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Abstract: The DC thermoelectric conductivities of holographic systems in which

translational symmetry is broken can be efficiently computed in terms of the near-

horizon data of the dual black hole. By calculating the frequency dependent con-

ductivities to the first subleading order in the momentum relaxation rate, we give a

physical explanation for these conductivities in the simplest such example, in the limit

of slow momentum relaxation. Specifically, we decompose each conductivity into the

sum of a coherent contribution due to momentum relaxation and an incoherent contri-

bution, due to intrinsic current relaxation. This decomposition is different from those

previously proposed, and is consistent with the known hydrodynamic properties in the

translationally invariant limit. This is the first step towards constructing a consistent

theory of charged hydrodynamics with slow momentum relaxation.
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1 Introduction

Understanding the transport properties of strongly interacting many-body systems with

no quasiparticles is a topic of much interest for both experimental and theoretical

reasons. One class of theoretical examples are the strongly interacting quantum field

theories which are holographically dual to classical theories of gravity. Holographic

duality can be exploited to calculate the transport properties of these examples in a

relatively simple way, with the goal of determining non-holographic effective theories

which control these properties. Recent examples of this approach include [1–9]. In this

paper, we study holographic systems with weakly broken translational invariance as a

first step in formulating a general hydrodynamic theory of strongly interacting systems

with slow momentum relaxation.

The transport properties of primary interest are the electrical (σ), thermoelectric

(α) and thermal (κ̄) conductivities that control the linear response of the electric current
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J and the heat current Q to small electric fields E and temperature gradients ∇T(
J

Q

)
=

(
σ αT

αT κ̄T

)(
E

−∇T/T

)
. (1.1)

The primary consideration in determining the qualitative form of these conductivities in

holographic systems is whether the total momentum P of the system is approximately

conserved or not. In this paper, we will primarily address situations in which this is

the only long-lived quantity. In these cases, a perturbative expansion in the (small)

momentum relaxation rate Γ can be performed within the memory matrix formalism

[1, 2, 8, 10, 11]. To leading order in this expansion, the conductivities are all Drude-like,

with DC values determined by Γ and by the static susceptibilities χJP and χQP of the

translationally invariant state where momentum is exactly conserved:

σ (ω) =
χ2
JP

χPP

1

Γ− iω
, α (ω) =

χJPχQP
TχPP

1

Γ− iω
, κ̄ (ω) =

χ2
QP

TχPP

1

Γ− iω
. (1.2)

Physically, any current A which overlaps with the momentum (χAP 6= 0) cannot decay

at a rate larger than Γ at late times. The slow relaxation of momentum acts as a

bottleneck that forces the current into a coherent late time response, even if its intrinsic

relaxation timescale is fast. The low energy optical conductivity is dominated by a

single pole that is parametrically close to the origin. In the opposite situation, when

a current does not overlap with the momentum (χAP = 0), it will dissipate at its

intrinsic rate. This is an example of incoherent transport [6] and is the case for the

electric conductivity in charge conjugation symmetric states, for example.

These results form a basic, non-holographic effective theory that describes the

transport of charge and energy in holographic systems in which momentum is approx-

imately conserved. For these systems, one can attempt to enhance this basic effective

theory by combining it with our knowledge of the system’s properties in the transla-

tionally invariant limit, in which its late time behaviour is described by the laws of

relativistic (conformal) hydrodynamics. The simplest way to incorporate the above

results from the memory matrix formalism is to modify the momentum conservation

equation in hydrodynamics, such that P decays at a constant rate Γ. This yields the

conductivities [1]

σ (ω) =
χ2
JP

χPP

1

Γ− iω
+ σQ =

n2

ε+ p

1

Γ− iω
+ σQ,

α (ω) =
χJPχQP
TχPP

1

Γ− iω
− µ

T
σQ =

ns

ε+ p

1

Γ− iω
− µ

T
σQ,

κ̄ (ω) =
χ2
QP

TχPP

1

Γ− iω
+
µ2

T
σQ =

s2T

ε+ p

1

Γ− iω
+
µ2

T
σQ,

(1.3)
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where ε, p, n, µ and s are the energy density, pressure, charge density, chemical poten-

tial, and entropy density of the state respectively. Each conductivity has a coherent

contribution at leading order in Γ, as well as a subleading incoherent contribution pro-

portional to the intrinsic conductivity of the hydrodynamic state σQ.1 The former is in

perfect agreement with the memory matrix results (1.2), while the latter is a correction

due to long-lived diffusive modes, whose form is specified precisely by the relativistic

hydrodynamic theory in terms of a single transport coefficient σQ. The memory matrix

results (1.2) can be extended to incorporate the effects of diffusion in more general

setups [8] – these are independent of the momentum relaxation rate and enter at the

first subleading order in a small Γ expansion.

Recent advances in the holographic description of strongly interacting systems with

momentum relaxation, in particular, the discovery of analytically tractable toy models

of such systems [12–14], and the development of efficient calculational tools to determine

their DC conductivities [15–19], have made it easy to test this modified version of

hydrodynamics. At leading order in Γ [7, 20–22], the holographic results are consistent

with those of the memory matrix (1.2) and therefore with the leading order modified

hydrodynamic results (1.3). However, the holographic results are inconsistent with the

modified hydrodynamic results at subleading order. To be explicit, we will consider

the gravitational action [14]

S =

∫
d4x
√
−g

(
R+ 6− 1

4
FµνF

µν − 1

2

2∑
I=1

∂µφI∂µφI

)
, (1.4)

which has the analytic black brane solution [23]

ds2 = −r2f(r)dt2 + r2
(
dx2 + dy2

)
+

dr2

r2f(r)
, φ1 = mx, φ2 = my, (1.5)

f(r) = 1− m2

2r2
− r30
r3

(
1− m2

2r20
+
µ2

4r20

)
+
µ2r20
4r4

, At(r) = µ
(

1− r0
r

)
.

The massless scalar fields φI break translational symmetry and so the DC conductivities

are finite [14, 18]

σDC = 1 +
µ2

m2
, αDC =

4πn

m2
, κ̄DC =

4πsT

m2
, (1.6)

where the explicit expressions for the energy, charge and entropy density of this state

are given in (2.7) and (2.8). The parameter m controls the strength of translational

1Note that σQ is an intrinsic property of the finite density state obtained by perturbing the neutral

UV CFT by a chemical potential.
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symmetry breaking and therefore the rate of momentum relaxation in the dual field

theory state.

