
{

N−2(∂t̄χ)
2 − hij∂iχ∂jχ−m2χ2

}

, (49)

which is the action one would expect in the unbarred frame (23) with the relabelling t→ t̄.

In other words, if we denote a solution of the field equation in the barred frame by χ̄(t), the

corresponding solution in the unbarred frame χ(t) is related to it as χ(t̄) = χ̄(t).

e. Electromagnetic field. Let us move towards the disformal transformation of the elec-

tromagnetic field. It is known that the Maxwell field is conformally invariant [67] but in

general it may not be disformally invariant. This is an important point since observations

mainly use photons. However, we want to stress that as long as matter is universally cou-

pled to a unique metric, no issue arises (see appendix B for an example). The action for the

electromagnetic field Aµ in the barred frame reads

S = −1

4

∫

d4x
√−ḡḡαµḡβνFαβFµν , (50)

where Fαβ = ∂αAβ − ∂βAα. We expand the action (50) in terms of the barred metric (23)

to explicitly split the time components from the spatial ones, i.e.

S =
1

4

∫

d3x dt N̄
√

h̄
(

2N̄−2h̄ijFtiFtj − h̄ijh̄klFikFjl

)

, (51)

and perform the disformal transformation (3) to obtain

S =
1

4

∫

d3x dtαN
√
h
(

2α−2N−2hijFtiFtj − hijhklFikFjl

)

. (52)

Note that Fti = ∂tAi−∂iAt and, therefore, in order to successfully absorb the α factor in the

time redefinition (11) the time component of the electromagnetic field must be transformed

as

At̄ = α−1At . (53)

The resulting action is given by

S =
1

4

∫

d3x dt̄N
√
h
(

2N−2hijFt̄iFt̄j − hijhklFikFjl

)

, (54)

where we have used the fact that ∂iAt̄ = α−1∂iAt for a spatially homogeneous α = α(t).

Again this action is the one for the electromagnetic field in the metric (23) but labelled in

terms of t̄.
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The redefinition of the electromagnetic field given by equation (53) is not surprising

within the differential form approach, where the 1-form is given by

A = Aµdx
µ = Atdt+ Aidx

i

= Atα
−1dt̄+ Aidx

i = At̄dt̄+ Aidx
i. (55)

Thus, the 1-form A is invariant under cosmological disformal transformations.

f. Dirac field. For the sake of completeness let us quickly consider the disformal trans-

formation of a Dirac field, e.g. an electron. The action for a fermion field Ψ with mass m

and charge e in curved space-time is given by [68]

S = − i

2

∫

d4x
√
−ḡ

(

Ψ̆γ̄µD̄µΨ+mΨ̆Ψ
)

, (56)

where Ψ̆ = Ψ†γ0 is the adjoint spinor, D̄µ = ∂µ + ieAµ + Γ̄µ and the tetrad components ēµ(a)

are defined by

ηab = ēµ(a)ē
ν
(b)ḡµν , (57)

which relate the gamma matrices and the spin connection in curved space-time to the gamma

matrices in flat space-time, i.e. γ̄µ = γaēµ(a) and Γ̄µ = 1
8
[γa, γb]ēλ(a)∇̄µē(b)λ. In the (3+1)-

decomposition the action reads

S = − i

2

∫

d3x dt N̄
√

h̄
(

Ψ̆γ0N̄−1D̄tΨ+ Ψ̆γ̄iD̄iΨ+mΨ̆Ψ
)

, (58)

where ēt(a) = δ0(a)N̄
−1 and ēi(a)ē

j

(b) = δabh̄
ij so that γ̄t = γ0N̄−1. The effect of the disformal

transformation (3) can be summarised as follows. The tetrad is modified according to (57),

ēt(a) = et(a)α
−1 and ēi(a) = ei(a), (59)

which yields a similar transformation for the gamma matrices,

γ̄t = γtα−1 , γ̄i = γi. (60)

The modification of the spin connection Γ̄µ is slightly more involved. Essentially, there is a

contribution not only from the transformation of the tetrad ēλ(a) but also from its covariant

derivative ∇̄µē(b)λ. The latter is due to the change of the Christoffel symbols, which are

defined by Γλ
µν = 1

2
ḡλσ (∂µḡσν + ∂ν ḡµσ − ∂σḡµν). Specifically, the non-vanishing Christoffel
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symbols for the metric (10) which are affected by the disformal transformation are explicitly

given by

Γ̄t
tt =

1
2
N̄−2∂tN̄

2 , Γ̄i
tt =

1
2
h̄ij∂jN̄

2 ,

Γ̄t
it =

1
2
N̄−2∂iN̄

2 , Γ̄t
ij =

−1
2
N̄−2∂th̄ij ,

Γ̄i
jt =

1
2
h̄ik∂th̄kj ,

(61)

where the spatial component Γ̄i
jk is not modified under such a disformal transformation.

