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Abstract

A quantum field theoretical approach, in which a quantum probe is used to investigate
the properties generic non-flat FLRW space-times is discussed. The probe is identified with a
conformally coupled massless scalar field defined on a space-time with horizon and the procedure
to investigate the local properties is realized by the use of Unruh-DeWitt detector and by the
evaluation of the regularized quantum fluctuations. In the case of de Sitter space, the coordinate
independence of our results is checked, and the Gibbons-Hawking temperature is recovered. A
possible generalization to the electromagnetic probe is also briefly indicated.

PACS numbers: 04.70.-s, 04.70.Dy

1 Introduction

Hawking discovery of black hole radiation [1] is considered one of the most important predictions of
quantum field theory in curved space-time. The predicted effect is quite robust, see [2, 3, 4, 5, 6, 7, 8].

Parikh and Wilczek [9](see also [10, 11]) introduced a further approach, the so-called tunnelling
method, for investigating Hawking radiation. Later, the Hamilton-Jacobi tunnelling method [12,
13, 14, 15] was introduced. This method is covariant and can be generalized to the dynamical case
[16, 17, 18, 19, 20, 21, 22].

The aim of this paper is to continue the investigation of the local properties of a generic FLRW
space-time by making use of suitable quantum probe, along the line presented in reference [23].
We recall that FLRW space-times may be regarded spherically symmetric (dynamical) space-times,
and a covariant formalism introduced by Hayward is at disposal [18, 19, 24]. This approach will
permit the introduction of Kodama vector and related observers. For the sake of completeness,
first we review this general formalism.

∗rabochaya@science.unitn.it
†zerbini@science.unitn.it
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To begin with, let us recall that any spherically symmetric metric can locally be expressed in
the form

ds2 = γij(x
i)dxidxj +R2(xi)dΩ2 , i, j ∈ {0, 1} , (1.1)

where the two-dimensional metric

dγ2 = γij(x
i)dxidxj (1.2)

is referred to as the normal metric, {xi} are associated coordinates and R(xi) is the areal radius,
considered as a scalar field in the two-dimensional normal space. Let us introduce the scalar
quantity

χ(x) = γij(x)∂iR(x)∂jR(x) . (1.3)

The dynamical trapping horizon, if it exists, is located in correspondence of

χ(x)
∣

∣

∣

H
= 0 , (1.4)

provided that ∂iχ|H 6= 0. Hayward surface gravity associated with this dynamical horizon reads

κH =
1

2
✷γR

∣

∣

∣

H
. (1.5)

In any spherical symmetric space-time there exists the Kodama vector field K, defined by

Ki(x) =
1√−γ

εij∂jR , Kθ = 0 = Kϕ . (1.6)

Kodama observers are characterized by the condition R = R0.
Coming back to the Hamilton-Jacobi tunneling method, we recall the semi classical emission

rate reads

Γ ∝ |Amplitude|2 ∝ e−2ℑI
~ . (1.7)

with ℑ standing for the imaginary part, the appearance of the imaginary part due to the presence
of the horizon. The leading term in the WKB approximation of the tunnelling probability reads

Γ ∝ e
− 2π

κH
ω
, (1.8)

in which an energy ω of the particle, and the Hayward surface gravity evaluated at horizon appear.
Here we recall the operational interpretation [18]. We note that static observers in static BH
space-times become in the dynamical case Kodama observers whose velocity

viK =
Ki

√
χ
, γijv

i
Kv

j
K = −1 . (1.9)

Kodama observers are such that R = R0, namely they have constant areal radius, and the energy
measured by these Kodama observers at fixed R0 is

E = −viK∂iI = −Ki∂iI√
χ0

=
ω√
χ0

. (1.10)
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As a result, the tunneling rate can be rewritten as

Γ ≃ e
− 2π

κH

√
χ0E ≃ e

− E
T0 , (1.11)

and the local quantity T0 at radial radius R0 is invariant, since it contains the invariant factor
√
χ,

and the Hayward surface gravity

T0 =
TH√
χ0

, TH =
kH

2π
. (1.12)

In the static case χ = grr = −g00 and recalling Tolman’s theorem: for a gravitational system at
thermal equilibrium, T

√−g00 = constant, it follows that TH = κH

2π is the intrinsic temperature of
the BH, namely the Hawking temperature.