In [5, 15, 17–19], it was suggested that σDC could be interpreted as being composed

of two physically distinct pieces: a coherent contribution µ2/m2 due to momentum re-

laxation, and an incoherent contribution 1 (see [24, 25] for further related work on the

frequency dependence of the thermoelectric conductivities). However, this is incon-

sistent with the known value of the incoherent contribution σQ in the translationally

invariant (m = 0) limit [26]

σQ =

(
sT

3ε/2

)2
∣∣∣∣∣
m=0

=

 3− µ2

4r20

3
(

1 + µ2

4r20

)
2∣∣∣∣∣∣

m=0

. (1.7)

Furthermore, it is clear that a decomposition of this kind is inconsistent with the other

hydrodynamic DC conductivities, as can be seen by comparing (1.6) with the DC limit

of (1.3).

In this paper we resolve these problems, and for the first time provide a clear

description of the physical processes underlying the simple DC conductivities (1.6),

by analytically calculating the low frequency conductivities for the holographic theory

(1.5) at small values of m where there is approximate momentum conservation. We

identify two physically distinct contributions to each conductivity – a coherent contri-

bution controlled by the slow relaxation of momentum, and an incoherent contribution

due to the intrinsic conductivity σQ. The value of σQ we obtain is consistent with the

known value in the translationally invariant limit (1.7) [26]. Technically, we achieve

this decomposition by changing basis from the currents J and Q to more theoretically

convenient currents J± which are orthogonal: the two-point retarded Green’s function

of J+ with J− vanishes. To the first subleading order at small Γ the conductivity of

J− is entirely coherent, and that of J+ is entirely incoherent. In the strict Γ = 0

limit, these reduce to the currents P and 3ε0J/2 − n0P respectively, which decouple

and capture the entirely coherent and entirely incoherent responses respectively in the

translationally invariant, hydrodynamic system (subscript 0s here denote the thermo-

dynamic quantities of the m = 0 state).

To the first subleading order at small ω and Γ, with ω/Γ fixed, we find that the
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frequency dependent conductivities take the form

σ (ω) =
µ2

m2 + (1− σQ) +O(ω,Γ)

1− iω/Γ
+ σQ +O(ω,Γ),

α (ω) =
4πn
m2 + µ

T
σQ +O(ω,Γ)

1− iω/Γ
− µ

T
σQ +O(ω,Γ),

κ̄ (ω) =
4πsT
m2 − µ2

T
σQ +O(ω,Γ)

1− iω/Γ
+
µ2

T
σQ +O(ω,Γ),

(1.8)

where the momentum relaxation rate is

Γ =
sm2

4π(ε+ p)

(
1 + λm2 +O(m4)

)
, (1.9)

the thermodynamic quantities are those of the m 6= 0 state, and λ is given in equation

(3.11). For comparison with the hydrodynamic results (1.3), these expressions may be

written as

σ (ω) =

n2

ε+p
+ Γ (1− σQ + λµ2) +O(Γ2, ωΓ, ω2)

Γ− iω
+ σQ +O(ω,Γ), (1.10)

α (ω) =

ns
ε+p

+ Γ
(
µ
T
σQ + 4πnλ

)
+O(Γ2, ωΓ, ω2)

Γ− iω
− µ

T
σQ +O(ω,Γ), (1.11)

κ̄ (ω) =

s2T
ε+p

+ Γ
(
−µ2

T
σQ + 4πsTλ

)
+O(Γ2, ωΓ, ω2)

Γ− iω
+
µ2

T
σQ +O(ω,Γ). (1.12)

These results isolate the reason for the inconsistency between the modified version

of hydrodynamics and the holographic system: the modified version of hydrodynamics

does not adequately describe the coherent component of the system’s response. Al-

though it reproduces the correct coherent contribution at leading order in Γ, it does

not adequately account for the first subleading corrections to this. These corrections

are important as they enter at the same order as the incoherent contribution, and em-

phasize the need for a more systematic derivation of how hydrodynamics is modified

by the weak breaking of translational symmetry. Our calculation also highlights the

important message that it is in general not possible to separate the coherent and inco-

herent contributions to the conductivities from their DC expressions (1.6) alone. We

note that the obvious decomposition of the DC conductivities (1.6) still has physical

meaning in terms of the DC conductivities at zero electric or heat current [11, 18].

Finally, although the main focus of our paper is the limit of slow momentum

relaxation, we can also easily access the regime of fast momentum relaxation in the

holographic theory (1.4). This is a regime in which neither the hydrodynamic (1.3)
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nor memory matrix results (1.2) are applicable. For any value of m, it is possible to

diagonalise the response of the currents by changing to an appropriate basis J±. In the

limit m → ∞, the decoupled currents are precisely J and Q, the electrical and heat

currents. It would be very interesting to determine whether a low energy decoupling

of this type is present more generally in systems with fast momentum relaxation (in

particular, those with a potential for the scalar fields, which are more reliable from the

point of view of string theory).

In Section 2, we identify the diagonal J± basis of currents in the field theory by

decoupling the bulk field equations, and examine how these decoupled currents relate

to J and Q in various limits of interest. In Section 3, we determine the frequency

dependence of the conductivities of the currents J± in the limit of slow momentum

relaxation, showing that one is coherent and that one is incoherent, and explain what

this means for the conductivities of J and Q. We conclude in Section 4 with an outlook

for future work. The appendices contain some technical details of our holographic

Green’s function calculations.

2 Diagonalisation of the conductivities

To determine the frequency dependent thermoelectric conductivities in the strongly

interacting field theory state dual to (1.5), we will use the Kubo formulæ [1] which

relate these conductivities to the retarded two-point functions GR of the currents J

and Q ≡ JE − µJ , where JE is the energy current:

σ (ω) =
i

ω

[
GR
JJ (ω, k = 0)−GR

JJ (ω = 0, k → 0)
]
,

α (ω) =
i

ωT

[
GR
QJ (ω, k = 0)−GR

QJ (ω = 0, k → 0)
]
,

κ̄ (ω) =
i

ωT

[
GR
QQ (ω, k = 0)−GR

QQ (ω = 0, k → 0)
]
.

(2.1)

To evaluate the Green’s functions on the right hand side, it is convenient to first change

the basis of currents and not work directly with J and Q, as we will shortly describe.

Following that, we will use the standard tools of the AdS/CFT correspondence to

compute the Green’s functions.
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2.1 Decoupling of the gravitational equations of motion

To determine the two-point functions of J and Q, we consider the following consistent

set of linear perturbations around the black brane solution (1.5)

δgyt (t, r) =

∫
dω

2π
hyt (r, ω)e−iωt , δgyr (t, r) =

∫
dω

2π
hyr(r, ω)e−iωt ,

δAy(t, r) =

∫
dω

2π
ay(r, ω)e−iωt , δφ2(r, t) =

∫
dω

2π
χ2(r, ω)e−iωt,

(2.2)

where indices are raised with the background metric. These obey the following lin-

earised equations of motion (where primes denote derivatives with respect to r)

0 =
(
r2fa′y

)′
+

ω2

r2f
ay + r2A′th

y
t
′ + iωr2A′th

y
r ,

0 =
1

r2
(
r4hyt

′)′ + iω

r2
(
r4hyr

)′
+ hyt

(
6− 6

f
+
A′2t
2f

+
2rf ′

f

)
+ A′ta

′
y −

imω

r2f
χ2,

0 =
iωA′t
2r2f

ay −
1

4
r2
(
A′2t + 4rf ′ + 12f − 12 +

2ω2

r2f

)
hyr +

iω

2f
hyt
′ − m

2
χ′2,

0 =
1

r2
(
r4fχ′2

)′ − m

r2
(
r4fhyr

)′
+

ω2

r2f
χ2 −

imω

r2f
hyt ,

(2.3)

which are comprised of two linearly independent dynamical equations, and one con-

straint equation.