This result greatly simplifies the expression for the spin connection. The time component

Γ̄t is proportional to

ēλ(a)∇̄tē(b)λ = ēt(a)∂tē(b)t + ēi(a)∂tē(b)i − ēt(a)Γ̄
t
ttē(b)t − ēi(a)Γ̄

j
tiē(b)j − ēt(a)Γ̄

i
ttē(b)i − ēi(a)Γ̄

t
tiē(b)t ,

(62)

and the spatial component Γ̄j is proportional to

ēλ(a)∇̄j ē(b)λ = ēt(a)∂j ē(b)t + ēi(a)∂j ē(b)i − ēt(a)Γ̄
t
jtē(b)t − ēi(a)Γ̄

k
jiē(b)k − ēi(a)Γ̄

t
ij ē(b)t − ēt(a)Γ̄

i
jtē(b)i .

(63)

The dependence of Γµ on α after the disformal transformation (3) can be seen from the

above two equations. Let us first look at the time component, i.e.

Γ̄t =
1

8
[γa, γb] ēλ(a)∇̄tē(b)λ. (64)

From equation (62) we see that any term containing a time derivative, namely the first four

terms on the right hand side of it, has no α dependence. In particular, the ∂tα term arising

from ∂tē(b)t is canceled with that coming from the Γ̄t
tt term. The last two terms on the right

hand side contain spatial derivatives and each spatial derivative is accompanied by a factor

α. Next let us move to the spatial component, i.e.

Γ̄j =
1

8
[γa, γb] ēλ(a)∇̄j ē(b)λ. (65)

From (63) we realise that the first four terms on the right hand side of it which contain

spatial derivatives has no α dependence. On the other hand, those which contain time

derivatives, i.e. the last two terms, have a factor α−1 for each time derivative. At the end

of the day, we can schematically express the effect of a disformal transformation on the spin

connection as

Γ̄t[∂t, ∂i] = Γt[∂t, α∂i] = αΓt[α
−1∂t, ∂i] and Γ̄i[∂t, ∂i] = Γi[α

−1∂t, ∂i], (66)
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where Γµ = 1
8
[γa, γb] eλ(a)∇µe(b)λ is the spin connection in the unbarred frame. It is clear

now that the factor α−1 in N̄−1 in front of D̄t in (58) cancels the factor α from Γ̄t, and the

factor α−1 associated with each ∂t is successfully absorbed in the time redefinition (11). As

a result, the disformal transformation of the full action can be rewritten as

S = − i

2

∫

d3x dt̄N
√
h
(

Ψ̆γ0N−1Dt̄Ψ+ Ψ̆γiDiΨ+mΨ̆Ψ
)

, (67)

where Dt̄ = ∂t̄ + ieAt̄ + Γt̄, Γt̄ ≡ Γt[∂t̄, ∂i] and we have used the previous result for the

electromagnetic field (53). In this form, the disformal invariance is certainly manifest. Lastly,

we note that neither the charge e nor the mass m is affected by a disformal transformation.

IV. FRAME INDEPENDENCE

In this section, we shall consider the system, gravity plus matter, as a whole. We assume

that matter is universally coupled to ḡµν , which we call the matter frame, and is related by a

disformal transformation to gµν which we call the gravitational frame. For example, we may

have the Einstein-Hilbert action for the metric gµν . Thus, the weak equivalence principle is

preserved. This is in contrast with [42, 43] where different disformal couplings for matter

and radiation are considered.

A. Gravity plus matter

In the preceding section we explicitly showed the invariance under disformal transfor-

mations field by field. In this subsection, we consider the whole system. For example, the

simplest and commonly used action [34–36, 39–43] is given by

S =

∫

d4x
{√

−g
(

R[g] + Lφ(g, φ)
)

+
√
−γLm(γ, ψI)

}

, (68)

where the gravitational sector is the Einstein-Hilbert action in terms of the metric g plus

and a scalar field φ,[? ] the latter being responsible for a disformal coupling with matter

fields ψI through

γµν = gµν +H(φ,X)φ,µφ,ν . (69)
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Under the cosmological assumption we adopt throughout this paper, this amounts to the

replacement of the lapse function in the matter sector by

N2
γ = N2

g

(

1− 2XH(φ,X)
)

≡ N2
gβ

2(φ,X) . (70)

One may wonder whether the system is still disformally invariant as a whole. Let us show

that this is the case.

