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PERFECT PLASTICITY WITH DAMAGE AND HEALING AT

SMALL STRAINS, ITS MODELLING, ANALYSIS, AND

COMPUTER IMPLEMENTATION

TOMÁŠ ROUB́ıČEK∗†‡ AND JAN VALDMAN‡§

Abstract. The quasistatic, Prandtl-Reuss perfect plasticity at small strains is combined with
a gradient, reversible (i.e. admitting healing) damage which influences both the elastic moduli
and the yield stress. Existence of weak solutions of the resulted system of variational inequalities
is proved by a suitable fractional-step discretisation in time with guaranteed numericalstability
and convergence. After finite-element approximation, this scheme is computationally implemented
and illustrative 2-dimensional simulations are performed. The model allows e.g. for application in
geophysical modelling of re-occurring rupture of lithospheric faults. Resulted incremental problems
are solved in MATLAB by quasi-Newton method to resolve elastoplasticity component of the
solution while damage component is obtained by solution of a quadratic programming problem.

Key words. Prandtl-Reuss perfect plasticity, bounded-deformation space, incomplete dam-
age, fractional-step time discretisation, finite-element method, quasi-Newton method, quadratic
programming, nonsmooth continuum mechanics, geophysical applications.
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1. Introduction. There is a vast amount of literature about plasticity and
about damage separately, both in mathematics and in civil or mechanical engineer-
ing. Much less literature addresses various combination of plasticity and damage,
cf. e.g. [2, 3, 9, 10, 25, 27, 51]. In engineering, this is usually called ductile damage,
cf. e.g. [18, 28–30, 35]. Also a lot of geophysical models combine reversible damage
(called rather ageing) with some sort of plasticity (often modelled as not entirely
independent of damage, however), cf. e.g. [32].

The goal of this article is to devise a model that would allow for
• modelling of thin plastic shear bands surrounded by wider damage zones (as

typically occurs in geophysical modeling of lithospheric faults with very narrow
core) with possible healing of damage (as considered in geophysical modeling
to allow re-occurring damaging), and simultaneously

• rigorous proof of existence of weak solutions of the resulted system of varia-
tional inequalities proved by a suitable fractional-step discretisation in time
with guaranteed numerical stability and convergence, and

• efficient numerical implementation of the time-discrete model.

We depart from the standard linearized, associative, rate-independent plasticity at
small strain as presented e.g. in [24]. Simultaneously, we use also a rather standard
scalar (i.e. isotropic) damage as introduced by L.M.Kachanov in late 60ieth and
presented e.g. in [16], considered here however as rate dependent and reversible in
the sense that a possible healing is allowed. To avoid serious mathematical and
computation difficulties, we have in mind primarily an incomplete damage through
a higher-order damage-independent term, although the standard elastic tensor can
allow for a complete damage, cf. H and C = C(ζ) below. An important aspect
of the model is that not only the conservative part but also the dissipative part is
subjected to damage, i.e. not only the elastic moduli but also the yield stress will be
considered as damageable. This relatively simple and lucid mechanism will however
lead to a possibly very complex response of the model.
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To make the model accessible to analysis, we work within the setting of small
strains, and we also take into account surface-energy effects by including in the free
energy a term dependent on the gradient of the total strain. This is also known as a
concept of so-called second-grade nonsimple materials, cf. e.g. [40,50], alternatively
also referred as the concept of hyper- or couple-stresses [42, 54]; for reasons we use
it here cf. Remark 2.5 below.

In view of applications we have in mind, we suppress any hardening effects and
thus we consider the Prandtl-Reuss elastic/perfectly plastic model; in fact, consider-
ing kinematic or isotropic hardening would make a lot of aspects even much easier.
A plastic yield stress dependent on damage is in some variants used in the Cam-Clay
model, cf. e.g. [12, 31, 56], or in the Perzyna model with damage, cf. [51], and also
in [2,3,9,10]. Let us also point out that damage with healing without plasticity (as
sometimes considered in mathematical literature) would have only very limitted ap-
plication because damaged material typically can undergo substantial deformation
and the healing should not be performed towards the original configuration.

We confine on the isothermal variant of the model. In contrast to [48], we
consider rate-independent plasticity without any gradient, so that concentration of
plastic and total strains and development of sharp shear bands is possible. Also,
related to this concentration, both plastification and damage are driven by the
elastic stress (which is still well controlled) rather than the total strain (which may
concentrate); for plasticity itself, see also [47].

The presented model has potential application in geophysical modelling of re-
occurring rupture of lithospheric faults or of nucleation of new faults. A narrow
so-called core of the fault can be modelled by the perfect plasticity while and a
relatively wide damage zone around it can arise by the gradient-damage model.
After a combination with inertial effects (and possibly a visco-elastic rheology e.g.
of Jeffreys type), this model involves seismic waves and can serve for earthquake
simulations where these waves are emitted during fast rupture, cf. Remarks 2.3 and
2.4 below for some modifications of the presented model towards these applications.
Another possible modification, going beyond the scope of this paper however, might
use the structure of the stored energy similar to what is used in a phenomenological
models for polycrystalline shape-memory alloys where our damage variable is in a
position of temperature and plastic strain is a transformation strain subjected to
some additional constraints, see e.g. [19, Example 5.15].

The plan of the paper is as follows: In Section 2 we formulate the model and
cast a suitable definition of the weak solution, and pronounce a basic existence result
which is proved later in Sections 3 by a constructive time discretisation method.
A further finite-element discretisation is then outlined. This allows for computer
implementation of the model presented in Section 4, whose efficiency and some
physical aspects eventually demonstrated on in Section 5 an illustrative example
with geophysical motivation.

2. The model, its weak formulation, and existence result. Hereafter,
we suppose that the damageable elasto-plastic body occupies a bounded smooth
domain Ω ⊂ Rd, d = 2 or 3. We denote by ~n the outward unit normal to ∂Ω. We
further suppose that the boundary of Ω splits as

∂Ω := Γ = ΓD ∪ ΓN ,

with ΓD and ΓN open subsets in the relative topology of ∂Ω, disjoint one from each
other, each of them with a smooth ((d−1)-dimensional) boundary, and covering ∂Ω
up to (d−1)-dimensional zero measure. Considering T > 0 a fixed time horizon, we
set

Q := (0, T )×Ω, Σ := (0, T )×Γ, ΣD := (0, T )×ΓD, ΣN := (0, T )×ΓN.
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Further, Rd×d
sym and R

d×d
dev will denote the set of symmetric or symmetric trace-free

(= deviatoric) (d×d)-matrices, respectively. For readers’ convenience, let us sum-
marize the basic notation used in what follows:
d = 2, 3 dimension of the problem,
R

d×d

dev
:= {A ∈ R; trA = 0},

u : Q → R
d displacement,

π : Q → R
d×d

dev
plastic strain,

ζ : Q → [0, 1] damage variable,
a : R → R

+ damage-dissipation potential,
b : [0, 1] → R stored energy of damage,
eel elastic strain, eel = e(u)−π,
e = e(u) = 1

2
∇u⊤+ 1

2
∇u

total small-strain tensor,

C : [0, 1] → R
3
4

elasticity tensor
dependent on ζ,

h hyperstress (3rd-order) tensor
H a (small) hyperelasticity tensor,
S = σY(·)B1 : [0, 1] ⇒ R

d×d

dev
,

with B1 the unit ball in R
d×d

dev
,

σY : [0, 1] → R
+ plastic yield stress
dependent on ζ,

g : Q → R
d applied bulk force,

wD : ΣD → R
d prescribed time-dependent
boundary displacement,

f : ΣN → R
d applied traction force,

κ > 0 scale coefficient
of the gradient of damage.

Table 1. Summary of the basic notation used thorough the paper.

The state is formed by the triple q := (u, π, ζ). Considering still a (small but fixed)
regularizing parameter ε > 0, the governing equation/inclusions read as:

div
(
C(ζ)eel − div h

)
+ g = 0 (momentum equilibrium)(2.1a)

with h = H∇eel and eel = e(u)−π,

∂δ∗S(ζ)(
.

π) ∋ dev
(
C(ζ)eel − div h

)
, (plastic flow rule)(2.1b)

∂a(
.

ζ) +
1

2
C

′(ζ)eel : eel(2.1c)

− κ div
(
(1+ε|∇ζ|r−2)∇ζ

)
+N[0,1](ζ) ∋ b′(ζ), (damage flow rule)

with δS the indicator function to S and δ∗S its convex conjugate. Here, [C(ζ)e]ij
and [H∇e]ijk mean

∑d
k,l=1 Cijkl(ζ)ekl and

∑d
m,n=1Hijmn

∂
∂xm

ein, respectively.
We employed two regularizing terms with a regularizing tensor H and a regular-

izing parameter ε > 0 with an exponent to be assumed suitably big, namely r > d.
This regularization facilitates analytical well-posedness of the problem and, because
the gradient-damage term degenerates at ∇ζ = 0, its influence is presumably small
if ε is small and ∇ζ not too large. Moreover, H in (2.1a) prevents a complete dam-
age at least when we assume C(ζ) positive semidefinite. Actually, (2.1b) represents
rather the thermodynamical-force balance governing damage evolution while the
corresponding flow rule is written rather in the (equivalent) form

.

π ∈ NS(ζ)

(
dev

(
C(ζ)eel − div h

))

with N the set-valued normal-cone mapping to the convex set indicated. An anal-
ogous remark applies to (2.1c).