As an important example that illustrates the gauge independence of the formalism is the de
Sitter space-time. We shall consider three patches, or coordinate systems. The first is the static
patch, namely

ds2 = −dt2s(1−H2
0r

2) +
dr2

(1−H2
0r

2)
+ r2dS2 . (1.13)

Here R = r, the horizon is located at rH = 1
H0

, and the surface gravity κH = H0.
The second patch is the one which describes a exponentially expanding FLRW flat space-time,

ds2 = −dt2 + e2H0t
(

dr2 + r2dS2
)

. (1.14)

Here R = eH0tr, the dynamical horizon is RH = 1
H0

, there is no Killing vector, but the Hayward
surface gravity is again κH = H0. Finally, there exists the so called global dS patch, a non-flat
FLRW space-time

ds2 = −dt2 + cosh2(H0t)

(

dr2

(1−H2
0r

2)
+ r2dS2

)

. (1.15)

Here R = cosh(H0t)r, and a straightforward calculation gives again RH = 1
H0

and κH = H0.
In the dynamical case, but for slow changes in the geometry, the question is: could possibly the

quantity TH = κH

2π be interpreted as a dynamical Hawking temperature? In our opinion a complete
answer is still missing, see also [22] for a recent discussion. With regard to this issue, it should
be important to have a quantum field theoretical confirmation of the tunnelling results (see, for
example [25]).

As a first step toward this aim, we recall that in the flat FLRW case, a conformally coupled
massless scalar has been used as a quantum probe in order to investigate such space-times (see
[26, 23, 27] and references therein). The aim of this paper is to extend the investigation to the
non flat FLRW space-times, since, at least in the case of De Sitter space-time, there exists the
important example (1.15) of non flat FLRW space-time, namely the global de Sitter patch.

The paper is organized as follows. In Section 2 we give a brief survey of a scalar quantization
in a generic FLRW space-time. In Section 3, we present the main formula of Unruh-DeWitt
response function detector. In Section 4, the computation of the renormalized quantum fluctuation
is presented and the de Sitter case is discussed in detail. In Section 5, the conclusions are reported,
and in the Appendix A, an elementary derivation of the Wightman function is given.
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2 Conformal quantum probe in FLRW space-times

In the following, we review the quantization of a conformally coupled massless scalar field in a
generic FLRW space-time. First, it is convenient to introduce the conformal time η by means
dη = dt

a . Thus, we have

ds2 = a2(η)(−dη2 + dΣ2
3) , , (2.1)

where the metric of the spatial section may be written

dΣ2
3 =

dr2

1− kh20r
2
+ r2dS2 , (2.2)

with k = 0,±1, and h0 is a mass or inverse lenght scale, related to the Scalar Ricci curvature, which
reads

R = 6

(

a′′

a3
+ k

h20
a2

)

, a′ =
da

dη
. (2.3)

A useful and equivalent form for the spatial section is

dΣ2
3 = dξ2 + h2k(ξ)dS

2 , (2.4)

where H0ξ = sin−1 h0r and

h(ξ)1 =
sinh0ξ

h0
, h(ξ)0 = ξ , h(ξ)−1 =

sinhh0ξ

h0
. (2.5)

In the case of a free massless scalar field which is conformally coupled to gravity, the related
Wightman function W (x, x′) =< φ(x)φ(x′) > can be computed in an exact way. For the sake of
completeness, we re-derive this well known result.

The quantum field φ has the usual expansion

φ(x) =
∑

α

fα(x)aα + f∗
α(x)a

+
α (2.6)

where the modes functions fα(x) satisfy the conformally invariant equation (R being the Ricci
curvature)

(

✷− R
6

)

fα(x) = 0 . (2.7)

Defining the vacuum by aα|0 >= 0, the Wightman function turns to be

W (x, x′) =
∑

α

fα(x)f
∗
α(x

′) , (2.8)

and it satisfies, with x′ fixed,

(

✷− R
6

)

W (x, x′) = 0 . (2.9)
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An elementary derivation is presented in Appendix A. Here we give another derivation based on
conformal invariance.

First we recall that if we make a conformal transformation

ds2 = Ω(x)2ds20 , φ =
1

Ω
φ0 , (2.10)

the related Wightman W (x.x′) =< φ(x)φ(x′) > transforms as

W (x, x′) =
1

Ω(x)Ω(x′)
W0(x.x

′) . (2.11)

We are interested in the non flat case. It is sufficient to consider only the k = 1 case. The k = −1
may be obtained by the substitution h0 → ih0.