Let us perform a disformal transformation given by

gµν = ḡµν + F (φ, X̄)φ,µφ,ν , (71)

which introduces a new lapse function related to the original one by

N2
g = N̄2

g (1− 2XF (φ, X̄)) ≡ N̄2
gα

2(φ, X̄) , (72)

where X̄ = (∂tφ)
2/2N̄2

g . As before, we introduce a new time coordinate by dt̄ = α0(t)dt and

absorb the perturbation of α into N̄g by redefining it. This means

Ngdt = N̄gαdt = en̄gα0(t)dt = en̄gdt̄ , (73)

where we used equation (30) to define en̄g ≡ N̄ge
σ(t,xi). To apply the passive disformal

transformation to the action we first express the matter sector in terms of Ng,

S =

∫

d3x dtNg

√
h
{

R[g] + Lφ(g, φ) + β(φ,X)Lm

(

h, (βNg)
−1∂tψI , · · ·

)

}

. (74)

Using (73), we can then rewrite the action in terms of the barred time as

S =

∫

d3x dt̄N̄g

√
h
{

R[ḡ] + Lφ(ḡ, φ) + β(φ,Xḡ)Lm

(

h, (βN̄g)
−1∂t̄ψI , · · ·

)

}

, (75)

where it should be noted that Xḡ is in fact equal to X but rewritten in terms of barred

quantities,

Xḡ ≡
2

N̄2
g

(

∂φ

∂t̄

)2

= X . (76)

Once the disformal transformation is done we can go back to the original form of the action

but in terms of barred quantities, i.e.

S =

∫

d3x dt̄
{√

−ḡ
(

R[ḡ] + Lφ(ḡ, φ)
)

+
√
−γ̄Lm(γ̄, ψI)

}

, (77)

by defining γ̄ through N̄γ ≡ N̄gβ(φ,Xḡ) or alternatively

γ̄µν = ḡµν +H(φ,Xḡ)φ,µφ,ν , (78)

which is identical to the original relation (69) but in terms of barred quantities.
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B. Propagation speed of gravitons and photons

One effect that we may be able to detect which is not present in the case of a conformal

coupling was already pointed out by Bekenstein [26]. It was argued that gravitons may

travel faster or slower than light, depending on the sign of the disformal factor (1). This

is true when matter and gravity are expressed in terms of two different metrics which are

related by a disformal transformation like (69). However, as we have seen, we should keep in

mind that the disformal transformation itself does not change the propagation speed. The

difference in the propagation speed exists independent of frames.

To illustrate this fact let us consider the previous action given by

S =

∫

d4x
{√−g

(

R[g] + Lφ(g, φ)
)

+
√−ḡLm(ḡ, ψI)

}

, (79)

where the propagation speed of gravitons may be different from that of photons, for example,

due to the disformal coupling. Note that we renamed γ as ḡ in order to be consistent with

notation in section III. Let us express the gravitational sector in terms of the matter metric

as

S =

∫

d4x
{

√

−g[ḡ]
(

R[g[ḡ]] + Lφ(g[ḡ], φ)
)

+
√
−ḡLm(ḡ, ψI)

}

, (80)

as given by the disformal transformation from (27) to (28), interchanging the roles of the

barred and unbarred metrics (see appendix A). This gives rise to a Horndeski action schemat-

ically given by

S =

∫

d4x
√
−ḡ

{

Lhorn(ḡ, K̄, R̄, φ, X̄) + Lm(ḡ, ψI)
}

. (81)

The interpretation in this form is different. Now, the relative difference of the propagation

speed between gravitons and photons is not due to the disformal coupling of matter but due

to a modification of gravity. The resulting Horndeski action in terms of the matter metric

has a tensor propagation speed given by cT = α−1.[? ] However, we emphasize that this is

not an observable feature in the primordial power spectrum [56], which may be understood

by the fact that the coupling in the matter sector is irrelevant during inflation.

The above discussion has an important implication. It means that as long as the tensor

power spectrum is concerned, the tensor propagation speed may be always set to unity by a

disformal transformation, a definition for the Einstein frame (at least perturbatively). This
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consequence has been also discussed by Creminelli et al. [56]. In any case, a disformal cou-

pling with matter should be in principle observable if we could measure the relative difference

in the propagation speed between gravitons and matter, which is frame independent.

In this sense, if one is interested in the causal structure of the whole system, by means of a

disformal transformation one may go to the frame where the propagation speed of the fastest

species (e.g. either gravitons or photons) is equal to unity, i.e. equal to the geometrical factor

c which defines the causal structure. In this frame, any other field will have a propagation

speed less than unity and hence the standard causal structure is preserved.