A remarkable attribute of this model is a damage-dependent yield-stress do-
main S = S(ζ). Typically, developing damage makes S smaller and vice versa, i.e.
S(·) : [0, 1] ⇒ R

d×d
dev is nondecreasing with respect to the ordering of subsets by

inclusion. Likewise, typically also b(·) and C(·) are nondecreasing, the later one
with respect to the Löwner’s ordering, i.e. C(z1) − C(z2) is positive semi-definite
for z1 ≥ z2. Rate-dependency of damage evolution prevents nonphysically too-early
damaging/plastification and, due to the driving force b′(ζ), also allows simply for re-
verse damage evolution (a so-called healing) by using a convex function a : R → R

+

in (2.1c) having naturally its minimum at 0. The microstructural interpretation of
b is a stored energy related with microcracks/microvoids arising by damage, reflect-
ing the fact that any surface in the bulk bears some extra energy. Minimization of
this energy naturally leads to a tendency for healing of these material defects. Of
course, (2.1) is to be completed by appropriate boundary conditions for (2.1a,c),
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e.g.

u = wD on ΓD,(2.2a)
(
C(ζ)eel − div h

)
·~n− div

S
(h~n) = f on ΓN,(2.2b)

∇ζ·~n = 0 and h:(~n⊗ ~n) = 0 on Γ(2.2c)

with ~n denoting the unit outward normal to Ω. Moreover, div
S
is the surface-

divergence operator, which may be introduced as follows [22]: given a vector field
v : Γ → R

d, we extend it to a neighborhood of Γ, and we let its surface gradient
(valued in Rd×d) be defined as ∇

S
v = P

S
∇v, where P

S
= I− ~n ⊗ ~n is the projector

on the tangent space of Γ; we then let the surface divergence of v be the scalar
field div

S
v = P

S
: ∇

S
v = tr(P

S
∇vP

S
). Given a tensor field A : Γ → Rd×d, we let

div
S
A : Γ → Rd be the unique vector field such that div

S
(AT a) = a·div

S
A for all

constant vector fields a : Γ → Rd. Furthermore, the symbols “ · ” and “ : ” denote a

contraction between the one or two indices, respectively. Later, we will use also “
... ”

for a contraction between three indices. Thus, componentwise, the second condition
in (2.2b) reads as

∑d
j,k=1 hijknjnk = 0.

Of course, an inhomogeneous variant of (2.2b) or some mixed Dirichlet/Neumann
conditions in the normal/tangent conditions could be considered with straightfor-
ward modifications of the following text. We will consider an initial-value problem
for (2.1)–(2.2) by asking for

u(0) = u0, π(0) = π0, and ζ(0) = ζ0.(2.3)

In fact, as
.

u does not occur in (2.1), u0 is rather formal and will essentially be
determined by π0 and ζ0 via (2.14h) below.

The system (2.1) with the boundary conditions (2.2) has, in its weak formula-
tion, the structure of an abstract Biot equation (or here rather inclusion):

∂.qR(q;
.

q) + ∂E (t, q) ∋ 0(2.4)

with suitable time-dependent stored-energy functional E and the state-dependent
(pseudo)potential of dissipative forces R. Equally, one can write (2.4) as a gener-
alized gradient flow

.

q ∈ ∂ξR
∗
(
q;−∂E (t, q)

)
(2.5)

where ξ 7→ R∗(q; ξ) denotes the conjugate functional to v 7→ R(q; v).
The perfect-plasticity model itself received considerable attention already a long

time ago, see e.g. in [5, 11, 14, 26, 35, 44]. The peculiarity is that the displacement
no longer lives in the conventional Sobolev H1-space but rather in the space of
functions with bounded deformations introduced by Suquet [53], defined as

BD(Ω;Rd) :=
{
u∈L1(Ω;Rd); e(u)∈Meas(Ω;Rd×d

sym)
}
,(2.6)

where Meas(Ω) ∼= C(Ω)∗ denotes the space of Borel measures on the closure of Ω.
The other notation we will use is rather standard: beside the standard notation for
the Lebesgue Lp-space we already used in (2.6) for p = 1, we further use W k,p for
Sobolev space whose k-th derivatives are in Lp-spaces, the abbreviationHk = W k,2,
and Lp(0, T ;X) for Bochner spaces of Bochner-measurable mappings (0, T ) → X
with X a Banach space. Also, W k,p(0, T ;X) denotes the Banach space of mappings
from Lp(0, T ;X) whose k-th distributional derivative in time is also in Lp(0, T ;X).
Further, C([0, T ];X) and Cweak([0, T ];X) will denote the Banach space of continu-
ous and weakly continuous mappings [0, T ] → X , respectively. Moreover, we denote
by BV([0, T ];X) the Banach space of the mappings [0, T ] → X that have a bounded
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variation on [0, T ], and by B([0, T ];X) the space of Bochner measurable, everywhere
defined, and bounded mappings [0, T ] → X .

After considering smooth time-dependent Dirichlet boundary conditions wD on
ΣD which allows for an extension onto Q, let us denote it by uD, such that

(
C(ζ)e(uD)− div hD

)
·~n− div

S
(hD~n) = 0 on ΓN,(2.7a)

hD:(~n⊗ ~n) = 0 with hD = H∇e(uD) on Γ(2.7b)

for any admissible ζ, and making a substitution of u + uD instead of u into (2.1)–
(2.2), we arrive to the problem with time-constant (even homogeneous) Dirichlet
boundary conditions. More specifically,

eel in (2.1b) replaces by eel = e(u+uD)−π, and(2.8a)

wD in (2.2a) replaces by 0.(2.8b)

The state space is then the Banach space

U :=
{
(u, π, ζ)∈BD(Ω;Rd)×Meas(Ω;Rd×d

dev )×W 1,r(Ω);(2.9a)

e(u)−π∈H1(Ω;Rd×d
sym), u⊙ ~ndS+ π = 0 on ΓD

}
,

where a ⊙ b means the symmetrized tensorial product 1
2 (a ⊗ b + b ⊗ a), and the

functionals governing the problem (2.4) leading to (2.1)–(2.2) with the substitution
(2.8) are:

E (t, u, π, ζ) :=





∫

Ω

1

2
C(ζ)

(
e(u+uD(t))−π

)
:
(
e(u+uD(t))−π

)

+
1

2
H∇(e(u+uD(t))−π)

...∇(e(u+uD(t))−π)

−b(ζ)− g(t)·u+ κ
(1
2
|∇ζ|2+ε

r
|∇ζ|r

)
dx

−
∫

ΓN

f(t)·u dS if ζ∈ [0, 1] a.e. on Ω,

∞ otherwise,

(2.9b)

R(ζ;
.

π,
.

ζ) :=

∫

Ω

[
δ
∗
S(ζ)(

.

π)
]
(dx) +

∫

Ω

a(
.

ζ) dx,(2.9c)

where δ
∗
S(ζ) denotes the conjugate to the indicator function δS(ζ) to the convex set

S(ζ) and where the first integral in (2.9c) is an integral of a Borel measure; counting
the assumption (2.14f) below, this measure is σ

Y
(ζ)| .π| with | .π| the total variation

of
.

π. The norm on U is

∥∥(u, π, ζ)
∥∥
U
:= ‖u‖L1(Ω;Rd) + ‖e(u)‖Meas(Ω̄;Rd×d

sym )

+ ‖π‖Meas(Ω;Rd×d

dev
) + ‖e(u)−π‖H1(Ω;Rd×d

sym ) + ‖ζ‖W 1,r(Ω).

We can now state the weak formulation of the initial-boundary-value problem
(2.1)–(2.3). As for the plastic part, we use the concept of the so-called energetic
solution devised by Mielke and Theil [39], cf. also [36, 37], based on the energy
(in)equality and the so-called stability and further employed in the viscous con-
text in [45] with the stability condition modified to a semi-stability, cf. (2.11a)
below. Another feature of the following definition is that we rely on a regular-

ity of the damage ζ so that div((1+ε|∇ζ|r−2)∇ζ) is in duality with
.

ζ and thus,
in fact, the damage flow rule (2.1c) holds even a.e. Q. Actually, we do not need
such regularity for the definition itself because the usual weak formulation of (2.1c),

which would involve (not well-controlled) ∇
.

ζ resulted from usage of Green’s for-
mula, could be still treated by applying a by-part integration in time to get rid off
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the term ((1+ε|∇ζ|r−2)∇ζ) · ∇
.

ζ. Rather, this regularity is essential for the energy
conservation.

Definition 2.1 (Weak solution). The triple (u, π, ζ) with

u ∈ B([0, T ]; BD(Ω;Rd)),(2.10a)

π ∈ B([0, T ];Meas(Ω;Rd×d
dev )) ∩ BV([0, T ];Meas(Ω;Rd×d

dev )),(2.10b)

ζ ∈ B([0, T ];W 1,r(Ω)) ∩H1(0, T ;L2(Ω)) ∩ C([0, T ]×Ω)(2.10c)

such that also

eel = e(u+uD)− π ∈ B([0, T ];H1(Ω;Rd×d)) and(2.10d)

div
(
(1+ε|∇ζ|r−2)∇ζ

)
∈ L2(Q)(2.10e)

is called a weak solution to the initial-boundary-value problem (2.1)–(2.3) with the
substitution (2.8) if:
(i) the semi-stability

E (t, u(t), π(t), ζ(t)) ≤ E (t, ũ, π̃, ζ(t)) + R(ζ(t); π̃ − π(t), 0)(2.11a)

holds for all t ∈ [0, T ] and for all (ũ, π̃) ∈ BD(Ω;Rd)×Meas(Ω;Rd×d
dev ) with

u⊙ ~ndS+ π = 0 on ΓD and with e(u)−π∈H1(Ω;Rd×d
sym),

(ii) the variational inequality

∫

Q

a(v) +
(1
2
C

′(ζ)eel : eel − κ div
(
(1+ε|∇ζ|r−2)∇ζ

)
(2.11b)

− b′(ζ) + ξ
)
(v −

.

ζ ) dxdt ≥
∫

Q

a(
.