Recall that the metric on a non flat FLRW positive spatial curvature space-time is

ds2 = a2(η)

(

−dη2 + dξ2 +
1

h20
sin2 h0ξdS

2
2

)

. (2.12)

As a result, the above metric is conformally related to a static Einstein space R× S3, with metric

ds2E = −dη2 + dξ2 +
1

h20
sin2 h0ξdS

2
2 , (2.13)

On the other hand, it is well known that a static Einstein space-time is conformally related to
Minkowski space-time, since

ds2E = 4cos2(h0
η + ξ

2
)4 cos2(h0

η − ξ

2
)
(

−dt2 + dr2 + r2dS2
2

)

(2.14)

with the Minkowski coordinates given by

t± r =
1

h0
tan(h0

η ± ξ

2
) . (2.15)

Due to the homogeneity and isotropy of FLRW space-times, we may take W (x, x′) = W (x′, x) =
W (η− η′, r− r′), same radial separation. Thus, since the Minkowski Wightman function is known,
making use of equations (2.11) and (2.14), the Einstein space Wightman function turns out to be

WE(x, x
′) =

h20
8π2

1

cos(h0(η − η′))− cos(h0(ξ − ξ′))
. (2.16)

As a consequence, again making use of (2.11), the Wightman function related to FLRW spherical
spatial section is given by

W (x, x′) =
h20

8π2a(η)a(η′)

1

cos(h0(η − η′))− cos(h0(ξ − ξ′))
. (2.17)

Finally, the Wightman function related to FLRW hyperbolic spatial section can be obtained by the
replacement h0 → ih0, and reads

W (x, x′) = − h20
8π2a(η)a(η′)

1

cosh(h0(η − η′))− cosh(h0(ξ − ξ′))
. (2.18)

As a check, the Wightman function related to FLRW flat spatial section can be obtained taking
the limit h0 → 0. Again for same radial separation

W (x, x′) =
1

4π2a(η)a(η′)

1

−(η − η′)2 + (r − r′)2
. (2.19)

These results are in agreement with the ones obtained in Appendix A.
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3 The Unruh-DeWitt detector in non flat FLRW space-times

The Unruh-DeWitt detector approach is a well known and used technique for exploring quantum
field theoretical aspects in curved space-time. For a recent review see [28]. Here, we review the
basic formula following Ref. [29, 23].

The transition probability per unit proper time of the detector depends on the response function
per unit proper time which, for radial trajectories, at finite time τ may be written as ∆τ = τ−τ0 > 0

Ḟ (E, τ) =
1

2π2
Re

∫ ∆τ

0
dse−iEsW (τ, τ − s) , (3.1)

where τ0 is the detector proper time at which we turn on the detector, and E is the energy associated
with the excited detector state (we are considering E > 0). The flat case has been already considered
in several places (see, [23]), thus we shall consider the k = 1 FLRW case, namely

Ḟ (E, τ) =
Re

16π2

∫ ∆τ

0

ds

a(τ)a(τ − s)

h20e
−iEs

cos h0(∆χ(s))− cos h0(∆η(s)− i0)
(3.2)

where ∆χ(s) = χ(τ) − χ(τ − s), and ∆η(s) = η(τ) − η(τ − s). The i0-prescription is necessary in
order to deal with the second order pole at s = 0. However, we will show in the next Section that
the leading singularity in the coincidence limit, namely for small s, is

W (τ, τ − s) ≃ − 1

4π2s2
+O(s0) . (3.3)

As a result, one may try to avoid the awkward limit ǫ → 0+ by omitting the ǫ-terms but subtracting
the leading pole at s = 0 (see [29] for details), and introducing the quantity

Σ2(τ, s) ≡ a(τ)a(τ − s)
2

h20
(cos h0(∆χ(s))− cos h0(∆η(s))) , (3.4)

one can present the detector transition probability per unit time in the form

Ḟ (E, τ) =
1

2π2

∫ ∞

0
ds cos(Es)

(

1

Σ2(τ, s)
+

1

s2

)

+ Jτ (E) , (3.5)

where the ”tail” or finite time fluctuating term is given by

Jτ (E) := − 1

2π2

∫ ∞

∆τ
ds

cos(E s)

Σ2(τ, s)
. (3.6)