V. CONCLUSIONS

Disformal transformations play an important role as a generalization of conformal trans-

formations. The latter is widely used in modifications of gravity as well as in cosmology and

it has been proven to leave observable physics invariant. In this paper, we focused on pure

disformal transformations, i.e. those without any transformation in the conformal factor.

Further we assumed a cosmological setting, i.e. under the assumption that a scalar field

responsible for the disformal transformation is regular everywhere and its derivative is time-

like, which allows us to choose the time slicing on which the scalar field is homogeneous.

Any posterior conformal transformation can be independently done in general. Our main

result is that such a disformal transformation, which we call a cosmological disformal trans-

formation, is equivalent to a rescaling of the time coordinate, which is valid full non-linearly,

provided that perturbation theory is applicable. From this result, it follows that observable

physics must be invariant under cosmological disformal transformations. In this sense, we

extended the work for cosmological perturbations in the literature [57, 58] which showed the

disformal invariance at leading order in the perturbation. We placed emphasis on the fact

that neither the causal structure, propagation speed nor any other property of the fields is

affected by a disformal transformation itself, although it may seem so if an appropriate time

is not used.

The physical invariance under disformal transformations is an interesting result. It may

help us to better understand Horndeski or Galileon theory. It may simplify calculations by

going to the frame where the speed of sound of the tensor modes is equal to unity, i.e. to

the Einstein frame. For example, if applied to inflation, the subset of Horndeski theory with
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coefficients (44) satisfying (45) is observationally indistinguishable from the corresponding

Einstein-Hilbert action with a canonical scalar field with a potential.

On the other hand, if applied to dark energy where gravity and matter may have different

disformal couplings, there are strong constraints from the solar system experiments due to

the appearance of a fifth force [39]. Nevertheless, a slowly rolling field may be able to pass

those constraints as the disformal transformation depends on its first time derivative [40].

Another observationally distinguishable signature is the relative difference of the propagation

speed between gravitons and photons. This may become very important in the near future

when gravitational waves from distant sources will begin to be detected.

In summary, observable physics is invariant under disformal transformations, when ap-

plied to cosmology. We leave as future work the study of the appearance of false Ostro-

gradsky ghosts when the conformal or disformal factors include a kinetic term dependence,

where hidden constraints should arise [53].
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APPENDICES

Appendix A: Inverse disformal transformation

In the main text we considered a disformal transformation g → ḡ from the passive point

of view. Namely we start from the barred frame ḡ = ds̄2 and express the barred quantities in

terms of the quantities in the unbarred frame ḡ = ḡ(g). Here we briefly discuss the inverse

case where we start from a model in the unbarred frame with the metric g and perform

an inverse passive disformal transformation to work with ḡ. In other words, we begin with

g = ds2 and express the unbarred quantities in terms of the barred one as g = g(ḡ).

Let us fix that the barred metric is given by

ds̄2 = −dt2 + gijdx
idxj, (A1)

namely we want to work with the proper cosmic time (N̄ = 1) of ḡµν . By means of a

disformal transformation,

ds2 = gµνdx
µdxν = (ḡµν − F (φ,X)φ,µφ,ν)dx

µdxν , (A2)

the unbarred line element reads

ds2 = ds̄2 + (1− α−2(t))dt2 = −α−2(t)dt2 + gijdx
idxj . (A3)

This time, the suitable proper time redefinition in the unbarred frame is given by

dt̃ = α−1(t)dt (A4)

which leads us to

ds2 = −dt̃2 + gijdx
idxj. (A5)

In this form, the metric components are the same as those in the barred frame but with a

rescaling of time t → t̃. To summarize, starting from an action with the unbarred metric

gµν and rewriting it in terms of the barred metric ḡµν is equivalent to the rescaling of time

from t to t̃, i.e. S[g(ḡ); t] = S[ḡ, t̃].
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Appendix B: Example of an observable: Redshift

Here we examine the frame independence of the measured redshift as a simple example

of an observable quantity. The main point is that once we are given the action of a system,

we can compute observable quantities in any frame and obtain the same result.