ζ ) dxdt,

holds for all v∈L2(Q) and some ξ∈L2(Q) such that ξ∈N[0,1](ζ) a.e. on Q,

(iii) the energy equality

E (T, u(T ), π(T ), ζ(T )) +

∫

[0,T ]×Ω

[
δ
∗
S(ζ)(

.

π)
]
(dxdt) +

∫

Q

â(
.

ζ ) dxdt(2.11c)

= E (0, u0, π0, ζ0) +

∫ T

0

∂tE (t, u(t), π(t), ζ(t)) dt.

holds with â : R → R being the single-valued, continuous function defined by
â(z) := z∂a(z).

(iv) and also the initial conditions (2.3) hold.

Let us note that, counting cancellation of some terms in E (t, u(t), π(t), ζ(t)) −
E (t, ũ, π̃, ζ(t)), the semi-stability (2.11a) means that

∫

Ω

1

2
C(ζ(t))

(
e(u(t)+2u

D
(t))−π(t)(t)

)
:
(
e(u(t))−π(t)

)
(2.12)

+
1

2
H∇

(
e(u(t)+2u

D
(t))−π(t)(t)

) ...∇
(
e(u(t))−π(t)

)
dx

≤
∫

Ω

1

2
C(ζ(t))

(
e(ũ+2u

D
(t))−π̃

)
:
(
e(ũ)−π̃

)

+
1

2
H∇

(
e(ũ+2u

D
(t))−π̃

) ...∇
(
e(ũ)−π̃

)
dx+

∫

Ω

[
δ
∗
S(ζ(t))(π̃−π(t))

]
(dx).

The last integral (2.12) is not a Lebesgue integral but an integral according the
measure δ∗

B1
(π̃−π(t)). Due to the special ansatz (2.14f) below, this integral will the
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total variation |π̃−π(t)|, namely
∫
Ω
σ

Y
(ζ(t))|π̃−π(t)|(dx). Similarly, the integral

on the left-hand side of (2.11c) equals
∫
[0,T ]×Ω σ

Y
(ζ)| .π|(dxdt). Further note that,

although traces of functions from BD(Ω;Rd) are in L1(Γ;Rd), one has to be aware
of jumps that can occur at the boundary, i.e. the measure e(u) may concentrate on
the boundary Γ. Thus, the classical boundary condition u = 0 on ΓD arising by the
additive shift (2.8b) is replaced by the more involved relation u ⊙ ~ndS+ π = 0 on
ΓD in (2.9a). This relation has to be understood as an equality of measures on ΓD:

∀measurable A ⊂ ΓD :

∫

A

u⊙ ~ndS =

∫

A

dπ = π(A).

The relation simply means that any jump of u on the boundary has to be due to
a localized plastic deformation. Cf. [11] for analytical details. Eventually, let us
comment the last term in (2.11c) which, in view of (2.9b), involves the expression

∂tE (t, u, π, ζ) =

∫

Ω

C(ζ)
(
e(u+uD(t))−π

)
: e(
.

uD(t))(2.13)

+H∇(e(u+uD(t))−π)
...∇e(

.

uD(t)) −
.

g(t)·u dx−
∫

ΓN

.

f(t)·u dS.

Let us collect the assumptions on the data and on the loading we will rely on,
some of them being already mentioned above:

Ω ⊂ R
d bounded C2-domain, ΓD has a (d−2) dimensional C2-boundary,(2.14a)

a : R → R convex, smooth on R\{0}, a(0) = 0, and(2.14b)

∃ ǫ > 0 ∀z∈R : ǫ|z|2 ≤ a(z) ≤ (1+|z|2)/ǫ,
b : [0, 1] → R continuously differentiable, non-decreasing, concave,(2.14c)

C : [0, 1] → R
d×d×d×d continuously differentiable, positive-semidefinite,(2.14d)

∀ i, j, k, l = 1, . . . , d : Cijkl(·) = Cjikl(·) = Cklij(·),
∀ e∈R

d×d
sym : C(·)e:e : [0, 1] → R non-decreasing, convex,

∃C
D
(ζ), c

S
(ζ) : C(ζ)e : e = C

D
(ζ)dev e : dev e+ c

S
(ζ)(tr e)2,

H positive definite, Hijkl = Hjikl = Hklij ,(2.14e)

∃H
D
, H

S
: H∇e

...∇e = H
D
∇dev e

...∇dev e+H
S
∇tr e · ∇tr e,

S(ζ) = σ
Y
(ζ)B1, σ

Y
: [0, 1] → (0,∞) continuous nondecreasing,(2.14f)

with B1 ⊂ R
d×d
dev a unit ball,

wD∈W 1,1(0, T ;H3/2(ΓD;R
d)) and ∃uD∈W 1,1(0, T ;H2(Ω;Rd))(2.14g)

satisfying (2.7) and uD|ΓD = wD,

g ∈ W 1,1(0, T ;L1(Ω;Rd)), f ∈ W 1,1(0, T ;L1(ΓN;R
d)),

∃σSL : [0, T ] → L2(Ω;Rd×d
sym) ∃α > 0 : σSL~n = g on [0, T ]×ΓN and

div σSL + f = 0 and |dev σSL| ≤ σ
Y
(0)− α on [0, T ]×Ω,

(u0, π0, ζ0) ∈ BD(Ω;Rd)×Meas(Ω;Rd×d
dev )×W 1,r(Ω),(2.14h)

0 ≤ ζ0 ≤ 1 a.e. on Ω, and

∀(ũ, π̃) ∈ BD(Ω;Rd)×Meas(Ω;Rd×d
dev ),

e(ũ)−π̃∈H1(Ω;Rd×d
sym), ũ ⊙ ~n dS+ π̃ = 0 on ΓD :

E (0, u0, π0, ζ0) ≤ E (0, ũ, π̃, ζ0) + R(ζ0; 0, π̃−π0),

κ > 0, ε > 0, r > d.(2.14i)

The smoothness assumption (2.14a) and the “elastic” invariance of the orthogonal
subspaces of deviatoric and volumetric components (2.14d,e) copy the assumptions
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used in [11] for perfect plasticity in simple materials without damage in a variant
with spatially varying yield stress as in [12, 15, 52]. The stress σSL in the condition
(2.14g) qualifies the loading be f and g in such a way so that the infinite sliding
of some parts of body is excluded; this is a usual requirement called a safe-load
condition, connected to perfect plasticity, here adopted to the situation that the
yield stress σ

Y
may vary with damage similarly as in [15, Remark 2.9]. It should be

also remarked that this safe-load condition works similarly for nonsimple materials.
Further note that (2.14h) represents in particular the semi-stability of the initial
condition and makes, with other assumption, the energy conservation (2.11c) pos-
sible. Note also that (2.14b) ensures that â used (2.11c) is single-valued although a
itself may be set-valued at 0. In (2.14f), one can easily consider a bit more general
situation when B1 would be convex, closed, and 0 ∈ intB1.

The main analytical result justifying rigorously the model (2.1)–(2.3) is:

Theorem 2.2. Under the assumptions (2.14), at least one weak solution to the
initial-boundary-value problem (2.1)–(2.3) according to Definition 2.1 does exist.

We will prove this existence result in Section 3 by a constructive time discreti-
sation method, cf. Lemma 3.1 with Proposition 3.3, which later in Sections 4 and
(5) allows for efficient computer implementation of the model. The uniqueness of
the solution however hardly can be expected.

Remark 2.3 (The dynamical model). During fast rupture, inertial effects may
be not negligible and even sometimes an important aspect of the model. Then,
(2.1a) augments by the inertial force ̺

..

u with ̺ > 0 denoting the mass density as

̺
..

u − div σ = g with σ = C(ζ)eel − div h.(2.15)

Relying on that the inertial term ̺
..

u is controlled in the space L2(0, T ;H2(Ω;R3)∗)
∩ Cweak([0, T ];L

2(Ω;R3)) or actually even in a slightly better space counting that
dev σ ∈ L∞(Q;Rd×d

sym), the weak formulation of (2.15) arising by double by-part
integration in time should accompany (2.11) with E augmented by the inertial en-
ergy

∫
Ω

̺
2 |
.

u|2dx but with (2.11a) holding only a.e. on [0, T ] and (2.11c) only as an

inequality. The functional in (3.5a) then augments by ̺τ−2|u− 2uk−1
τ + uk−2

τ |2/2.
Actually, it seems a matter of a physically-explainable fact that some difficulties the
energy conservation occurs probably due to integration of elastic waves with non-
linearly responding shear bands even if a Kelvin-Voigt-type visco-elastic rheology
would be involved, cf. also [47, Remark 6]. In this dynamical case, the fast dam-
age phases and subsequent fast plastic slips, called (tectonic) earthquakes, typically
emit elastic (seismic) waves. However, although some justification on theoretical
level, the computational modelling requires fine special techniques to suppress e.g.
parasitic numerical attenuation and the direct combination of elastic waves with
the inelastic processes is difficult.