We can decouple the two dynamical equations by changing variables to

d

dr

[
r2fψ′±

]
+

1

r2f

(
ω2 −m2f + r3ff ′ +mγ±A

′
trf
)
ψ± = 0, (2.4)

where

ψ± ≡
1

m

[
r3
(
hyt
′ + iωhyr

)
+ rA′tay

]
+ γ±ay . (2.5)

Here

γ± ≡ −
3ε

4mn

(
1±

√
1 +

16m2n2

9ε2

)
, (2.6)

with ε and n, the energy and charge densities of the state, given by

ε = 2r30

(
1− m2

2r20
+
µ2

4r20

)
, n = µr0. (2.7)

The other thermodynamic properties of the equilibrium state are [14]

4πT = 3r0 −
m2

2r0
− µ2

4r0
, s = 4πr20 , p = 〈T ii〉+ r0m

2 =
1

2
ε+ r0m

2. (2.8)
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This change of variables corresponds, in the field theory, to a change of operator

basis2 from (JE, J) to (J+, J−). The decoupling of these variables in the bulk corre-

sponds to a diagonalisation of the matrix of two-point functions of the dual operators

i.e. it corresponds to diagonalising the matrix of conductivities. By a careful analysis

of the on-shell action (see appendix A), we find that the two-point retarded Green’s

functions GR are related to the boundary behaviour of the decoupled fields ψ± via

〈JJ〉(ω) = − 1

γ+ − γ−
(γ+Θ+ (ω)− γ−Θ− (ω)) ,

〈JJE〉(ω) = 〈JEJ〉(ω) = − m

γ+ − γ−
(Θ+ (ω)−Θ− (ω)) + n,

〈JEJE〉(ω) = − m2

γ+ − γ−
(γ+Θ− (ω)− γ−Θ+ (ω)) +

3

2
ε,

(2.9)

where the angled brackets denote the specific combinations of retarded two-point Green’s

functions which enter in the Kubo formulæ for conductivities (2.1)

〈OO〉(ω) ≡ GR
OO(ω, k = 0)−GR

OO(ω = 0, k → 0), (2.10)

and where

Θ± (ω) = −r2
ψ′±
ψ±

∣∣∣∣∣
r→∞

, (2.11)

are determined by solving the decoupled equations of motion with ingoing boundary

conditions at the horizon, and contain all of the frequency dependence of the correlators.

It is simple to diagonalise the matrix of correlators by defining the currents (with

overall normalisation constants a±)

J± = a± (JE + γ±mJ) , (2.12)

so that 〈J±J±〉 depends only on Θ±, and the cross correlator 〈J±J∓〉 = 0. Physically,

this diagonalisation of the matrix of conductivities means we can divide the response of

the currents of our system, at any energy scale, into two completely independent sectors,

each with its own spectrum of excitations. This situation is familiar, for example,

in zero density, translationally invariant systems, where J and JE decouple due to

charge conjugation symmetry. In our case, there does not appear to be any symmetry

protecting this exact decoupling at all energy scales, and we do not expect it to be

true in general for holographic systems. The more pertinent question is whether the

conductivity matrix can be diagonalised at low energies ω in more general holographic

states. This does not necessarily require an exact decoupling of the bulk perturbations,

2The energy current in our system is JE ≡ T tx(k = 0), which is the momentum when m = 0.
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and would be an indicator of the existence of a simple, low energy effective description

of transport in these states. An example of this, when m = 0, is described below.

The perturbation equations for this holographic model can also be completely de-

coupled at non-zero wavevectors k. Again, we expect that this feature is specific to

this very simple example, and will not be true in general.

Inverting these relationships, we can express the responses of the correlators we are

truly interested in – those of the electrical and heat currents – as linear combinations

of those of the decoupled currents J± as follows:

〈JJ〉 =
1

m2
(〈J+J+〉+ 〈J−J−〉) ,

〈QJ〉 = 〈JQ〉 = − 1

m

[(
γ− +

µ

m

)
〈J+J+〉+

(
γ+ +

µ

m

)
〈J−J−〉

]
,

〈QQ〉 =
(
γ− +

µ

m

)2
〈J+J+〉+

(
γ+ +

µ

m

)2
〈J−J−〉,

(2.13)

where we have introduced the rescaled correlators

〈J±J±〉 (ω) ≡ 〈J±J±〉 (ω)

a2± (γ+ − γ−)2
=
∓m2γ±
γ+ − γ−

Θ± (ω)+
1

(γ+ − γ−)2

(
3ε

2
+ 2mγ±n

)
, (2.14)

for convenience. From these, one simply needs to divide by the appropriate factor in

the Kubo formulæ (2.1) to extract the relevant conductivity. The decoupled currents

J± are sourced by ± (E/m+ (γ∓ + µ/m)∇T/T ), and transport the conserved charge

densities (T tt + γ±mJ
t) / (γ+ − γ−).

2.2 The decoupled currents in various limits

Remarkably, we have managed to decouple the response of the currents J± at all fre-

quencies, and for all values of the parameters m,T and µ. For certain values of the

parameters, the decoupled currents J± take particularly simple forms, which allows us

to ascribe a clear physical meaning to the decoupling.

The simplest limit is already very familiar: when µ → 0 at fixed T and m, after

an appropriate choice of normalisations the decoupled currents are J+ → J and J− →
JE = Q. This is simply the well-known result that at zero chemical potential, the heat

and charge currents of a system decouple due to charge conjugation symmetry. The

heat and charge conductivities may be qualitatively different from each other in this

limit. The charge response will be incoherent as J does not overlap with any almost

conserved operators. As Q overlaps with P , the heat response will be coherent when

P dissipates slowly (at small m), and incoherent otherwise.

There is another limit which is in fact rather similar to this: when m→∞ at fixed

T and µ, after an appropriate choice of normalisations, the decoupled currents are just

– 9 –



J+ → J and J− → JE − µJ = Q. This is a rather surprising result: in the limit of

very strong translational symmetry breaking, the charge and heat currents decouple!