In the important stationary cases (examples are the static black hole, the FLRW de Sitter
space), one has Σ(τ, s)2 = Σ2(s) = Σ2(−s), and Eq. (3.5) simply becomes

Ḟ (E, τ) =
1

4π2

∫ ∞

−∞
ds e−iEs

(

1

Σ2(s)
+

1

s2

)

+ Jτ = Ḟ (E) + Jτ (E) . (3.7)

The first term is independent on τ , and all the time dependence is contained only in the fluctuating
tail.
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3.1 The de Sitter space in FLRW patches

In order to check the coordinate independence (gauge-invariance) of our result, it is instructive to
investigate the de Sitter space-time. With regard to the other two FLRW patches, they are the
flat spatial section, physically relevant for inflation and the positive spatial curvature patch. The
flat case has already been considered, see for example [23]. For the spatial curved patch, we shall
make use of the formula derived in the previous subsection.

Recall that in a generic non- flat FLRW space-time, the Kodama observer is given by

R(t) = R0 =
a(t)

h0
sinh0χ, (3.8)

with constant R0. For a radial trajectory, the proper time in the non-flat FLRW is

dτ2 = a2(η)(dη2 − dξ2) . (3.9)

Thus, on the Kodama trajectory

dτ2 = dt2
(

1− R2
0H

2(t)

a2(t)−R2
0H

2
0

)

. (3.10)

In the case of de Sitter, we put h0 = H0 and the flat case is simple and one has an explicit
expression for η(τ) [23]. In the non-flat case, also for de Sitter, it is not easy to get an explicit
expression of the conformal time as a function of τ . For this reason we consider the R0 = 0 case,
comoving Kodama observer. Thus dτ = dt. Furthermore, since a(t) = coshH0t = coshH0τ , one
has

η(τ) =
2

H0
arctan eH0τ . (3.11)

We have to compute

Σ2(τ, s) =
2

H2
0

cosh(H0τ) coshH0(τ − s) (cos(H0∆η)− 1) . (3.12)

Making use of well known trigonometric identities, a direct calculation leads to following results

H0∆η(τ, s) = −2 arctan

(

sinh H0s
2

coshH0(τ + s
2 )

)

, (3.13)

sin2 H0∆η(τ, s) =
sinh2 H0s

2

cosh2H0(τ + s
2) + sinh2 H0s

2

, (3.14)

Σ2(τ, s) =
2

H2
0

cosh(H0τ) coshH0(τ − s) sin2(H0∆η(τ, s)) . (3.15)

As a consequence, the invariant distance (3.12) can be re-written in the form

Σ2(τ, s) = − 2

H2
0

sinh2
(

H0 s

2

)

. (3.16)
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Since Σ2(τ, s) = Σ2(s) = Σ2(−s), we may use (3.7) and obtain, for E > 0 and making use of
Residue Theorem

Ḟ (E) =
1

2π

E

e
2πE
H0 − 1

, (3.17)

which shows that the Unruh-DeWitt detector in the non flat FLRW de Sitter space detects a quan-
tum system in thermal equilibrium at a temperature T0 =

H0

2π , Gibbons-Hawking result is recovered
[30]. This is an important check of the approach, since it shows the coordinate independence of the
result for the important case of de Sitter space.

The response function for unit proper time, in the stationary cases we have considered, gives
information about the equilibrium temperature via the Planckian distribution. We also may argue
as follow. In the stationary case, in the limit τ → ∞, one has

Ḟ (E) =
1

4π2

∫ ∞

−∞
ds e−iEs

(

1

Σ2(s)
+

1

s2

)

=
1

2π

E

exp
(

E
T0

)

− 1
. (3.18)

Note also that in this case one has

Ḟ (E)

Ḟ (−E)
= e

− E
T0 , Ḟ (−E)− Ḟ (E) =

E

2π
. (3.19)

Viceversa, if the above relations hold then Ḟ (E) is the Plank distribution. Thus we may define the
local equilibrium temperature by means of

T0 =
E

ln Ḟ (−E)− ln Ḟ (E)
. (3.20)

or

T0 =
E

ln
(

1 + E
2π(Ḟ )

) (3.21)

which shows in which sense a Unruh-DeWitt detector is a quantum thermometer.

3.2 d-dimensional generalization

In the de Sitter case, it is possible to generalize the computation of the response function per unit
time to the massive non conformally coupled d-dimensional scalar field [31].