Remark 2.4 (A non-Hookean model). The concept of nonsimple materials
allows an important generalization that E (t, ·, ζ, ·) is not quadratic and even non-
convex. More specifically, instead of the coercive term (eel, ζ) 7→ C(ζ)eel:eel =
1
2λ(ζ)I

2
1 + µ(ζ)I2 as used also here in (4.1) below, [33] proposed

(eel, ζ) 7→
1

2
λ(ζ)I21 + µ(ζ)I2 − γ(ζ)I1

√
I2 with I1 = tr eel, I2 = |eel|2.(2.16)

The elastic stress is then (λ(ζ)−γ(ζ)
√
I2)tr eel + (2µ(ζ)−γ(ζ)I1/

√
I2)eel, while the

driving stress for damage is σdam = 1
2λ

′(ζ)I21 + µ′(ζ)I2 − γ′(ζ)I1/
√
I2 and can now

be positive even without the contribution of the b-term. Such a model is widely
used in geophysics where it is believed to be responsible for instability of heavily
damaged rocks and leads to healing even without the b-term used in our model,
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but where it is used without the H-term and thus without any rigorous justification
of such models, cf. e.g. [23, 34] and references there. To preserve coercivity of the
model due to boundary conditions and the H-term, one can think about a certain
softening under very large strain by replacing 2-homogeneous form (2.16) by an
energy with only a linear growth

(eel, ζ) 7→
λ(ζ)I21 + 2µ(ζ)I2 − 2γ(ζ)I1

√
I2√

4 + ǫI2
(2.17)

with ǫ > 0 presumably small. A certain conceptual inconsistency remains in
damage-dependence of C but not of H, although H is assumed to be only small
in applications. Note that (3.5a) then represents a coercive but non-convex min-
imization problem and one should seek a global minimizer to ensure (3.9a). The
nonsimple-material concept allows for a simple modification of the convergence proof
in semistability and in the damage flow by compactness: more specifically, the bino-
mial trick in (3.17) is applied only to the dissipation and the H-terms, while (3.18)
is even simpler because C

′(ζ)eel is now bounded in L∞(Ω;Rd×d).

Remark 2.5 (A simple-material model). Considering H = 0 would bring vari-
ous difficulties. In particular, the L2(Q)-estimate of the driving force 1

2C
′(ζ)eel:eel,

which would need a regularity of eel that however does not seem available for plas-
ticity models without hardening, would become problematic. Note that the higher
integrability of eel⊗eel will be used e.g. in (3.18) and in (3.21) too. One should note
that the alternative idea to consider a nonlinear damage independent contribution
to the stress of the type +ε|eel|2eel would not allow to use the binomial trick in
the Step 3 in the proof of Proposition 3.3 below, while the strong convergence of
eel seems also not obvious to prove. A certain possibility might be in considering a
visco-elastic Kelvin-Voigt model with the stress D(ζ)

.

eel+C(ζ, eel) with a nonlinear,
monotone C(ζ, ·) having at most the growth |C(ζ, eel)| ≤ C(1 + |eel|1/2) so that∫ 1

0 ∂ζC(ζ, teel) dt can still be estimated in L2(Q) due to the D-term which can even
depend on ζ as in [38].

3. The discretisation, its stability and convergence. To implement the
initial-boundary-value problem (2.1)–(2.3) computationally, we need to make a time
and space discretisation.

Let us first make only a time discretisation with, for notational simplicity, a
constant time step τ > 0. As the inertial effects are not considered and thus the
system is only 1st-order in time, the dependence of τ > 0 on the time levels is easy
to consider for numerical analysis and to implement (as actually used in Section 4
below).

As E is convex in terms of (u, π) and separately in ζ too, and also as R additively

splits (
.

u,
.

π) from
.

ζ, the natural fractional-step strategy leading to an efficient and
numerically stable semi-implicit formula follows this splitting (u, π) from ζ. More
specifically, it reads as

div
(
C(ζk−1

τ )ekel,τ − div hkτ

)
+ gkτ = 0(3.1a)

with ekel,τ = e(uk
τ+uD(kτ))−πk

τ , hkτ = H∇ekel,τ , gkτ := g(kτ),

N
S(ζk−1

τ )

(πk
τ−πk−1

τ

τ

)
∋ dev

(
C(ζk−1

τ )ekel,τ − div hkτ

)
,(3.1b)

∂a
(ζkτ−ζk−1

τ

τ

)
+

1

2
C

′(ζkτ )e
k
el,τ : ekel,τ(3.1c)

− κ div
(
(1+ε|∇ζkτ |r−2)∇ζkτ

)
+N[0,1](ζ

k
τ ) ∋ b′(ζkτ ),
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together with the corresponding boundary conditions

uk
τ = 0 on ΓD,(3.2a)

(
C(ζk−1

τ )ekel,τ − div hkτ
)
· ~n− div

S
(hkτ~n) = fk

τ on ΓN with fk
τ := f(kτ),(3.2b)

∇ζkτ · ~n = 0 and hkτ :(~n⊗ ~n) = 0 on Γ,(3.2c)

to be solved first for (uk
τ , π

k
τ ) from (3.1a,b)–(3.2a,b) and then for ζkτ from (3.1c)–

(3.2c) recursively for k = 1, ..., T/τ . Both these boundary-value problems have
potentials and thus leads to minimization problems. Moreover, as C′ and −b′ are
nondecreasing (again with respect to the Löwner’s ordering) and a is convex as
assumed in (2.14), both these boundary-value problems leads to convex variational
problems, cf. (3.5) below.

Let us define the piecewise affine interpolant uτ by

uτ (t) :=
t− (k−1)τ

τ
uk
τ +

kτ − t

τ
uk−1
τ for t ∈ [(k−1)τ, kτ ](3.3a)

with k = 0, ..., T/τ . Besides, we define also the left-continuous piecewise constant
interpolant uτ and the right-continuous piecewise constant interpolant uτ by

uτ (t) := uk
τ for t ∈ ((k−1)τ, kτ ] , k = 1, ..., T/τ,(3.3b)

uτ (t) := uk−1
τ for t ∈ [(k−1)τ, kτ) , k = 1, ..., T/τ.(3.3c)

Similarly, we define also πτ , πτ , πτ , ζτ , ζτ , ḡτ , etc.

Lemma 3.1 (Existence and stability of discrete solutions). The recursive boun-
dary-value problem (3.1)–(3.2) has a weak solution (uk

τ , π
k
τ , ζ

k
τ ) with uk

τ ∈ BD(Ω;Rd),
πk
τ ∈ W 1,r(Ω), and ζkτ ∈ Meas(Ω;Rd×d

dev ) with ekel,τ = e(uk
τ )−πk

τ ∈ H1(Ω;Rd×d
sym) sat-

isfying the a-priori estimates
∥∥uτ

∥∥
L∞(0,T ;BD(Ω;Rd))

≤ C,(3.4a)
∥∥πτ

∥∥
L∞(0,T ;Meas(Ω;Rd×d

dev
))∩BV([0,T ];L1(Ω;Rd×d

dev
))
≤ C,(3.4b)

∥∥e(uτ)−πτ

∥∥
L∞(0,T ;H1(Ω;Rd×d

sym ))
≤ C,(3.4c)

∥∥ζτ
∥∥
L∞(0,T ;W 1,r(Ω))∩H1(0,T ;L2(Ω))

≤ C,(3.4d)
∥∥div((1+ε|∇ζτ |r−2)∇ζτ )

∥∥
L2(Q)

≤ C.(3.4e)

Proof. The existence of weak solutions to (3.1) can be justified by the di-
rect method when realizing the variational structure: the boundary-value problem
(3.1a,b)–(3.2a,b) represents a minimization problem





Minimize (u, π) 7→ E (kτ, u, π, ζk−1
τ ) + R(ζk−1

τ ;π−πk−1
τ , 0)

subject to u ∈ BD(Ω;Rd), π ∈ Meas(Ω;Rd×d
dev ),

e(u)−π∈H1(Ω;Rd×d
sym ), u⊙ ~ndS+ π = 0 on ΓD,

(3.5a)

while the boundary-value problem (3.1c)–(3.2c) represents a minimization problem





Minimize ζ 7→ E (kτ, uk
τ , π

k
τ , ζ) + τR

(
ζk−1
τ ; 0,

ζ−ζk−1
τ

τ

)

subject to ζ ∈ W 1,r(Ω), 0 ≤ ζ ≤ 1 on Ω,
(3.5b)

whose solutions do exist by coercivity, convexity, and lower semicontinuity argu-
ments. Here the safe-load qualification (2.14g) of f and g is to be used.
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Further, we test (3.1) respectively by uk
τ−uk−1

τ , πk
τ−πk−1

τ , and ζkτ−ζk−1
τ . Re-

lying on the convexity of E (kτ, ·, ·, ζk−1
τ ) and of E (kτ, uk

τ , π
k
τ , ·), we obtain the esti-

mates

E (kτ, uk
τ , π

k
τ , ζ

k−1
τ ) +

∫

Ω

σ
Y
(ζk−1

τ )|πk
τ−πk−1

τ |(dx) ≤ E (kτ, uk−1
τ , πk−1

τ , ζk−1
τ ),(3.6a)

E (kτ, uk
τ , π

k
τ , ζ

k
τ ) +

∫

Ω

â(ζkτ−ζk−1
τ ) dx ≤ E (kτ, uk

τ , π
k
τ , ζ

k−1
τ )(3.6b)

with â from (2.11c). By summing these estimates, we can enjoy the cancellation of
the terms E (kτ, uk

τ , π
k
τ , ζ

k−1
τ ) in (3.6a) and (3.6b), and we thus obtain

E (kτ, uk
τ , π

k
τ , ζ

k
τ ) + R̂(ζk−1

τ ;πk
τ−πk−1

τ , ζkτ−ζk−1
τ ) ≤ E (kτ, uk−1

τ , πk−1
τ , ζk−1

τ )(3.7)

= E ((k−1)τ, uk−1
τ , πk−1

τ , ζk−1
τ ) +

∫ kτ

(k−1)τ

∂tE (t, uk−1
τ , πk−1

τ , ζk−1
τ ) dt

with the dissipation rate R̂ defined as

R̂(ζ;
.

π,
.

ζ) :=

∫

Ω

σ
Y
(ζ)| .π|(dx) +

∫

Ω

â(
.

ζ) dx with â(
.

ζ) =
.

ζ∂a(
.

ζ).(3.8)

By summing (3.7) over k we enjoy a “telescopic” cancellation effect. Realizing (2.13)
and (2.14g), by the discrete Gronwall inequality, we obtain (3.4a–d).

Having estimated ∂a(
.