Let us assume that the background in the gravitational frame, where the gravitational

action is given by the Einstein-Hilbert one, is well described by a flat FLRW background,

ds2 = a2(η)
(

−dη2 + dx2
)

, (B1)

where a(η) is the scale factor as a function of the conformal time defined by dη = dt/a. We

assume the matter is coupled to a disformally transformed metric, given by the transforma-

tion (3), which we call the matter frame metric. It is expressed as

ds̄2 = −a2(η)α2(η)dη2 + a2(η)dx2 = ā2(η̄)
(

−dη̄2 + dx2
)

, (B2)

where ā(η̄) = a(η(η̄)) and in the last step we used the time redefinition dη̄ = αdη. Naturally,

photons follow null geodesics of ḡµν , i.e. ds̄2 = 0. The energy of a photon with four-

momentum k̄µ = (k̄η, k̄) measured by a comoving observer with four-momentum ūµ =

(−ā(η̄), 0) is given by

Ē = −k̄µūµ = ā(η̄)k̄η̄. (B3)

One of the important points to be remembered when performing a passive disformal trans-

formation is that scalar quantities are invariant under such a transformation. This applies,

in particular, to the above energy measured by a comoving observer. Alternatively, the same

conclusion may be obtained by considering the transformation rules for a vector (18), which

implies k̄η = α−1kη. We can compute the energy in the unbarred frame as

E = −kµuµ = a(η)kη. (B4)

Now since we have k̄η̄ = αk̄η = kη, the measured energy is frame independent, Ē = E .

Consequently the redshift, which is defined as the ratio between the measured photon energy

at emission and observation,

1 + z ≡ Eemit/Eobs =
a(ηobs)

a(ηemit)
=

ā(η̄obs)

ā(η̄emit)
, (B5)
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is frame independent as well. Once more the result is consistent with the fact that a cosmo-

logical pure disformal transformations is equivalent to a rescaling of the time.

Finally, note that the physical speed of light is the same in both frames for a matter

observer, as long as matter and radiation are universally coupled to a single metric. This

can been easily seen from the condition ds̄2 = 0 which implies that the dispersion relation is

k̄η̄ = |k̄| = kη. We can further extend this results by noting that since the observed redshift

is frame independent and the scale factor is not affected by the disformal transformation, the

luminosity distance is frame independent as well. This is in agreement with the work by Brax

et al. [43] when matter is universally coupled. Other possible imprints in the Cosmological

Microwave Background (CMB), such as a modification of the distribution function, are

considered in [42], where it is found that if matter and radiation are universally coupled to

the disformal metric there is no observable difference in the CMB.

[1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified gravity and cosmology, Physics

Reports 513 (2012), no. 1 1–189, [arXiv:1106.2476].

[2] P. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Banday,

R. Barreiro, et al., Planck 2015 results. xiii. cosmological parameters, arXiv:1502.01589.

[3] P. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Banday,

R. Barreiro, N. Bartolo, E. Battaner, et al., Planck 2015 results. xiv. dark energy and

modified gravity, arXiv:1502.01590.

[4] V. Sahni, A. Shafieloo, and A. A. Starobinsky, Model-independent evidence for dark energy

evolution from baryon acoustic oscillations, The Astrophysical Journal Letters 793 (2014),

no. 2 L40, [arXiv:1406.2209].

[5] P. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi,

M. Ballardini, A. Banday, R. Barreiro, et al., Planck 2015. xx. constraints on inflation,

arXiv:1502.02114.

[6] C. Brans and R. H. Dicke, Mach’s principle and a relativistic theory of gravitation, Physical

Review 124 (1961), no. 3 925.

[7] Y. Fujii, K.-i. Maeda, et al., The scalar-tensor theory of gravitation. Cambridge University

Press, 2003.

26

http://arxiv.org/abs/1106.2476
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1502.01590
http://arxiv.org/abs/1406.2209
http://arxiv.org/abs/1502.02114


[8] V. Faraoni, Cosmology in scalar-tensor gravity, vol. 139. Springer, 2004.

[9] B. Whitt, Fourth-order gravity as general relativity plus matter, Physics Letters B 145

(1984), no. 3 176–178.

[10] A. Jakubiec and J. Kijowski, On theories of gravitation with nonlinear lagrangians, Physical

Review D 37 (1988), no. 6 1406.

[11] H. A. Kastrup, On the advancements of conformal transformations and their associated

symmetries in geometry and theoretical physics, Annalen der Physik 17 (2008), no. 9-10

631–690, [arXiv:0808.2730].

[12] N. Makino and M. Sasaki, The density perturbation in the chaotic inflation with non-minimal

coupling, Progress of Theoretical Physics 86 (1991), no. 1 103–118.

[13] V. Faraoni and S. Nadeau, (pseudo) issue of the conformal frame revisited, Physical Review D

75 (2007), no. 2 023501, [gr-qc/0612075].