Heuristically, it is as if there is an emergent form of charge conjugation symmetry in

this limit. One way of understanding this is that when m � µ, T , the contributions

of the uncharged scalar operators dual to the fields φI dominate the thermodynamic

properties of the system such that it looks like a neutral state. In particular, the

dimensionless ratio of charge density to entropy density, a thermodynamic measure

of the ratio of charged to neutral degrees of freedom, approaches zero in this limit:

n/s ∼ µ/m→ 0. However, this is qualitatively different from the µ = 0 limit in that it

is specifically the heat current Q which decouples from J , while other neutral currents

like JE still couple to J . It is clearly worth investigating to see if this a common feature

of low energy transport in states of this type, or just a peculiarity of this holographic

system. Finally, note that in contrast to the previous µ → 0 limit, in this limit both

the charge and heat conductivities will be incoherent, as momentum dissipates quickly

in the limit m→∞.

Finally, there is the limit of slow momentum relaxation, in which we are mainly

interested in the remainder of this paper. In the limit m→ 0 with T and µ fixed, the

decoupled currents asymptote to

J+ → JE −
3ε0
2n0

J +O(m2), J− → JE +O(m2), (2.15)

after appropriate choices of normalisation, where the subscript 0s denote the thermo-

dynamic quantity in the m = 0 state. This decoupling also has a clear physical origin,

which is independent of holographic duality. In the strict m = 0 limit, our state obeys

the laws of conformal, relativistic hydrodynamics at low energies. In such a hydrody-

namic state, the currents given in (2.15) decouple at low energies. JE = P controls

the coherent component of the system’s response while the other current controls the

incoherent response, since it decouples from the conserved total momentum P . See [27]

for more details.

2.3 DC contributions of each sector

The DC conductivities correspond to the ω → 0 limits of the subtracted correlators,

and are given analytically in (1.6). We will confirm these results in the next section.

From these, we can extract the DC limits of the diagonal correlators

Im

[
lim
ω→0

1

ω
〈J±J±〉 (ω)

]
=

1

2

(
m2 + µ2

)
∓ 2n

3ε
√

1 + 16m2n2

9ε2

[(
m2 + µ2

)(
µ− 3ε

4n

)
+ 4πnT

]
.

(2.16)
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Using the decomposition (2.13), we can then easily isolate how much each of the decou-

pled sectors contributes to each DC thermoelectric conductivity. Although the full DC

conductivities are very simple, each individual contribution is given by a very compli-

cated expression (which can be found by combining (2.13) with (2.16)). The separation

of the full conductivities into two decoupled sectors is highly non-trivial and cannot be

guessed just from the form of the DC conductivities.

It is instructive to examine these contributions in the various limits of the previous

subsection. We use the notation that the superscript ± indicates the contribution of

the J± sector to each conductivity. In the µ→ 0 limit (at fixed T,m),

σ+
DC → σDC +O(µ2), σ−DC → O(µ2),

α+
DC → O(µ), α−DC → O(µ),

κ̄+DC → O(µ2), κ̄−DC → κ̄DC +O(µ2).

(2.17)

This limit is well-known and the the nature of the decomposition is clear: this is

the charge conjugation symmetric limit in which the decoupled currents J+ and J−
are the charge and heat currents respectively. Therefore, the electrical and thermal

conductivities are controlled completely by the + and − sectors respectively, and the

off-diagonal conductivity vanishes, to leading order at small µ.

From this point of view, a qualitatively similar limit is the limit m→∞ (at fixed

T, µ), where

σ+
DC → σDC +O(m−4), σ−DC → O

(
m−4

)
,

α+
DC → O(m−1), α−DC → O(m−2),

κ̄+DC → O(m−2), κ̄−DC → κ̄DC +O(m−1).

(2.18)

Again, this is easy to understand: the decoupled currents in this limit are again the

charge (J+) and heat (J−) currents, and so the electrical and thermal conductivities

are finite3 and determined, at leading order, by the + and − sectors respectively, while

the off-diagonal conductivities vanish at leading order in this limit.

Finally, let us turn to the limit we will address in the remainder of the paper:

m → 0 (at fixed T, µ). This is the limit of slow momentum relaxation. In this limit,

the contribution of each of the sectors to the DC conductivities take a very suggestive

3It is crucial here that the horizon radius is replaced by its expression in terms of physical parameters

T , µ and m before taking the m→∞ limit. When this is done, κ̄ does not vanish at large m, contrarily

to what the formula in (1.6) might appear to indicate.
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form

σ+
DC → σQ +O(m2), σ−DC → σDC − σQ +O(m2),

α+
DC → −

µ

T
σQ +O(m2), α−DC → αDC +

µ

T
σQ +O(m2),

κ̄+DC →
µ2

T
σQ +O(m2), κ̄−DC → κ̄DC −

µ2

T
σQ +O(m2),

(2.19)

where σQ is given in equation (1.7). Each DC conductivity clearly decomposes into two

independent pieces, one of which is exactly equal (to this order in m2) to the incoherent

contribution, due to intrinsic current relaxation, present in the effective hydrodynamic

theory (1.3). Although the full holographic DC conductivities are not consistent with

this effective hydrodynamic theory, the decomposition above suggests that at least this

part of the hydrodynamic theory is accurate. To confirm this, and give a more physical

interpretation to the decoupling in this limit, we will now calculate the frequency

dependence of each of the two independent contributions to the conductivities.

3 Frequency dependent conductivities at small m

To determine the frequency dependent conductivities, we need to solve the perturba-

tion equations (2.4) at non-zero ω, with ingoing boundary conditions at the black brane

horizon. We can only find analytic solutions to these equations by working perturba-

tively in a small frequency expansion. The resulting conductivities we find, extracted

via (2.13), are fractions, with both the numerator and denominator given by power

series in ω. This procedure was used in [28–30] to determine the two-point Green’s

functions of translationally invariant systems at small frequencies.

We begin by making the ansatze

ψ±(u) = f(u)
−iω̃r0
4πT

(
1− µγ∓

m
u
)
F±(u),

F±(u) = F
(0)
± (u) + ω̃F

(1)
± (u) + ω̃2F

(2)
± (u) +O(ω̃3),

(3.1)

for the gauge invariant fields, where we are using the dimensionless variables

u =
r0
r
, ω̃ =

ω

r0
, m̃ =

m

r0
, µ̃ =

µ

r0
. (3.2)

We have factored out an oscillating function that corresponds to imposing ingoing

boundary conditions at the black brane horizon, as well as an overall u-dependent

function such that the leading terms F
(0)
± (u) will be independent of u. To determine the

functions F
(i)
± (u), we substitute the ansatze (3.1) into the equations of motion (2.4) and

expand as a power series in ω̃. We then solve order-by-order for the functions F
(i)
± (u),
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demanding that F±(u) is regular and equal to a frequency-independent constant at the

black brane horizon u = 1. At leading order in ω̃, we find that F
(0)
± (u) = C± is a

constant which we will set to 1 for convenience. At higher orders, F
(i)
± are non-trivial

functions of u that satisfy equations of the form

F
(i)
±
′′
(u) + g

(i)
± (u)F

(i)
±
′
(u) = S

(i)
± (u). (3.3)

That is, they are first order, linear inhomogeneous equations for F
(i)
±
′
(u), with the source

terms S
(i)
± (u) depending on the solutions at lower orders in the perturbative expansion.