ζτ )+
1
2C

′(ζ)eel,τ : eel,τ − b′(ζτ ) as a bounded set in L2(Q)
uniformly with respect to τ > 0, we can estimate also div((1+ε|∇ζkτ |r−2)∇ζkτ ) in
the same space. For this, we test (3.1c) by −div((1+ε|∇ζkτ |r−2)∇ζkτ ). Here, the
important ingredient is, written rather formally, the following estimate

∫

Ω

N[0,1](ζ
k
τ )
(
−div((1+ε|∇ζkτ |r−2)∇ζkτ )

)
dx

= −
∫

Ω

∂δ[0,1](ζ
k
τ )
(
div((1+ε|∇ζkτ |r−2)∇ζkτ )

)
dx

=

∫

Ω

∇
(
∂δ[0,1](ζ

k
τ )
)
·(1+ε|∇ζkτ |r−2)∇ζkτ dx

=

∫

Ω

∂2
δ[0,1](ζ

k
τ ) · ∇ζkτ ·(1+ε|∇ζkτ |r−2)∇ζkτ dx ≥ 0

which is due to the positive-semidefiniteness of the (generalized) Jacobian ∂2
δ[0,1]

of the convex function δ[0,1] and which is to be proved rigorously by a mollification
of δ[0,1], cf. [49, Lemma 1] for technical details. Thus we obtain (3.4e).

Lemma 3.2 (Discrete analog of (2.11)). With the notation (3.3) and eel,τ =
e(uτ+uD,τ )− πτ , the discrete solution obtained by the recursive scheme (3.1)–(3.2)
satisfies:

E (t, uτ (t), πτ (t), ζτ (t)) ≤ E (t, ũ, π̃, ζ
τ
(t)) + R(ζ

τ
(t); π̃ − πτ (t), 0)(3.9a)

for all t ∈ [0, T ] and all (ũ, π̃) as in (2.11a), and

∫

Q

a(v) +
(1
2
C

′(ζ
τ
)eel,τ : eel,τ − κ div

(
(1+ε|∇ζτ |r−2)∇ζτ

)
(3.9b)

− b′(ζτ ) + ξτ

)
(v −

.

ζ τ ) dxdt ≥
∫

Q

a(
.

ζ τ ) dxdt
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holds for all v ∈ L2(Q) and for some ξτ ∈ L2(Q) such that ξτ ∈ N[0,1](ζτ ) a.e. on
Q, and eventually the energy (im)balance holds:

E (T, uτ (T ), πτ (T ), ζτ (T )) +

∫ T

0

R̂(ζ
τ
;
.

πτ ,
.

ζ τ ) dt(3.9c)

≤ E (0, u0, π0, ζ0) +

∫ T

0

∂tE (t, uτ (t), πτ (t), ζτ (t)) dt

with the overall dissipation rate R̂ from (3.8). Moreover, the a-priori estimate
holds:

∥∥ξτ
∥∥
L2(Q)

≤ C.(3.10)

Proof. The boundary-value problem (3.1a,b)–(3.2a,b) represents a minimiza-
tion problem (3.5a) which can be tested by (uk−1

τ , πk−1
τ ) and, by using a triangle

inequality facilitated by the 1-homogeneity of R(ζ; ·,
.

ζ), we obtain (3.9a); actually,
this is a standard argument in the theory of rate-independent processes [36,37,39].

In the case of the boundary-value problem (3.1c)–(3.2c), the variational inequal-
ity (3.9b) represents just the conventional weak formulation of the minimization
problem (3.5b) summed for all time levels. Then, (3.9c) follows by summing (3.7)
for k = 1, ..., T/τ .

Eventually, the estimate (3.10) follows by comparison from the inclusion ξτ ∈
b′(ζτ )− 1

2C
′(ζ

τ
)eel,τ : eel,τ +κ div((1+ε|∇ζτ |r−2)∇ζτ )− ∂a(

.

ζτ ) and by the already
obtained estimates.

Proposition 3.3 (Convergence). Let the assumptions (2.14) be satisfied and
the approximate solution (uτ , πτ , ζτ , ξτ ) be obtained by the recursive scheme (3.1)–
(3.2). Then there is a subsequence and (u, π, ζ, ξ) such that

uτ (t) → u(t) weakly* in BD(Ω;Rd),(3.11a)

πτ (t) → π(t) weakly* in Meas(Ω;Rd×d
dev ),(3.11b)

eel,τ(t) = e(uτ (t))−πτ (t) → e(u(t))−π(t) = eel(t) weakly in H1(Ω;Rd×d
sym),(3.11c)

ζτ (t) → ζ(t) and ζ
τ
(t) → ζ(t) weakly in W 1,r(Ω)(3.11d)

holding for any t∈ [0, T ], and further also

ζ
τ
→ ζ strongly in L∞(Q), and(3.11e)

ξτ → ξ weakly in L2(Q)(3.11f)

with ξτ from Lemma 3.2. Moreover, any (u, π, ζ) obtained by such a way is a weak
solution according Definition 2.1 with ξ in (2.11b) taken from (3.11f).

Proof. For clarity of exposition, we divide the proof into five particular steps.

Step 1: Selection of a converging subsequence. By Banach’s selection principle,
we select a weakly* converging subsequence with respect to the norms from the
estimates (3.4) and (3.10); namely, for some u, π, ζ, and ξ we have

uτ → u weakly* in L∞(0, T ; BD(Ω;Rd)),(3.12a)

πτ → π weakly* in L∞(0, T ;Meas(Ω;Rd×d
dev )) ∩ BV([0, T ];L1(Ω;Rd×d

dev )),(3.12b)

eel,τ = e(uτ )−πτ → eel = e(u)−π weakly* in L∞(0, T ;H1(Ω;Rd×d
sym)),(3.12c)

ζτ → ζ weakly* in L∞(0, T ;W 1,r(Ω)) ∩ H1(0, T ;L2(Ω)),(3.12d)

div((1+ε|∇ζτ |r−2)∇ζτ ) → div((1+ε|∇ζ|r−2)∇ζ) weakly in L2(Q),(3.12e)

ξτ → ξ weakly in L2(Q);(3.12f)
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actually, (3.12e) uses also the maximal monotonicity of the involved nonlinear op-
erator. Moreover, by the BV-estimates and the Helly’s selection principle, we can
also count with (3.11b) and ζτ (t) → ζ(t) weakly in L2(Ω), and then by the a-priori
W 1,r-estimate (3.4d) also both the first and the second convergence in (3.11d); both
limits in (3.11d) are actually the same because the limit ζ is continuous in time into
L2(Ω) due to the the a-priori H1-estimate (3.4d).

By the compact embedding W 1,r(Ω) ⋐ C(Ω) and by the Arzelà-Ascoli modifi-
cation of the Aubin-Lions theorem, cf. [46, Lemma 7.10], we have the compact em-
bedding Cweak([0, T ];W

1,r(Ω)) ∩H1(0, T ;L2(Ω)) ⋐ C([0, T ];C(Ω)) = C(Q). Thus,
from the estimate (3.4d), we obtain ζτ → ζ in C(Q̄). Further, we have

∥∥ζ
τ
− ζτ

∥∥2
L∞(0,T ;L2(Ω))

= sup
0≤t≤T

∫

Ω

∣∣ζ
τ
(t, x)− ζτ (t, x)

∣∣ dx(3.13)

≤
∫

Ω

(
sup

0≤t≤T
|ζ

τ
(t, x)− ζτ (t, x)|2

)
dx

=

∫

Ω

max
k=1,...,T/τ

∣∣ζkτ − ζk−1
τ

∣∣2dx ≤
∫

Ω

T/τ∑

i=1

∣∣ζkτ − ζk−1
τ

∣∣2dx

=

∫

Ω

τ

T/τ∑

i=1

τ
∣∣∣ζ

k
τ − ζk−1

τ

τ

∣∣∣
2

dx = τ

∫

Q

∣∣.ζτ
∣∣2 dxdt.

Then, using the Gagliardo-Nirenberg inequality ‖z‖L∞(Ω) ≤ Cε‖z‖εL2(Ω)‖z‖1−ε
W 1,r(Ω)

for some small 0 < ε < 1 depending on r > d, we can interpolate (3.13), i.e.

‖ζ
τ
− ζτ‖L∞(0,T ;L2(Ω)) ≤

√
τ‖
.

ζτ‖L2(Q), with ‖ζ
τ
− ζτ‖L∞(0,T ;W 1,r(Ω)) ≤ C to obtain

‖ζ
τ
− ζτ‖L∞(Q) → 0. Thus (3.11e) is proved.

Step 2: Energy inequality. The convergence (3.12) allows already for passage in the
limit in the inequality (3.9c) by lower semicontinuity in the left-hand side and by
continuity in the right-hand side of (3.9c).

The limit passage in E (T, uτ (T ), πτ (T ), ζτ (T )) is by the convexity of E (T, ·, ·, ζ)
and the compactness in ζ, while for

∫ T

0
∂tE (t, uτ (t), πτ (t), ζτ (t)) dt we use the con-

tinuity of ∂tE (t, ·, ·, ·) from (2.13) and the Lebesgue theorem; more in detail, we use
the assumptions (2.14g) and the weak convergence (3.11c).

The only remaining (and nontrivial) term is the dissipation R̂-term. Let us
note that, as the discrete flow rule NS(ζ

τ
)(
.

πτ ) ∋ dev(C(ζ
τ
)eel,τ − div hkτ ) as well as

the dissipation rate σ
Y
(ζ

τ
)| .πτ | uses ζτ and not just ζτ , we needed to prove (3.11e)

in Step 1. Therefore, we have at disposal the estimate
∥∥(σ

Y
(ζ

τ
)− σ

Y
(ζ))| .πτ |

∥∥
Meas(Q)

≤ ℓσ
Y

∥∥ζ
τ
− ζ

∥∥
L∞(Q)

∥∥ .πτ

∥∥
Meas(Q)

→ 0(3.14)

with ℓσ
Y

the modulus of Lipschitz continuity of σ
Y
on [0, 1], cf. the assumption

(2.14f). Then, using also ζτ → ζ in C(Q) already proved, we obtain

lim inf
τ→0

∫ T

0

R̂(ζ
τ
;
.