In this case one may directly obtain

Ḟd,ν(E) =
Hd−3

0 e
πE
H0

8π(d+1)/2Γ(d−1
2 )

|Γ(d− 1

4
+

ν

2
+ i

E

2H0
)Γ(

d− 1

4
− ν

2
+ i

E

2H0
)|2 , (3.22)

where

ν =

√

(d− 1)2

4
− m2

H2
0

− ξd(d− 1) , (3.23)
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with m2 mass of the scalar field and ξ the coupling constant with the Ricci curvature, being the
conformal coupling ξc =

d−2
4(d−1) . As a consequence, one has

Ḟd,ν(−E) = e
E
T0 Ḟd,ν(E) . (3.24)

Furthermore, the massless conformally coupled case in d dimension corresponds to ν = 1
2 . In this

case, for d = 4 one recovers

˙F4, 1
2

(E) =
1

2π

E

e
2πE
H0 − 1

. (3.25)

Furthermore, making use of the identity

Γ(z)|2|Γ(1− z)|2 = 2π2|z|2
cosh(2πImz)− cos(2πRez)

, (3.26)

one also has for d = 3 and ν = 1
2

Ḟ3, 1
2

(E) =
1

16

(

1 +
E2

H2
0

)

1

e
2πE
H0 + 1

, (3.27)

in which the well known phenomenon of the inversion of the statistic for odd dimensional spaces is
manifest.

The other interesting case is the minimally coupled massless scalar field, for which ν = d−1
2 . In

particular for d = 4, one has

Ḟ4, 3
2

(E) =
H2

0

8π3

(

1 +
E2

H2
0

)

1

E
(

e
2πE
H0 − 1

) . (3.28)

In this physical important case, it mimics the graviton, the well known infrared problem associated
with it appears in the bad behavior for small E.

4 Quantum fluctuations

Another proposal to detect local temperature associated with stationary space-time admitting an
event horizon has been put forward by Buchholz and collaborators [32] (see also [33, 34]). The idea
may be substantiated by the following argument.

Let us start with a free massless quantum scalar field φ(x) in thermal equilibrium at temperature
T in flat space-time. It is well known that finite temperature field theory effects of this kind may
be investigated by considering the scalar field defined in the Euclidean manifold S1 × R3, where
one has introduced the imaginary time τ = −it, compactified in the circle S1, with period β = 1

T
(see for example [35]).

Let us consider the local quantity < φ(x)2 >, the quantum fluctuation. Formally this is a
divergent quantity, since one is dealing with product of a valued operator distribution in the same
point x, and regularization and renormalization are necessary. A simple and powerful way to
deal with a regularized quantity is to make use of zeta-function regularization (see for example
[36, 37, 35], and references therein). Within zeta-function regularization, one has

< φ(x)2 >= ζ(1|Lβ)(x) , (4.1)
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where ζ(z|Lβ)(x) is the analytic continuation of the local zeta-function associated with the operator
Lβ

Lβ = −∂2
τ −∇2 , (4.2)

defined on S1 ×R3. The local zeta-function is defined with Re z sufficiently large by means

ζ(z|Lβ)(x) =
1

Γ(z)

∫ ∞

0
dttz−1Kt(x, x) , (4.3)

where the heat-kernel on the diagonal is given by

Kt(x, x) =< x|e−tLβ |x >=
1

β(4πt)3/2

∑

n

e
− 4π2

β2
n2

. (4.4)

In (4.1) the analytic continuation of the local ζ(z|Lβ)(x) appears and it is assumed that this
analytical continuation is regular at z = 1, which, as we shall see, is our case. If the analytic
continuation has a simple pole in z = 1, the prescription has to be modified (see [38, 33]).

A standard computation, which makes use of the Jacobi-Poisson formula leads to

Kt(x, x) =
1

(4πt)2

∑

n

e−
n2β2

4t . (4.5)

Let us plug this expression in (4.3). The term n = 0 leads to a formally divergent integral
∫∞
0 dt(tz−3), but this is zero in the sense of Gelfand analytic continuation, and it can be neglected.
Thus, a direct computation gives the analytic continuation of the local zeta-function

ζ(z|Lβ)(x) =
Γ(2− z)

8π2Γ(z)

(

β2

4

)z−2

ζR(4− 2z) , (4.6)

where ζR(z) is the Riemann zeta-function. It is easy to see that the analytic continuation of the

local zeta-function is regular at z = 1, and from (4.1), recalling that ζR(2) =
π2

6 , one has

< φ(x)2 >=
1

12β2
=

T 2

12
. (4.7)

Thus, the zeta-function renormalized vacuum expectation value of the observable φ2, the fluctua-
tion, gives the temperature of the quantum field in thermal equilibrium, namely one is dealing with
a quantum thermometer.