In principle, exact integral solutions to these equations can be found by using the

method of integrating factors. We present the technical details of the perturbative

solutions in appendix B, and focus on the physical consequences in the following.

Using (2.14), the diagonal correlators are

〈J±J±〉(ω) =
∓m̃2r30γ±
(γ+ − γ−)

ω̃F
(1)
±
′
(0) + ω̃2F

(2)
±
′
(0) +O(ω̃3)

1 + ω̃F
(1)
± (0) + ω̃2F

(2)
± (0) +O(ω̃3)

, (3.4)

and these can easily be combined to give the full conductivities using (2.13). The DC

conductivities are controlled only by F
(1)
±
′
(0), which can be analytically determined

exactly as a function of T, µ,m (see appendix B). Using these expressions, we recover

the results (1.6) for the DC conductivities which were discussed extensively in section

2.3. This provides an independent check of the horizon formula results of [14, 18] from

a Kubo formula calculation.

To understand the physical origin of each contribution to the conductivities, we

must determine their frequency dependence by working to higher orders in the pertur-

bative expansion ω̃. We were not able to obtain analytic results for general T, µ,m at

these higher orders.4 Instead, we have focused on the limit of slow momentum relax-

ation m̃ � 1, and computed the conductivities in a perturbative expansion at small

ω̃ and m̃2, with ω̃ ∼ m̃2 � 1, i.e. at long timescales, comparable to the momentum

lifetime. For some of the coefficients of the terms in (3.4), we have only been able to

obtain analytic answers perturbatively in µ̃. However, our final result for the coherent

and incoherent contributions to the DC conductivities will be non-perturbative in µ̃.

The details of the perturbative solutions are given in appendix B. Note that we are

working with dimensionless variables normalised by r0: for m̃� 1, r0 ∼ T when µ� T

and r0 ∼ µ when T � µ.

3.1 The incoherent contribution

In this subsection, we will focus on the 〈J+J+〉(ω) correlator at small m̃. Recall that

in the strict m = 0 limit, J+ is the current (2.15) which decouples from momentum

4We note that exact results in m,T can be obtained for the neutral µ = 0 state.
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and which is therefore completely incoherent. Our perturbative calculation, described

in appendix B, yields the J+ conductivity5

Σ+(ω) ≡ 1

m2

i

ω
〈J+J+〉(ω) =

[σQ +O(m̃2)] + [β1 +O(m̃2)] ω̃ +O(ω̃2)

1 + [β2 +O(m̃2)] ω̃ + [β3 +O(m̃2)] ω̃2 +O(ω̃3)
, (3.5)

where

β1 = − i

18

(√
3π + 9 log 3

)
− iµ̃2

216

(
5
√

3π − 63 log 3
)

+
iµ̃4

648

(
7
√

3π − 72 log 3
)

+O(µ̃6),

β2 = − i

18

(√
3π + 9 log 3

)
+
iµ̃2

216

(
19
√

3π − 9 log 3
)
− 5iµ̃4

72

(√
3π − 4 log 3

)
+O(µ̃6),

β3 = − 1

216

(
π2 + 6

√
3π log 3− 27 (log 3)2

)
+O(µ̃2).

(3.6)

The nature of the transport of the current J+ is encoded in its pole structure: coherent

transport is caused by a parametrically long-lived excitation. In our system, this would

be a Drude-like excitation due to the slow relaxation of momentum, which has the

dispersion relation ω̃ ∼ −im̃2 [7, 21].

It is clear from (3.5) that there is no such long lived excitation transporting the

current J+. Our calculation shows that the longest lived collective excitations in this

sector have microscopic lifetimes ∼ m̃0.6 Therefore the contributions of 〈J+J+〉 to the

thermoelectric conductivities (2.13) are all incoherent. To the order of the perturbative

expansion to which we are working, the contribution of these incoherent processes to

the full thermoelectric conductivities of the system is

σ+(ω) = σQ +O(ω̃, m̃2) , α+(ω) = −µ
T
σQ +O(ω̃, m̃2),

κ̄+(ω) =
µ2

T
σQ +O(ω̃, m̃2) , σQ =

(12− µ̃2)
2

9 (4 + µ̃2)2
.

(3.7)

This is entirely in agreement with the incoherent contributions to the conductivities

predicted in (1.3) by the hydrodynamic effective theory of [1].

3.2 The coherent contribution

We now turn to the 〈J−J−〉(ω) correlator. We know that this must have a coher-

ent component at small m since the conductivities themselves do. However it is not

5We normalise by a factor of m−2 due to the ubiquitous appearance of such a factor in (2.13) at

small m.
6We cannot give quantitative results for the lifetime, as frequencies ω̃ ∼ 1 are outside of the range

of validity of our perturbative calculation.
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clear, a priori, if J− is transported completely coherently (to the order in m2 to which

we are working), or whether it has both coherent and incoherent components. Our

perturbative calculation, described in appendix B, yields the J− conductivity7

Σ−(ω) ≡ 1

m2

i

ω
〈J−J−〉(ω) =

[a1 + a2m̃
2 +O(m̃4)]− [b1 +O(m̃2)] iω̃ +O(ω̃2)

m̃2 − [c1 + c2m̃2 +O(m̃4)] iω̃ + [d1 +O(m̃2)] ω̃2 +O(ω̃3)
,

(3.8)

where

a1 = µ̃2,

a2 =
8µ̃2 (12 + µ̃2)

9 (4 + µ̃2)2
,

b1 =
µ̃4

54

(√
3π − 18 + 9 log 3

)
+

µ̃6

216

(
27− 4

√
3π − 6 log 3

)
+O(µ̃8),

c1 =
3

4

(
4 + µ̃2

)
,

c2 = − 1

18

(
9 +
√

3π − 9 log 3
)

+
µ̃2

216

(
72−

√
3π + 9 log 3

)
+

µ̃4

864

(√
3π − 84 + 3 log 3

)
+O(µ̃6),

d1 = µ̃2

(
1− π

6
√

3
− log 3

2

)
+
µ̃4

24

(
−3 +

√
3π − log 3

)
+O(µ̃6).

(3.9)

Note that we are working to the first subleading order in the small ω̃ ∼ m̃2 expansion

in both the numerator and the denominator.