πτ ,
.

ζτ ) dt = lim inf
τ→0

∫

Q

σ
Y
(ζ

τ
)
∣∣ .πτ

∣∣(dxdt)(3.15)

= lim
τ→0

∫

Q

(
σ

Y
(ζ

τ
)− σ

Y
(ζ)

)∣∣ .πτ

∣∣(dxdt) + lim inf
τ→0

∫

Q

σ
Y
(ζ)

∣∣ .πτ

∣∣(dxdt)

≥ 0 +

∫

Q

σ
Y
(ζ)

∣∣ .π
∣∣(dxdt);

for the used weak* lower semicontinuity of
.

π 7→
∫
Q
σ

Y
(ζ)| .π|(dxdt) we refer e.g.

to [4, 17].
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Step 3: Limit passage in the semi-stability (3.9a) towards (2.11a). For any (ũ, π̃)
used in (3.9a), we have to find at least one so-called mutual recovery sequence
{(ûτ , π̂τ )}τ>0 in the sense that

lim sup
τ→0

E (t, ũτ , π̃τ , ζτ (t)) + R(ζ
τ
(t); π̃τ−πτ (t), 0)− E (t, uτ (t), πτ (t), ζτ (t))

≤ E (t, ũ, π̃, ζ(t)) + R(ζ
τ
(t); π̃−π(t), 0)− E (t, u(t), π(t), ζ(t)).

We choose

ũτ = uτ (t) + ũ − u(t) and π̃τ = π̄τ (t) + π̃ − π(t).(3.16)

Then, by using the cancellation and the binomial formula of the type a2 − b2 =

(a+b)(a−b) here in the form like Cẽ:ẽ − Ce:e = C(ẽ+e):(ẽ−e) and H∇ẽ
...∇ẽ −

H∇e
...∇e = H∇(ẽ+e)

...∇(ẽ−e), cf. (2.12), and by making the substitution (3.16), we

have

lim
τ→0

E (t, ũτ , π̃τ , ζτ (t)) + R(ζ
τ
(t); π̃τ−πτ (t), 0)− E (t, uτ (t), πτ (t), ζτ (t))(3.17)

= lim
τ→0

(∫

Ω

1

2
C(ζ

τ
(t))

(
e(ũτ+uτ (t)+2uD(t))−π̃τ−πτ (t)

)

:
(
e(ũτ−uτ (t))−π̃τ+πτ (t)

)
− g(t)·(ũτ−uτ (t))

+
1

2
H∇

(
e(ũτ+uτ (t)+2uD(t))−π̃τ−πτ (t)

)

...∇
(
e(ũτ−uτ (t))−π̃τ+πτ (t)

)
dx

+

∫

Ω

[
σ

Y
(ζ

τ
(t))

∣∣π̃τ−πτ (t)
∣∣(dx) −

∫

ΓN

f(t)·(ũτ−uτ (t)) dS

)

= lim
τ→0

(∫

Ω

1

2
C(ζ

τ
(t))

(
e(ũτ+uτ (t)+2uD(t))−π̃τ−πτ (t)

)

:
(
e(ũ−u(t))−π̃+π(t)

)
− g(t)·(ũ−u(t))

+
1

2
H∇

(
e(ũτ+uτ (t)+2uD(t))−π̃τ−πτ (t)

) ...∇
(
e(ũ−u(t))−π̃+π(t)

)
dx

+

∫

Ω

σ
Y
(ζ

τ
(t))

∣∣π̃−π(t)
∣∣(dx)

)
−
∫

ΓN

f(t)·(ũ−u(t)) dS

=

∫

Ω

1

2
C(ζ(t))

(
e(ũ+u(t)+2uD(t))−π̃−π(t)

)
:
(
e(ũ−u(t))−π̃+π(t)

)

+
1

2
H∇

(
e(ũ+u(t)+2uD(t))−π̃−π(t)

) ...∇
(
e(ũ−u(t))−π̃+π(t)

)
dx

+

∫

Ω

σ
Y
(ζ)

∣∣π̃−π(t)
∣∣(dx)−

∫

Ω

g(t)·(ũ−u(t)) dx−
∫

ΓN

f(t)·(ũ−u(t)) dS

= E (t, ũ, π̃, ζ(t)) + R(ζ(t); π̃−π(t), 0)− E (t, u(t), π(t), ζ(t)).

Note that we used also σ
Y
(ζ

τ
(t))|π̃−π(t)| → σ

Y
(ζ)|π̃−π(t)| in Meas(Ω) due to the

continuity assumption (2.14f) on σ
Y
and due to the convergence ζ

τ
(t) → ζ(t) in

C(Ω̄) which follows from the second estimates in (3.11d) and the compact embed-
ding W 1,r(Ω) ⊂ C(Ω̄).

Step 4: Limit passage in the damage flow rule (3.9b) towards (2.11b). We need
to prove that eel,τ → eel strongly in L2(Q;Rd×d

sym). To this goal, we first realize

that ∇eel,τ (t) → ∇eel(t) weakly in L2(Ω;Rd×d×d) as pronounced in (3.11c); here
we use the uniqueness of stresses (counting the already selected subsequence (3.12)
and its limit), cf. the arguments in [11, Thm.5.9] or also in [35, Sect.4.2.3] for
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simple materials without damage. Here, using also absolute continuity valid due to
viscosity in damage flow rule we obtain

1

2

d

dt

(〈
H∇(e

(1)
el −e

(2)
el ),∇(e

(1)
el −e

(2)
el )

〉
+
〈
C(ζ)(e

(1)
el −e

(2)
el ), e

(1)
el −e

(2)
el

〉)
(3.18)

= −1

2

〈
C

′(ζ)
.

ζ(e
(1)
el −e

(2)
el ), e

(1)
el −e

(2)
el

〉

≤ max
0≤z≤1

|C′(z)|
∥∥.ζ

∥∥
L2(Ω)

∥∥e(1)el −e
(2)
el

∥∥2
L4(Ω;Rd×d)

.

Note that, for H = 0 and C′ = 0, it reduces to the simple inequality 〈σ(1)
el −

σ
(2)
el ),

.

e
(1)
el − .

e
(2)
el 〉 ≤ 0 used in [11, 35]. Here, we should integrate (3.18) over [0, t],

use positive-definiteness of H and C(·), and eventually Gronwall’s inequality, which
works here certainly even for d ≤ 4 for which the embedding H2(Ω) ⊂ W 1,4(Ω)

holds. By this way, we obtain e
(1)
el = e

(2)
el . Thus, using the compact embed-

ding, we also know that eel,τ (t) → eel(t) strongly in L6−ǫ(Ω;Rd×d
sym) if d ≤ 3.

Then, by the uniform bounds in time and by Lebesgue’s theorem used e.g. to
t 7→ ‖eel,τ (t) − eel(t)‖L1(Ω;Rd×d

sym ), we can see that eel,τ → eel strongly even in

L1/ǫ(0, T ;L6−ǫ(Ω;Rd×d
sym )) with each small ǫ > 0.

Then the only difficult remaining terms are κ
∫
Q div((1+ε|∇ζτ |r−2)∇ζτ )

.

ζτ dxdt

and
∫
Q ξτ (−

.

ζτ ) dxdt because so far we know only the weak convergence of
.

ζτ , of

div((1+ε|∇ζτ |r−2)∇ζτ ), and of ξτ in L2(Q). We indeed cannot expect the limit,
but we can proceed the following estimate:

lim sup
τ→0

∫

Q

div((1+ε|∇ζτ |r−2)∇ζτ )
.

ζτ dxdt(3.19)

= − lim inf
τ→0

∫

Q

(1+ε|∇ζτ |r−2)∇ζτ ·∇
.

ζτ dxdt

≤ lim sup
τ→0

∫

Ω

1

2

∣∣∇ζ0|2 +
ε

r

∣∣∇ζ0
∣∣r − 1

2

∣∣∇ζτ (T )
∣∣2 − ε

r

∣∣∇ζτ (T )
∣∣r dx

≤
∫

Ω

1

2

∣∣∇ζ0|2 +
ε

r

∣∣∇ζ0
∣∣r − 1

2

∣∣∇ζ(T )
∣∣2 − ε

r

∣∣∇ζ(T )
∣∣r dx

=

∫

Q

div((1+ε|∇ζ|r−2)∇ζ)
.

ζ dxdt

where we used (3.11d) at t = T and where the last equality relies on the regularity
property div((1+ε|∇ζ|r−2)∇ζ) ∈ L2(Q) and can be proved either by a mollification
in space [41, Formula (3.69)] and or in time by a time-difference technique [21,
Formula (2.15)].

The convergence in the inclusion ξτ ∈ N[0,1](ζτ ) is easy due to the maximal

monotonicity of N[0,1](·) and the convergences (3.11f) and ζτ → ζ strongly in L2(Q)
which can be proved by a generalized version of the Aubin-Lions theorem, cf. [46,
Corollary 7.9], or here even in L∞(Q) was proved as in Step 1. Having proved
ξ ∈ N[0,1](ζ), we can also see that

lim sup
τ→0

∫

Q

ξτ (−
.

ζτ ) dxdt = lim sup
τ→0

(∫

Ω

δ[0,1](ζ0) dx−
∫

Ω

δ[0,1](ζτ (T )) dx

)
(3.20)

≤
∫

Ω

δ[0,1](ζ0) dx−
∫

Ω

δ[0,1](ζ(T )) dx =

∫

Q

ξ(−
.