[14] N. Deruelle and M. Sasaki, Conformal equivalence in classical gravity: the example of

"veiled" general relativity, in Cosmology, Quantum Vacuum and Zeta Functions, pp. 247–260.

Springer, 2011. arXiv:1007.3563.

[15] J.-O. Gong, J.-c. Hwang, W. I. Park, M. Sasaki, and Y.-S. Song, Conformal invariance of

curvature perturbation, Journal of Cosmology and Astroparticle Physics 2011 (2011), no. 09

023, [arXiv:1107.1840].

[16] J. White, M. Minamitsuji, and M. Sasaki, Curvature perturbation in multi-field inflation with

non-minimal coupling, Journal of Cosmology and Astroparticle Physics 2012 (2012), no. 07

039, [arXiv:1306.6186].

[17] R. Catena, M. Pietroni, and L. Scarabello, Einstein and jordan frames reconciled: A

frame-invariant approach to scalar-tensor cosmology, Physical Review D 76 (2007), no. 8

084039, [astro-ph/0604492].

[18] T. Chiba and M. Yamaguchi, Conformal-frame (in) dependence of cosmological observations

in scalar-tensor theory, Journal of Cosmology and Astroparticle Physics 2013 (2013), no. 10

040, [arXiv:1308.1142].

[19] T. Chiba and M. Yamaguchi, Extended slow-roll conditions and rapid-roll conditions, Journal

of Cosmology and Astroparticle Physics 2008 (2008), no. 10 021, [arXiv:0807.4965].

[20] L. Järv, P. Kuusk, M. Saal, and O. Vilson, Invariant quantities in the scalar-tensor theories

of gravitation, Phys. Rev. D 91 (Jan, 2015) 024041, [arXiv:1411.1947].

27

http://arxiv.org/abs/0808.2730
http://arxiv.org/abs/gr-qc/0612075
http://arxiv.org/abs/1007.3563
http://arxiv.org/abs/1107.1840
http://arxiv.org/abs/1306.6186
http://arxiv.org/abs/astro-ph/0604492
http://arxiv.org/abs/1308.1142
http://arxiv.org/abs/0807.4965
http://arxiv.org/abs/1411.1947


[21] G. Domènech and M. Sasaki, Conformal frame dependence of inflation, Journal of Cosmology

and Astroparticle Physics 2015 (2015), no. 04 022, [arXiv:1501.07699].

[22] S. Capozziello, S. Nojiri, S. Odintsov, and A. Troisi, Cosmological viability of f (r)-gravity as

an ideal fluid and its compatibility with a matter dominated phase, Physics Letters B 639

(2006), no. 3 135–143, [astro-ph/0604431].

[23] S. Nojiri and S. D. Odintsov, Modified f (r) gravity consistent with realistic cosmology: From

a matter dominated epoch to a dark energy universe, Physical Review D 74 (2006), no. 8

086005, [hep-th/0608008].

[24] F. Briscese, E. Elizalde, S. Nojiri, and S. Odintsov, Phantom scalar dark energy as modified

gravity: Understanding the origin of the big rip singularity, Physics Letters B 646 (2007),

no. 2 105–111, [hep-th/0612220].

[25] S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from f (r) theory to

lorentz non-invariant models, Physics Reports 505 (2011), no. 2 59–144, [arXiv:1011.0544].

[26] J. D. Bekenstein, Relation between physical and gravitational geometry, Physical Review D 48

(1993), no. 8 3641, [gr-qc/9211017].

[27] P. Brax, C. Burrage, and A.-C. Davis, Shining light on modifications of gravity, Journal of

Cosmology and Astroparticle Physics 2012 (2012), no. 10 016, [arXiv:1206.1809].

[28] M. Zumalacárregui, T. S. Koivisto, and D. F. Mota, Dbi galileons in the einstein frame: Local

gravity and cosmology, Physical Review D 87 (2013), no. 8 083010, [arXiv:1210.8016].

[29] N. Kaloper, Disformal inflation, Physics Letters B 583 (2004), no. 1 1–13, [hep-ph/0312002].

[30] T. S. Koivisto, Disformal quintessence, arXiv:0811.1957.

[31] M. Zumalacarregui, T. Koivisto, D. Mota, and P. Ruiz-Lapuente, Disformal scalar fields and

the dark sector of the universe, Journal of Cosmology and Astroparticle Physics 2010 (2010),

no. 05 038, [arXiv:1004.2684].

[32] C. van de Bruck and J. Morrice, Disformal couplings and the dark sector of the universe,

Journal of Cosmology and Astroparticle Physics 1504 (2015), no. 04 036,

[arXiv:1501.03073].