As expected, this correlator has a pole at ω̃ ∼ −im̃2. This pole corresponds to the

existence of a parametrically long-lived Drude-like excitation due to the slow relaxation

of momentum, and will give coherent contributions to the thermoelectric conductivi-

ties. Our perturbative calculation allows us to determine subleading corrections to the

location of this Drude-like pole ω̃D

ω̃D = −i

[
4

3 (4 + µ̃2)
m̃2 +

{
1

162

(
9 +
√

3π − 9 log 3
)

+
µ̃2

1944

(
−198−

√
3π + 81 log 3

)
+

µ̃4

2592

(
187− 6

√
3π − 54 log 3

)
+O(µ̃6)

}
m̃4 +O(m̃6)

]
.

(3.10)

The O(m̃2) term agrees with that of [21], as it should (given the similarities between

the gravity theories under study here and there [14]). The µ̃ = 0 limit of this term is

also in agreement with [7]. At O(m̃4), we could only calculate the location of the pole

perturbatively in µ̃, as is clear from the result (3.10). As a check of our calculation, a

7See footnote 5.
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Figure 1. A comparison of our analytic result (3.10) for the O(m̃4) correction to the location

of the Drude-like pole (blue line), and the exact location obtained numerically for m̃ = 1/10

(black dots). There is excellent agreement at small µ̃ where our perturbative analytic result

should be accurate.

comparison of this analytic result with a numerical calculation of the pole location is

shown in figure 1: there is excellent agreement for appropriately small values of µ̃. For

the neutral µ = 0 case, interestingly, the location of the pole to O(m̃4) is equivalent to

that of the transverse momentum diffusion pole in the translationally invariant system

dual to the Schwarzschild-AdS4 black brane (see table III of [31]), after replacing m

with the wavenumber q.

From this pole, we can identify the momentum relaxation rate Γ as Γ = ir0ω̃D,

which can be written (perhaps more illuminatingly) as

Γ =
sm2

4π (ε+ p)

[
1 + λm2 +O(m4)

]
,

λ =

√
3π − 9 log 3

96π2T 2
+

9µ2 (log 3− 2)

256π4T 4
−

9µ4
(
42 log 3 + 5

√
3π − 132

)
32768π6T 6

+O

(
µ6

T 8

)
,

(3.11)

where the thermodynamic quantities are m-dependent. There will, of course, be other

poles in the correlator with decay rates ∼ m̃0, but our perturbative calculation is not

able to accurately capture these.

The current J− clearly has a coherent contribution to its transport, due to the

existence of the Drude-like pole. Generically, we would also expect there to be an

incoherent component to its transport. To quantify this, we calculate the residue of

– 16 –



the Drude-like pole in the conductivity of J−:

ZD ≡ lim
ω̃→ω̃D

(ω̃ − ω̃D) Σ−(ω̃). (3.12)

The natural definition of the contribution of the coherent excitation to Σ−DC is then

−ZD/ω̃D. For a conductivity of the form (3.8), this yields

−ZD
ω̃D

=
a1
m̃2

+ a2 −
(
b1
c1

+
a1d1
c21

)
+O(m̃2)

= Σ−DC −
(
b1
c1

+
a1d1
c21

)
+O(m̃2)

(3.13)

as the coherent contribution to Σ−DC . At order m̃−2, all of the DC conductivity comes

from the Drude peak, but at the first subleading order, O(m̃0), this is not necessarily

the case. The term in brackets in (3.13) indicates a part of Σ−DC which does not come

from the Drude peak i.e. it is an incoherent contribution. However, substituting in the

explicit expressions for a1, b1, c1 and d1 for our system (3.9), this potential incoherent

component of the DC conductivity vanishes identically! This indicates that, to the

order in µ to which our result (3.9) is valid, the entire DC conductivity of J− comes

from the Drude-like excitation, up to and including the first subleading order in the

m̃2 expansion.

In fact, we can show that this is true to all orders in µ̃. Although we do not know

individually how a1, b1, c1 and d1 depend upon µ̃, it is easy to check that the precise

combination appearing in the brackets in equation (3.13) must vanish, by demanding

that in the strict m = 0 limit, we reproduce the hydrodynamic results of [26]. This

assumption of continuity of the hydrodynamic limit is manifestly true up to O(µ̃4),

and we believe it should be true to all orders. In summary: up to and including the

first subleading order in the m̃2 expansion, the entire DC conductivity of J− comes

from the Drude-like excitation – there is no incoherent component at this order. At

higher orders in the m̃2 expansion, we expect Σ−DC to be a sum of both coherent and

incoherent contributions.

The contributions of this sector to each conductivity are therefore totally coherent,

to this order, and given by

σ− (ω) =
µ2

m2 + (1− σQ) +O(ω̃, m̃2)

1− iω/Γ
+O(ω̃, m̃2),

α− (ω) =
4πn
m2 + µ

T
σQ +O(ω̃, m̃2)

1− iω/Γ
+O(ω̃, m̃2),

κ− (ω) =
4πsT
m2 − µ2

T
σQ +O(ω̃, m̃2)

1− iω/Γ
+O(ω̃, m̃2),

(3.14)
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where σQ is given in (1.7) and Γ is given in (3.11). At higher orders in the small

ω̃, m̃2 expansion, we expect that the contributions of J− to the conductivities will be

comprised of both coherent and incoherent pieces.

3.3 Discussion

Collecting the results (3.7) and (3.14), the thermoelectric conductivities are given by

equations (1.8) in the limit of slow momentum relaxation. As we have demonstrated,

the coherent part of each conductivity comes solely from J− at this order, while the

incoherent part comes only from J+. For an easier comparison with the memory matrix

and hydrodynamic formulae (1.2) and (1.3), we can change variables from m2 to Γ and

write the conductivities to subleading order in a small ω ∼ Γ expansion

σ (ω) =

n2

ε+p
+ Γ (1− σQ + λµ2) +O(Γ2, ωΓ, ω2)

Γ− iω
+ σQ +O(ω,Γ),

α (ω) =

ns
ε+p

+ Γ
(
µ
T
σQ + 4πnλ

)
+O(Γ2, ωΓ, ω2)

Γ− iω
− µ

T
σQ +O(ω,Γ),

κ̄ (ω) =

s2T
ε+p

+ Γ
(
−µ2

T
σQ + 4πsTλ

)
+O(Γ2, ωΓ, ω2)

Γ− iω
+
µ2

T
σQ +O(ω,Γ).