ζ) dxdt,

which is needed for the limit passage in (3.9b); in fact, even the limit and the
equality hold in (3.20).
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Step 5: Energy equality. We test (2.1c) which holds a.e. on Q by
.

ζ. This test is

legal as all terms in (2.1c) as well as
.

ζ are in L2(Q). We again use the last equality

in (3.19). Moreover, as ξ ∈ ∂δ[0,1](ζ), we have
∫
Q
ξ
.

ζ dxdt =
∫
Ω
δ[0,1](ζ(T )) −

δ[0,1](ζ(0))dx = 0− 0 = 0. We thus obtain

∫

Ω

κ

2

∣∣∇ζ(T )
∣∣2 + εκ

r

∣∣∇ζ(T )
∣∣r − b(ζ(T )) dx(3.21)

+

∫

Q

1

2
C

′(ζ)eel : eel + â(
.

ζ) dxdt =

∫

Ω

κ

2

∣∣∇ζ0|2 +
εκ

r

∣∣∇ζ0
∣∣r − b(ζ0) dx.

Furthermore, we test formally (2.1a) by
.

u and (2.1b) by
.

π. The rigorous cal-
culations uses the approximation of the Stieltjes-type integral by Riemann sums
and semistability, cf. [47, Formulas (76)–(82)] which adapts technique developed
in the theory of rate-independent processes [13, 36]. Here, as C is not constant,

we will still see the term (12C
′(ζ)eel:eel)

.

ζ which results by the formal substitution

C(ζ)eel:
.

eel =
∂
∂t

1
2C(ζ)eel:eel − (12C

′(ζ)eel:eel)
.

ζ; note that C(ζ)eel:
.

eel is not well de-

fined since
.

eel is not well controlled. Thus we obtain
∫

Ω

1

2
C(ζ(T ))eel(T ):eel(T ) +

1

2
H∇eel(T )

...∇eel(T ) dx(3.22)

+

∫

[0,T ]×Ω

σ
Y
(ζ)

∣∣ .π
∣∣(dxdt) =

∫

Q

(1
2
C

′(ζ)eel:eel

)
.

ζ dxdt

+

∫

Ω

1

2
C(ζ0)eel(0):eel(0) +

1

2
H∇eel(0)

...∇eel(0) dx.

Summing (3.21) and (3.22) then gives the energy balance (2.11c).

Further, to implement the model computationally, we need to make a spatial
discretisation of the time-discrete scheme (3.1)–(3.2). To this goal, we use the
lowest-order conformal finite-element method (FEM). In view of the used regular-
ity (3.4e), the straightforward discretisation therefore employs P2-elements for u
and ζ and P1-elements for π. Rigorously speaking, due to the assumed smooth-
ness (2.14a), one should consider FEM on a nonpolyhedral, curved domain. The
minimization problems (3.5) are then to be restricted on the corresponding finite-
dimensional subspaces, and the solution thus obtained is denoted by uk

τh, π
k
τh, and

ζkτh, with h > 0 denoting the mesh size. By this way, we obtain also the piecewise
constant and affine interpolants in time, denoted by uτh and uτh, πτh and πτh,
and eventually ζτh and ζτh. Also, ξτh can be obtained analogously as before in
Lemma 3.2.

Proposition 3.4 (Convergence of the FEM discretisation). Let (2.14) be sat-
isfied, and the P2-FEM for u and ζ and P1-FEM for π is applied with h > 0 the
mesh size. Then:
(i) the a-priori estimates (3.4) and (3.10) hold when modified for uτh, πτh, ζτh,

and ξτh with C independent of τ > 0 and now of h > 0, too.

(ii) Moreover, these fully discrete solutions converge (in terms of subsequences)
in the mode as (3.11) towards weak solutions according Definition 2.1 when
simultaneously τ → 0 and h → 0.

The modification of the proof of this joint convergence of time-and-space dis-
cretisation is rather routine, the explicit construction of the mutual recovery se-
quence (3.16) taking additionally a finite-element approximation like in [5], namely

ũτh = uτh(t) +Π
(2)
h (ũ− u(t)) and π̃τh = π̄τh(t) +Π

(1)
h (π̃− π(t)) with Π

(1)
h and Π

(2)
h

denoting a projector onto the P1- and P2 FE-spaces, respectively; we omit details
about this modification.



Perfect plasticity with damage and healing. 17

Remark 3.5 (Damage discretised by P1-elements). The damage flow rule
(2.1c) itself suggests to use only P1-elements for ζ which are, naturally, more easy
to implement than the P2-elements used in Proposition 3.4. Then however (3.4e)
cannot be expected for the FEM approximation of ζ and also a direct P-1 FEM
analog of (3.9b) cannot hold. Instead of (3.9b), we have

∫

Q

(
a(v) +

(1
2
C

′(ζ
τh
)eel,τ : eel,τ − b′(ζτh) + ξτh

)
(v −

.

ζτh)(3.23)

+ κ
(
(1+ε|∇ζτh|r−2)∇ζτh

)
· ∇(v−

.

ζτh)

)
dxdt ≥

∫

Q

a(
.

ζτh) dxdt

for any v valued in the finite-dimensional P1-FE subspace. Yet, the sequence

{∇
.

ζτh}τ>0,h>0 cannot be expected bounded. Thus, for the limit passage, instead of
(3.23) one should rather use the discrete by-part integration (summation) in time
like we did in (3.19), leading to

∫

Q

(
a(v) +

(1
2
C

′(ζ
τh
)eel,τ : eel,τ − b′(ζτh) + ξτh

)
(v −

.

ζτh)(3.24)

+ κ
(
(1+ε|∇ζτh|r−2)∇ζτh

)
· ∇v

)
dxdt+

∫

Ω

κ

2
|∇ζ0|2+

εκ

r
|∇ζ0|r dx

≥
∫

Q

a(
.

ζτh) dxdt+

∫

Ω

κ

2
|∇ζτh(T )|2+

εκ

r
|∇ζτh(T )|r dx

which holds for any v valued in the P1-finite-element space. Now, however, we do
not have the estimates (3.4e) and (3.10). Anyhow, the limit passage seems possible
by using the strategy proposed by Colli and Visintin [8], cf. also [46, Sect. 11.1.2],
allowing for the stored energy E taking values +∞ but relying on boundedness of
R, as indeed our situation. The convergence is, of course, in a weaker mode than
(3.11). Only after this limit passage, we can prove the regularity (2.10e) and go
back to the weak formulation (2.11b) by using also the arguments which we use for
the last equality in (3.19).

4. Implementation of the fully discrete model. The implementation of
the model addressed in Proposition 3.4 is rather cumbersome because of high-order
FEM involved. Therefore we dare make few shortcuts: P1-elements are used for
damage ζ according to Remark 3.5. Moreover, the (anyhow usual small and even
not reliably known) hyperelasticity moduli are neglected, i.e. H = 0 and then small-
strain tensor gradients ∇e(u) are not involved. Consequently, only P1-elements can
be used for displacement u and P0-elements for plastic strain. Only the case d = 2
is treated, so the previous analytical part have required r > 2 and we dare make
another (indeed small) shortcut by considering r = 2 (and therefore by putting
ǫ = 0 the damage-gradient term in (2.9b) become quadratic).

The material is assumed isotropic with properties linearly dependent on dam-
age. The isotropic elasticity tensor is assumed as

(4.1) Cijkl(ζ) := [(λ1−λ0)ζ + λ0]δijδkl + [(µ1−µ0)ζ + µ0](δikδjl + δilδjk)

where λ1, µ1 and λ0, µ0 are two sets of Lamé parameters satisfying

λ1 ≥ λ0 ≥ 0, µ1 ≥ µ0 > 0.

Here, δ denotes the Kronecker symbol. This choice implies that the elastic-moduli
tensor satisfies (2.14d) and it is even positive-definite-valued (and therefore invert-
ible). Values of C

D
(ζ) and c

S
(ζ) in (2.14d) follow from a decomposition of the

elastic strain energy 1
2C(·)e:e into the deviatoric and the volumetric parts of the
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strain tensor e. The stored energy of damage compliant with (2.14c) is assumed in
the form

(4.2) b(ζ) := b1 ζ,

where b1 > 0 means the specific energy stored in the microcracks/microvoids created
by damaging the material. By healing, this energy can be recovered back. The
plastic yield stress compliant with (2.14f) is assumed in the form

(4.3) σ
Y
(ζ) =

(
σY,1−σY,0

)
ζ + σY,0,

where σY,1 ≥ σY,0 > 0. The damage-dissipation potential is assumed in the piece-
wise quadratic form

(4.4) a(
.

ζ) :=
1

2
a1(
.

ζ+)2 +
1

2
a2(
.

ζ−)2 + a3(
.

ζ−),

where
.

ζ+ = max{0,
.

ζ} and
.

ζ− = max{−
.

ζ, 0} and a1, a2, a3 are given (material)
nonnegative parameters. Values of a1 and a2 determine rate-dependent parts of
healing and damage model components and the value of a3 a rate-independent
damage activation. The form of a(·) satisfies (2.14b).