Motivated by this argument, let us consider again a conformal coupled scalar field in a FLRW
non flat space-time. We have seen that the off-diagonal Wigthman function is

W (x, x′) =< φ(x)φ(x′) >=
1

4π2

1

Σ2(x, x′)
, (4.8)

where

Σ2(τ, τ − s) = a(τ)a(τ − s)
2

H2
0

(− cosH0(∆ξ(s)) + cosH0(∆η(s))) , (4.9)

with a(τ) being the conformal factor. In the limit s → 0, formally one has

< φ(x)2 >= W (τ, τ) , (4.10)
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but W (τ, τ) is ill defined, and one has to regularize and then renormalize this object. In our case,
we may make use of the simple point splitting regularization [3], namely we consider W (τ, τ − s)
and evaluate the limit s → 0.

To implement this limit procedure, one has to make use of several identities. For radial time-like
separation, the starting point is

a2(τ)
(

η̇2 − χ̇2
)

= 1 . (4.11)

Taking first and second derivatives with respect the proper time, one has

ȧ

a
+ a2

(

η̈ η̇ − ξ̈ ξ̇
)

= 0 , (4.12)

and

a2(η̇
...
η − ξ̇

...
ξ = −a2(η̈2 − ξ̈2)− ä

a
+ 3(

ȧ

a
)2 . (4.13)

Making use of these identities, a long but straightforward calculation leads to

Σ2 = −s2
(

1 +
B

12
s2 +O(s4)

)

. (4.14)

where

B = H2 +A2 + 2Ḣ ṫ+
h20
a2

(

1− 2ṫ2
)

. (4.15)

In this expression A2 is the square of the 4-acceleration along the time-like trajectory, given by

A2 =
1

ṫ2 − 1

(

ẗ+H(ṫ2 − 1)
)

. (4.16)

In the above expression, the last term is the new one with respect the flat case. Thus, the point
splitting gives

W (τ, τ − s) = − 1

4πs2
+

B

48π2
+O(s2) . (4.17)

With regard to the renormalization, we simply subtract the first divergent term for s → 0. The
physical meaning of this subtraction has been discussed in detail in reference [23], and it amounts
to subtract the contribution related to an inertial trajectory in Minkowski space-time. Thus, the
renormalized quantum fluctuation reads

< φ2 >R=
1

48π2

(

H2 +A2 + 2Ḣ ṫ+
h20
a2

(

1− 2ṫ2
)

)

. (4.18)

This result is the generalization of the one obtained in a flat FLRW space-time in [23] and within
Unruh-de Witt detector in [26].

As a first important check, let us consider again the de Sitter space-time in the global patch.
In this stationary case, the fluctuation acts as a quantum thermometer. Recall that in this case,
one has h0 = H0,

a(t) = coshH0t , H(t) = H0
sinhH0t

coshH0t
, Ḣ = ṫ

H2
0

(coshH0t)2
. (4.19)
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As a consequence

< φ2 >R=
1

48π2

(

H2
0 +A2

)

. (4.20)

This is in agreement with the result obtained for the de Sitter space-time in reference [39]. In fact,
the acceleration can be computed, since, for a Kodama observer R = R0, one has

ṫ2 − 1 =
R2

0H
2(t)

1−R2
0H

2
0

. (4.21)

Thus

ẗ =
R2

0

1−R2
0H

2
0

H(t)
dH

dt
. (4.22)

Taking equation (4.16) into account, one gets

A2 =
R2

0H
4
0

1−R2
0H

2
0

, (4.23)

which coincides with the Kodama de Sitter acceleration evaluated in the flat patch [23]. Furthermore
we also have

< φ2 >R=
1

48π2

H2
0

1−R2
0H

2
0

. (4.24)

For a comoving Kodama observer R0 = 0, and one gets again Gibbons-Hawking temperature
associated with de Sitter space-time.