(3.15)

In the translationally invariant limit Γ = 0, these agree with the results of [26], and the

hydrodynamic formulae (1.3). When Γ 6= 0, they agree with the memory matrix results

(1.2) and hydrodynamic results (1.3) at leading order in the small ω,Γ expansion,

but not at subleading order. The subleading corrections in (3.15) are comprised of

two independent pieces: an incoherent contribution, and a coherent contribution (a

correction to the weight of the Drude peak). The hydrodynamic results (1.3) correctly

capture the incoherent contribution but not the correction to the Drude peak. The

memory matrix results (1.2) can also be extended to include an incoherent contribution

[8], but not yet the correction to the Drude peak. Since the subleading correction to

the Drude peak enters at the same order (in a small Γ or small m expansion) as the

incoherent contribution in our holographic theory, it is important that these effective

theories are extended to incorporate this correction to the Drude peak.

In the limit of zero chemical potential, the conductivities are given by

σ (ω) = 1,

α (ω) = 0,

κ̄ (ω) =

s2T
ε+p

+ 4πsTλΓ

Γ− iω
,

(3.16)

– 18 –



to this order. The electric conductivity σ is totally incoherent since J decouples from

P when µ = 0, while the thermal conductivity κ̄ is totally coherent at this order,

confirming further the results of [7].

In the introduction, we noted that previous works have tried to identify the m-

independent contribution to σDC (which numerically is equal to 1) as being the inco-

herent component of the electrical conductivity. As is clear from our results, this is not

the case. However, the m-independent contribution in this theory can be identified as

being the DC value of the electrical current in the absence of heat flow [18]

σDC |Q=0 = σDC −
Tα2

DC

κ̄DC
= 1. (3.17)

This result can be generalised to more complicated holographic theories in a natural

way [18, 32]. With our results, we can revisit this computation and determine how this

conductivity depends on frequency, finding

σ(ω)
∣∣
Q=0

=
Γ

Γ− iω

[
1− (ε+ p)2

s2T 2
σQ +O (ω,Γ)

]
+

(ε+ p)2

s2T 2
σQ +O (ω,Γ) ,

= 1 +O

(
Γ, ω,

Γ2

Γ− iω
, . . .

)
,

(3.18)

to the order to which our calculations are valid and recalling the value of σQ (1.7). This

conductivity is totally incoherent to this order, and does not have any contributions

from subleading corrections to the Drude peak. It would be interesting to determine

whether this is also the case to higher order in the expansion, or whether σ(ω)
∣∣
Q=0

has contributions ∼ Γ2/(Γ− iω) etc. Similarly, the heat conductivity in the absence of

electrical current is

κ̄(ω)
∣∣
J=0

=
Γ

Γ− iω

[
Ts2

n2
− (ε+ p)2

n2T
σQ +O (ω,Γ)

]
+

(ε+ p)2

n2T
σQ +O (ω,Γ) ,

=
s2T

n2
+O

(
Γ, ω,

Γ2

Γ− iω
, . . .

)
,

(3.19)

which is totally incoherent to the order to which we are working. We note that the

absence of any leading order contribution ∼ Γ0/ (Γ− iω) to these conductivities is as

expected from [11].

4 Outlook

We have shown that the transport of heat and charge in the state with momentum

relaxation, dual to (1.5), can naturally be expressed in terms of the two currents J±,
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given in (2.12), which diagonalise the thermoelectric conductivity matrix (1.1) for all

values of m. In certain limits, the form of these currents can be used to understand

the physical processes underpinning the transport properties. In the limit of very fast

momentum relaxation (m→∞), the heat and electrical currents decouple, as they do

in the charge conjugation symmetric limit. In the limit of no momentum relaxation

(m = 0), the decoupled currents are the coherent energy current JE (which is equal to

the total momentum P ), and the current JE − 3ε0
2n0
J which is completely incoherent, as

it decouples from the total momentum P [27].

We have analytically computed the low frequency behaviour of the conductivities

in the limit of slow momentum relaxation (small m). In this limit, the decoupled

currents J± are still controlled by qualitatively different physical processes. To the first

subleading order at small m, J− remains coherent, i.e. it is controlled by the momentum

relaxation timescale of the system, while J+ remains incoherent, i.e. it is controlled by

the intrinsic relaxation timescale of the system. There is a smooth m → 0 limit.

The two independent contributions combine in a very non-trivial way to form the DC

conductivities (1.6) — it is not easy to guess how the DC formulæ should be divided

up into coherent and incoherent contributions without any other information.

Our results highlight the fact that subleading corrections to the Drude weight enter

at the same order (in m) as the leading incoherent contribution to each thermoelectric

conductivity. The apparent discrepancies between the holographic DC conductivities

and those of the memory matrix or hydrodynamic descriptions are due to the neglection

of corrections to the Drude weight in these effective theories.

There are several directions which are worth pursuing further:

Spatially resolved transport We have considered the transport of the spatially

uniform components of the charges and currents. A natural extension would be to study

the transport of the non-zero wavenumber k harmonics, to understand how charge is

transported over different distance scales. In the limit of slow momentum relaxation,

we expect that, at low energies, J− will be transported by sound at short distances

(large k) and diffusion at long distances (small k), as was observed in [7] for a zero

density system. In contrast to this, we expect that J+ will be transported by diffusion

at all distance scales, due to its incoherent nature.

Magnetotransport Building on [1], a number of recent articles have revisited the

problem of magnetotransport with momentum relaxation by computing the thermoelec-

tric and Hall conductivities either holographically [5, 33–35] or with memory matrices

[8]. To resolve the discrepancy between the hydrodynamic, memory matrix, and holo-

graphic DC calculations, it would be worthwhile to adapt our techniques to calculate
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the frequency dependent conductivities at non-zero B. Extending our calculations to

non-zero B would also allow us to examine whether the Hall angle receives contributions

from both coherent and incoherent processes and how this relates to the interpretation

of its temperature scaling in terms of two timescales [5].

It was recently proposed [36] that the timescale setting the resistivity scaling of

the strange metallic region of a certain iron pnictide compound is proportional to the

square root of a sum of squares of the temperature and magnetic field. With this in

mind, it would be very interesting to determine the dependence of the appropriate

timescale (momentum relaxation rate or diffusion constant) on the magnetic field in

holographic systems. This could be done by adapting the methods we have used here.

More general theories It would be very worthwhile to extend our work to more

general holographic theories with slow momentum relaxation, in which a hydrodynamic

limit exists at non-zero temperatures. This should be the case when a Drude-like pole

dominates the correlators at sufficiently low energy scales. Holographic theories can

exhibit branch cut formation in the T → 0 limit, due to a coalescense of poles with

decay rates differing by ∼ T . Although our analysis will not capture these poles, a

hydrodynamic limit should be valid when ω,Γ � T , as this is when the Drude-like

excitation is parametrically longer lived than the rest.

In theories where there is a neutral scalar which can run logarithmically in the

interior of the geometry [16, 17, 19], we would expect that the temperature scalings of

the coherent and incoherent contributions to the conductivities can be different from

one another. With this additional hierarchy of scales, it may be possible to find states

with slow momentum relaxation where the effects of the incoherent contribution are

parametrically larger (or smaller) than corrections to the Drude peak. The method

used in [22] may be useful for more general theories.