With respect to the fractional-step strategy of Section 3, we solve first for
(uk

τh, π
k
τh) from the elastoplastic minimization problems (3.5a) and then ζkτ from

the damage minimization problem (3.5b) recursively for k = 1, ..., T/τ . In view of
the above shorcuts and simplifications, the minimization problems (3.5a) and (3.5b)
rewrite as

(uk
τh, π

k
τh) = argmin

u,π

∫

Ω

(
1

2
C(ζk−1

τh )
(
e(u+uk

D,τh)−π
)
:
(
e(u+uk

D,τh)−π
)

(4.5)

− gkτh·u+ σ
Y
(ζk−1

τh )|π−πk−1
τh |

)
dx−

∫

ΓN

fk
τh·u dS,

ζkτh = argmin
ζ

∫

Ω

(
1

2
C(ζ)

(
e(uk

τh+uk
D,τh)−πk

τh

)
:
(
e(uk

τh+uk
D,τh−πk

τh

)
−b1ζ(4.6)

+
1

2
κ|∇ζ|2 + 1

2τ
a1(ζ−ζk−1

τh )+ +
1

2τ
a2(ζ−ζk−1

τh )− + a3(ζ−ζk−1
τh )−

)
dx,

where u is searched over P1-elements satisfying Dirichlet boundary conditions, π
over P0-elements satisfying elementwise trace-free condition tr π = 0 and ζ over P1-
elements satisfying the nodal box constraint ζ ∈ [0, 1]. The form of (4.5) corresponds
to the minimization problem of perfect plasticity with the elasticity tensor and the
plastic yield stress depending on the damage variable in the previous time level. The
energy in (4.5) is transformed to an energy in the variable u only by substituting
the elementwise dependency of π on u, see [1, 7] for more details. Then, the quasi-
Newton iterative methods is applied to solve uk

τh while πk
τh is reconstructed from it.

More details on this specific elastoplasticity solver can be found e.g. in [7, 19, 20].

The damage minimization problem (4.6) represents a minimization of a nons-
mooth but strictly convex functional. It can be reformulated to a modified problem

argmin
ζ,z+,z−

∫

Ω

(
1

2
C(ζ)

(
e(uk

τh+uk
D,τh)−πk

τh

)
:
(
e(uk

τh+uk
D,τh−πk

τh

)
(4.7a)

− b1ζ +
1

2
κ|∇ζ|2 + 1

2τ
a1(z+)

2 +
1

2τ
a2(z−)

2 + a3z−

)
dx,

where z+ = (ζ−ζk−1
τh )+, z− = (ζ−ζk−1

τh )−(4.7b)
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are additional ‘update’ variables. It should be noted that ζ and ζk−1
τh are P1-

functions and therefore z+ and z− are not P1-functions in general on elements
where nodal values of ζ−ζk−1

τh alternate signs. However, if we restrict z+, z− to P1-
functions while (4.7b) is required on at nodal points, then (4.7a) actually represents
a conventional quadratic-programming problem (QP), in which we require a linear
and box constraints

(4.8) ζ = ζk−1
τh + z+ − z−, z+ ∈ [0, 1− ζk−1

τh ], z− ∈ [0, ζk−1
τh ].

A quadratic cost functional of this QP problem has a positive-semidefinite Jacobian,
since there are no Dirichlet boundary conditions on the damage variable ζ. Note
that the optimal pair (z+, z−) must satisfy z+z−=0 in all nodes, i.e. both variables
cannot be positive. This can be easily seen by contradiction: If z+z−>0 in some
node, then a different pair (z+−min{z+, z−}, z−−min{z+, z−}) would again satisfy
the constraints (4.8) but would provide a smaller energy value in (4.7a).

Our MATLAB implementation is available for download at Matlab Central as
a package Continuum undergoing combined elasto-plasto-damage transformation,
cf. [55]. It is based on an original elastoplasticity code related to multi-surface
models [6]. The code is simplified to work with one surface variable only (which
corresponds to the classical model of kinematic hardening) and sets the hardening
parameter to zero to enforce perfect plasticity. It partially utilizes vectorization
techniques of [43] and works reasonably fast also for finer rectangular meshes.

5. Illustrative computational simulations. We consider a time-simulation
of a 2-dimensional continuum visualized in Figure 5.1 describing two “plates” mov-
ing horizontally in opposite directions with the constant velocity±10−8m/s

.
=30 cm/yr.

The model has applications in geophysics, specifically in modelling of tectonic and
seismic processes in crustal parts of the earth lithosphere in the relatively short or
very short time scales (meaning substantially less than a million of years) where
the small-strain concept and solid mechanics are well relevant. The hardening is
naturally considered zero. The damage variable is in the position of a so-called age-
ing. The healing together with the damage-dependent plastic yield stress allow for
periodically alternating fast damage and slow healing under external loading with
constant velocity, which is a typical stick/slip-type events of flat partly damaged
subdomains (so-called lithospheric faults) manifested by re-occurring earthquakes.
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Fig. 5.1. Geometry used for the computational experiment, imitating the fault between two
plates moving horizontally in opposite directions. The time-dependent Dirichlet conditions are
prescribed on ΓD, using the constant velocity ±10−8m/s

.
= 30 cm/year.

The domain Ω is assumed to be occupied by an elastic continuum specified
by an isotropic homogeneous elasticity tensor in the form (4.1) with λ1 = 7.5GPa
and µ1 = 11.25GPa (which corresponds to Young’s modulus E

Young
= 27GPa and

Poisson’ ratio ν = 0.2 in the non-damage state) while the damaged material uses
ten-times less moduli, i.e. λ0 = 0.75GPa and µ0 = 1.125GPa in (4.1). The yield
stress σy in (4.3) ranges between the values σY,1 = 2MPa and σY,0 = σY,1 × 10−12.
The damage-dissipation potential (4.4) is specified by constants a1 = 100GPas
and a3 = 10Pa while the damage viscosity a2 will vary. The stored energy of
damage is b1 = 0.001 J/m3 with the damage length-scale coefficient κ = 0.001 J/m.
The initial conditions ensure that π0 = 0, ζ0 = 1 (or ζ0 = 1/2 in a middle narrow
horizontal stripe).
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The first numerical test is run for discrete times in the interval 0 ≤ t ≤ 400 ks
with the equidistant time partition using the time-step τ = 1ks. The spatial dis-
cretisation of the domain Ω used a uniform triangular mesh with 4608 elements and
2373 nodes; this mesh is available by setting ’level=2’ in the code [55], while finer
uniform meshes can be generated by putting higher values of the ‘level’ parameter.
Thus, 400 time-steps are computed and Figure 5.2 displays space-distributions of
the shifted damage 1− ζ, of the Frobenius norm of the plastic strain π, and of the
von Mises stress | dev(σ)| at selected instants.

t=20 ks

t=40 ks

t=60 ks

t=80 ks

t=100ks

t=120ks

t=140ks

t=160ks

t=180ks

t=200ks

t=220ks

t=240ks

t=260ks

t=280ks

t=300ks

t=320ks

Fig. 5.2. Evolution of space-distributions of damage (the left column, displaying 1−ζ), of the
plastic strain (the middle column, displaying the Frobenius norm |π|) and of the von Mieses stress
(the right column, displaying |dev(σ)|). The displacement of the deformed domain is displayed
magnified by the factor 12500. Distributions were computed for damage viscosity a2 = 10MPa s.

In order to see how the quality of discrete solutions depends on the time-step τ ,
similar numerical tests are run for two additional time-steps τ = 5ks and τ = 10 ks.
The resulting energy balance (3.9c) is displayed in Figure 5.3. Naturally, it is best
fulfilled for the smallest considered time-step τ = 1ks. Figure 5.4 shows the (hori-
zontal component of the) reaction force which is here evaluated (very roughly) as an
average from element values of von Mises stresses in the middle narrow horizontal
stripe (i.e. the fault zone) shown in Figure 5.1. A comparison of Figures 5.3 and 5.4
indicates that the energy balance (3.9c) is better satisfies in the purely elasto-plastic
regime than within the undergoing damage. This becomes even more apparent if
the damage process is speeded up by setting a smaller value a2 = 0.1MPa s, cf. the
left-hand parts of Figures 5.3 and 5.4 versus the right-hand parts.

Dependence of the reaction-force evolution for varying viscosity of damage is
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Fig. 5.3. Evolution of the stored and dissipated energy (= the left-hand side of (3.9c) for
T varying) and the work of external loading (= the right-hand side of (3.9c) for T as a current
time t) calculated for three different values of the time steps τ = 10, 5, 1 ks, documenting the
convergence of (3.9c) towards the energy equality (2.11c) proved in Proposition 3.3. For less
viscous damage this convergence is naturally slower than for a more viscous damage, cf. the left
figure for a2 = 0.1MPa s vs the right one for a2 = 10MPa s.

Fig. 5.4. Evolution of the reaction force corresponding to Figure 5.3; the time scales on the
left and the right figures are different. Noteworthy, the force response is well converged even in
situations when the energetics on Figure 5.3 exhibits still big gaps.

shown in Figure 5.5 for a2 as in Figures 5.3–5.4 compared also with a smaller vis-
cosity a2 = 1kPa s which already provides a response essentially identical to the
even smaller viscosity a2 = 0.01 kPas (not displayed in Figure 5.5) where conserva-
tion of energy is numerically still more difficult to achieve. This indicates a certain
tendency for convergence towards the model using rate-independent damage com-
bined with rate-dependent healing (as in [37, Sect. 5.2.7]) and with perfect plasticity,
which is theoretically not justified, however.

Let us eventually remark that the a-posteriori information obtained from the
residuum in the discrete energy balance (3.9c) written at a current time t (as also
used in Figure 5.3) can be used to control adaptively the time step in a way to keep
the numerical error in the energy under an a-priori prescribed tolerance and, on
the other hand, not to waste computational time by making too small time steps
in periods of slow evolution. We intentionally presented our numerical simulation
on equidistant time partitions, but for actual geophysical simulations with very big
difference in time scale between fast damage (earthquakes) and very slow healing,
such an adaptivity is necessary.
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Fig. 5.5. Dependence of the repulsive-force response on the viscosity of damage, the cases
a2 = 10 and 0.1MPa s are (parts of) Figure 5.4 and are here compared also with even less viscous
damage for a2 = 1kPa s which gives essentially the same response as for the nearly inviscid
case a2 = 0.01 kPa s (not displayed, however); the time-step τ = 1ks. For decreasing viscosity,
the rupture occurs earlier and propagates faster, showing a tendency to converge to an inviscid
rate-independent (and theoretically not justified) damage model.
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