[33] M. Clayton and J. Moffat, A scalar-tensor cosmological model with dynamical light velocity,

Physics Letters B 506 (2001), no. 1 177–186, [gr-qc/0101126].

[34] J. Moffat, Bimetric gravity theory, varying speed of light and the dimming of supernovae,

International Journal of Modern Physics D 12 (2003), no. 02 281–298, [gr-qc/0202012].

28

http://arxiv.org/abs/1501.07699
http://arxiv.org/abs/astro-ph/0604431
http://arxiv.org/abs/hep-th/0608008
http://arxiv.org/abs/hep-th/0612220
http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/gr-qc/9211017
http://arxiv.org/abs/1206.1809
http://arxiv.org/abs/1210.8016
http://arxiv.org/abs/hep-ph/0312002
http://arxiv.org/abs/0811.1957
http://arxiv.org/abs/1004.2684
http://arxiv.org/abs/1501.03073
http://arxiv.org/abs/gr-qc/0101126
http://arxiv.org/abs/gr-qc/0202012


[35] J. Magueijo, New varying speed of light theories, Reports on Progress in Physics 66 (2003),

no. 11 2025, [astro-ph/0305457].

[36] J. Magueijo, Bimetric varying speed of light theories and primordial fluctuations, Physical

Review D 79 (2009), no. 4 043525, [arXiv:0807.1689].

[37] P. Brax and C. Burrage, Explaining the Proton Radius Puzzle with Disformal Scalars,

Phys.Rev. D91 (2015), no. 4 043515, [arXiv:1407.2376].

[38] N. Deruelle and J. Rua, Disformal transformations, veiled general relativity and mimetic

gravity, Journal of Cosmology and Astroparticle Physics 2014 (2014), no. 09 002,

[arXiv:1407.0825].

[39] J. Sakstein, Disformal theories of gravity: from the solar system to cosmology, Journal of

Cosmology and Astroparticle Physics 2014 (2014), no. 12 012, [arXiv:1409.1734].

[40] J. Sakstein, Towards viable cosmological models of disformal theories of gravity, Physical

Review D 91 (2015), no. 2 024036, [arXiv:1409.7296].

[41] T. S. Koivisto, D. F. Mota, and M. Zumalacárregui, Screening modifications of gravity

through disformally coupled fields, Physical review letters 109 (2012), no. 24 241102,

[arXiv:1205.3167].

[42] C. van de Bruck, J. Morrice, and S. Vu, Constraints on nonconformal couplings from the

properties of the cosmic microwave background radiation, Physical review letters 111 (2013),

no. 16 161302, [arXiv:1303.1773].

[43] P. Brax, C. Burrage, A.-C. Davis, and G. Gubitosi, Cosmological tests of the disformal

coupling to radiation, Journal of Cosmology and Astroparticle Physics 2013 (2013), no. 11

001, [arXiv:1306.4168].

[44] P. Brax and C. Burrage, Constraining disformally coupled scalar fields, Physical Review D 90

(2014), no. 10 104009, [arXiv:1407.1861].

[45] G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space,

International Journal of Theoretical Physics 10 (1974), no. 6 363–384.

[46] C. Deffayet, X. Gao, D. Steer, and G. Zahariade, From k-essence to generalised Galileons,

Phys.Rev. D84 (2011) 064039, [arXiv:1103.3260].

[47] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Generalized g-inflation with the most

general second-order field equations, Progress of Theoretical Physics 126 (2011), no. 3

511–529, [arXiv:1105.5723].

29

http://arxiv.org/abs/astro-ph/0305457
http://arxiv.org/abs/0807.1689
http://arxiv.org/abs/1407.2376
http://arxiv.org/abs/1407.0825
http://arxiv.org/abs/1409.1734
http://arxiv.org/abs/1409.7296
http://arxiv.org/abs/1205.3167
http://arxiv.org/abs/1303.1773
http://arxiv.org/abs/1306.4168
http://arxiv.org/abs/1407.1861
http://arxiv.org/abs/1103.3260
http://arxiv.org/abs/1105.5723


[48] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Essential building blocks of dark energy,

Journal of Cosmology and Astroparticle Physics 2013 (2013), no. 08 025, [arXiv:1304.4840].

[49] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Healthy theories beyond Horndeski, Phys.

Rev. Lett. 114 (2015), no. 21 211101, [arXiv:1404.6495].

[50] J. Gleyzes, D. Langlois, F. Piazza, , and F. Vernizzi, Exploring gravitational theories beyond

horndeski, Journal of Cosmology and Astroparticle Physics 2015 (2015), no. 02 018,

[arXiv:1408.1952].