5 Conclusion

In this paper, with the aim to better understand the temperature-versus-surface gravity paradigm,
the asymptotic results obtained by tunnelling semi classical method have been tested with quan-
tum field theory techniques like the Unruh-DeWitt detector and the evaluation of the quantum
fluctuation associated with a massless conformally coupled scalar field. More precisely the results
obtained in reference [23] have been extended to a generic non spatial flat FLRW space-time. The
de Sitter space-time in the global non flat FLRW patch has been used as important example, and
the Gibbons-hawking temperature for the de Sitter space has been re-derived with our general
fluctuation formula as well as the Unruh-de Witt detector technique.

With regard to possible generalization, at least in the flat case, our approach may also be
extended to the Maxwell field as soon as one makes use of the result obtained in reference [40]. In
fact there, quantizing the Maxwell field in a flat FLRW space-time and in the so called W gauge,
a conformal lifting of the Lorenz gauge in Minkowski space-time, the Maxwell Wightman function
has been obtained in the form

Wµν(x, x
′) = −1

2

(

gµν(x)a(x
′)

a(x)
+

gµν(x
′)a(x)

a(x′)

)

W (x, x′) , (5.1)

where W (x, x′) is the Whightman associated with massless conformally coupled scalar field in
flat FLRW space-time. This strongly suggests that our conformally coupled scalar probe may

12



mimic quite well the quantum Maxwell field. Of course, working with the Maxwell field, the gauge
invariant has to be implemented and the relevant quantity is the Wightman function associated
to (for example) the magnetic field. This is a very interesting issue with important cosmological
applications, see for example the recent discussion appeared in [41, 42], and we hope to consider
this issue in a future work.
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6 Appendix A

In this Appendix an elementary derivation of Wightman function for a massless conformally coupled
scalar field is presented. Due to the homogeneity and isotropy of FLRW space-times, we may take
W (x, x′) = W (x′, x) = W (η − η′, r − r′).

It is convenient to introduce the auxiliary quantity

Y (x, x′) = a(η)a(η′)W (x, x′) , (6.1)

and, from the equation of motion in FLRW space-time with the conformal time one has

− d2Y

dη2
− kH2

0Y +∆hY = 0 , (6.2)

where ∆h is the Laplace operator associated with the metric dΣ2
3.

We may take x′ = 0. Let us start with the flat case k = 0. One has

− ∂2Y

∂η2
+

∂2Y

∂r2
+ 2

∂Y

∂r
= 0 . (6.3)

The solution is

Y =
1

−η2 + r2
(6.4)

As a result, making use of the homogeneity and isotropy, and dealing with the distribution nature
of W ,

W (x, x′) =
1

4π2a(η)a(η′)

1

(r − r′)2 − (η − η′ − iǫ)2
. (6.5)

Here we leave understood the limit as ǫ → 0+.
We may rewrite it in covariant form, according to Takagi [43] and Schlicht [44] We adapt

Schlicht’s proposal to our conformally flat case, namely

W (x, x′) =
1

4π2a(η)a(η′)

1

[(x− x′)− iǫ(ẋ+ ẋ′)]2
. (6.6)

where an over dot stands for derivative with respect to proper time (see also [23]).
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Coming back to the non-flat case, it is sufficient to consider the positive curvature case h0 > 0.
The negative one may be obtained with the replacement h0 → ih0.
For the sake of simplicity, here we may take h0 = 1, then dimensional analysis will give the complete
expression. Let us start with

ds2 = a2(η)
(

−dη2 + dχ2 + sin2 χdS2
)

. (6.7)

The Ricci scalar reads

R = 6
a′′ +A

a3
, a′ =

da

dη
. (6.8)

and the equation for Y is

− ∂2Y

∂η2
− Y +

∂2Y

∂χ2
+ 2

cosχ

sinχ

∂Y

∂χ
= 0 . (6.9)

The solution of this partial differential equation is

Y =
1

cos η − cosχ
. (6.10)

Making use of dimensional analysis one arrives at

W (x, x′) =
1

8π2a(η)a(η′)

h20
cos h0(χ− χ′)− cosH0(η − η′ − iǫ)

. (6.11)

In the case of negative spatial curvature one has

W (x, x′) = − 1

8π2a(η)a(η′)

h20
coshh0(χ− χ′)− coshh0(η − η′ − iǫ)

. (6.12)
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