[51] J. Gleyzes, D. Langlois, and F. Vernizzi, A unifying description of dark energy, International

Journal of Modern Physics D 23 (2014), no. 13 1443010, [arXiv:1411.3712].

[52] X. Gao, Unifying framework for scalar-tensor theories of gravity, Phys.Rev. D90 (2014),

no. 8 081501, [arXiv:1406.0822].

[53] M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to

matter to second-order scalar-tensor theories beyond the horndeski lagrangian, Physical

Review D 89 (2014), no. 6 064046, [arXiv:1308.4685].

[54] D. Bettoni and S. Liberati, Disformal invariance of second order scalar-tensor theories:

Framing the horndeski action, Physical Review D 88 (2013), no. 8 084020,

[arXiv:1306.6724].

[55] D. Bettoni and M. Zumalacárregui, Kinetic mixing in scalar-tensor theories of gravity, Phys.

Rev. D91 (2015) 104009, [arXiv:1502.02666].

[56] P. Creminelli, J. Gleyzes, J. Noreña, and F. Vernizzi, Resilience of the standard predictions

for primordial tensor modes, Physical review letters 113 (2014), no. 23 231301,

[arXiv:1407.8439].

[57] M. Minamitsuji, Disformal transformation of cosmological perturbations, Physics letters B

737 (2014) 139–150, [arXiv:1409.1566].

[58] S. Tsujikawa, Disformal invariance of cosmological perturbations in a generalized class of

Horndeski theories, Journal of Cosmology and Astroparticle Physics 1504 (2015) 043,

[arXiv:1412.6210].

[59] Y. Watanabe, A. Naruko, and M. Sasaki, Multi-disformal invariance of non-linear primordial

perturbations, Europhys. Lett. 111 (2015) 39002, [arXiv:1504.00672].

[60] H. Motohashi and J. White, Disformal invariance of curvature perturbation,

arXiv:1504.00846.

30

http://arxiv.org/abs/1304.4840
http://arxiv.org/abs/1404.6495
http://arxiv.org/abs/1408.1952
http://arxiv.org/abs/1411.3712
http://arxiv.org/abs/1406.0822
http://arxiv.org/abs/1308.4685
http://arxiv.org/abs/1306.6724
http://arxiv.org/abs/1502.02666
http://arxiv.org/abs/1407.8439
http://arxiv.org/abs/1409.1566
http://arxiv.org/abs/1412.6210
http://arxiv.org/abs/1504.00672
http://arxiv.org/abs/1504.00846


[61] J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, Effective Theory of Interacting Dark

Energy, Journal of Cosmology and Astroparticle Physics 1508 (2015), no. 08 054,

[arXiv:1504.05481].

[62] A. H. Chamseddine, V. Mukhanov, and A. Vikman, Cosmology with mimetic matter, Journal

of Cosmology and Astroparticle Physics 2014 (2014), no. 06 017, [arXiv:1403.3961].

[63] A. H. Chamseddine and V. Mukhanov, Mimetic dark matter, Journal of High Energy Physics

2013 (2013), no. 11 1–5, [arXiv:1308.5410].

[64] G. F. Ellis and J.-P. Uzan, c is the speed of light, isn’t it?, American journal of physics 73

(2005), no. 3 240–247, [gr-qc/0305099].

[65] G. F. Ellis, Note on varying speed of light cosmologies, General Relativity and Gravitation 39

(2007), no. 4 511–520, [astro-ph/0703751].

[66] J. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary

models, Journal of High Energy Physics 2003 (2003), no. 05 013, [astro-ph/0210603].

[67] R. M. Wald, General relativity. University of Chicago press, 2010.

[68] N. D. Birrell and P. C. W. Davies, Quantum fields in curved space. Cambridge university

press, 1984.

31

http://arxiv.org/abs/1504.05481
http://arxiv.org/abs/1403.3961
http://arxiv.org/abs/1308.5410
http://arxiv.org/abs/gr-qc/0305099
http://arxiv.org/abs/astro-ph/0703751
http://arxiv.org/abs/astro-ph/0210603

	Cosmological disformal invariance
	Abstract
	I Introduction 
	II Pure disformal transformation
	A Cosmological background 
	B Non-linear considerations 

	III Action invariance 
	A Einstein-scalar action 
	B Towards a Horndeski Lagrangian
	C Matter action

	IV Frame independence 
	A Gravity plus matter 
	B Propagation speed of gravitons and photons

	V Conclusions
	 Acknowledgments
	A Inverse disformal transformation 
	B Example of an observable: Redshift 
	 References