Another question is the sensitivity of our results to the choice of momentum relax-

ation mechanism: would they be modified if we had instead used random-field disorder

[3, 4, 22, 37–39], or homogeneous [19, 40, 41] or inhomogeneous lattices [20, 32, 42] to

break translational invariance? Furthermore, if we had broken translational invariance

with electrically charged, rather than neutral, operators, would this affect the nature

of transport in the system? In particular, we interpreted the decoupling of J and Q

at large m as being a consequence of the state’s thermodynamics becoming dominated

by the neutral scalar degrees of freedom. Does the same decoupling occur (at low

frequencies) when these neutral operators are not present?

A qualitatively different class of holographic systems with finite conductivities are

probe brane systems, whose DC electrical conductivity can be written as the square

root of the sum of two terms [43], one of which is often interpreted as a ‘Drude-like’ term
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(and can also be computed from the drag force on the charge carriers), the other as a

‘pair creation’ term. It would be interesting to verify this interpretation by analytically

computing the low frequency, linear response conductivity in such a system, as we have

done here.

Effective theories of thermoelectric transport with slow momentum relax-

ation Our computation has highlighted what needs to be done to refine existing

effective hydrodynamic [1] or memory matrix [8] theories of transport in the presence

of slow momentum relaxation, such that they are consistent with the holographic com-

putations of DC conductivities. These effective theories should be extended to take into

account order Γ corrections to the weight of the Drude peak. These produce O(Γ0)

corrections to the DC conductivities, which are the same order as the incoherent σQ
contributions. This is an excellent example of how gauge/gravity duality can contribute

to the understanding of transport in strongly correlated systems in general, by provid-

ing a consistent and reliable framework from which effective theories can be extracted,

or to which effective theories can be compared.
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A The on-shell action

The on-shell action of the theory (1.4), to quadratic order in the perturbations (2.2)

around the solution (1.5), is

S =

∫
d2x

dω

2π

{
3m

2 (ω2 −m2)
hyt

(0)(−ω)
[
mhyt

(3)(ω) + iωχ2
(3)(ω)

]
+

1

2
ay

(0)(−ω)ay
(1)(ω)

− r0 (µ2 + 4r20 − 2m2)

4
hyt

(0)(−ω)hyt
(0)(ω)− r0µ (2ω2 −m2)

2 (ω2 −m2)
hyt

(0)(−ω)a(0)y (ω)

}
,

(A.1)

where we have expanded a generic field perturbation δϕ(r, ω) near the boundary as

δϕ(r, ω) =
∑
n

δϕ(n)(ω)

rn
, (A.2)

and set the scalar operator source term χ
(0)
2 (ω) to zero. From this, we can use the

standard AdS/CFT dictionary [44] to calculate expressions for the retarded Green’s

functions of the operators dual to each field perturbation, in terms of a
(0)
y (ω), a

(1)
y (ω),

etc. These can then be rewritten in terms of the near-boundary expansions of the

decoupled variables using their definitions (2.5). To compute the subtracted correlators

(2.10) that enter in the Kubo formulae (2.1) for the conductivities, we must subtract the

retarded Green’s functions when ω = 0 and k → 0, where k is the wavenumber of the

perturbation in the y-direction. These were obtained by computing the on-shell action

for fluctuations of this kind, yielding the expressions (2.9) for the subtracted correlators.

A non-trivial consistency check of our calculations (including contact terms) is that,

after solving the equations of motion and substituting these solutions into (2.9), we find

that the conductivities are free of i/ω poles, as should be the case on physical grounds.

B Details of the perturbative calculations

In this appendix, we give details of the perturbative solutions for the functions F±(u),

defined in (3.1). At leading order in ω̃, the solutions which obey the correct boundary

conditions at the horizon are simply constants F
(0)
± (u) = C±. The value of these

constants is unimportant and will cancel out in the final answers for the conductivities,

and so for convenience we set C± = 1.

At O(ω̃) in the expansion, we can formally write the solutions as integrals

F
(1)
± (u) =

∫ u

1

dx
−4 (m̃γ± + µ̃)2 (µ̃2 + 2m̃2 − 12) + 4xh±(x) [m̃2 (6x− 4) + x (µ̃2 (4x− 3)− 12)]

i (x− 1)h±(x) (µ̃2 + 2m̃2 − 12) [−4− 4x+ x2 (−4 + 2m̃2 + xµ̃2)]
,

(B.1)
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where

h±(x) = (m̃γ± + xµ̃)2 . (B.2)

From these integrals, it is straightforward to analytically calculate the constants F
(1)
±
′
(0)

that control the DC conductivities

F
(1)
±
′
(0) = i

(m̃γ± + µ̃)2

m̃2γ2±
. (B.3)

However, we could not do the integrals analytically and find exact expressions for

F
(1)
± (0). We are primarily interested in the small m̃ limit of the conductivities, and

thus the small m̃ limit of the integrals. For F
(1)
+ (0), it is straightforward to expand the

integrand at small m̃, and find that the leading order term is of order m̃0. This means

that there is no Drude-like excitation in the conductivity of J+, which is therefore

incoherent. For our purposes, this is all we need to know. For completeness, we note

that it is not possible to integrate the leading term of the integrand analytically for

general µ̃, but that it is possible in a small µ̃ expansion:

F
(1)
+ (0) =

[
− i

18

(√
3π + 9 log 3

)
+
iµ̃2

216

(
19
√

3π − 9 log 3
)

+O(µ̃4)

]
+O(m̃2).

(B.4)

For F
(1)
− (0), it is more complicated. The small m̃ limit of the integrand is singular

due to the form of the function h−(x) ∼ (m̃2 + x)2 in the denominator: the limits

m̃ → 0 and x → 0 do not commute. If we first send m̃2 → 0, the integrand diverges

when x → 0. To correctly evaluate the small m̃ limit, we must take it small but non-

zero, so that we accurately include the contribution from integrating over the region

0 < x < m̃2. To do this, we change the integration variable to x = m̃2y before

expanding the integrand at small m̃ and integrating the leading term in this expansion

to give

F
(1)
− (0) = −3i (4 + µ̃2)

4m̃2
+O(m̃0). (B.5)

This change of variables is only useful for giving us the leading term: it does not allow

us to accurately extract any of the subleading terms in m̃. We have checked that this

technique is reliable by explicitly doing the integral numerically and comparing it to

our result (B.5). The consistency between our analytic pole location and the exact one

determined numerically (see figure 1) is also a check of this. The first correction to

(B.5) is given below in (B.6).

At second order in the small ω̃ expansion, things are even more complicated and we

can only get analytic results for F
(2)
± (u) by performing a double expansion at small m̃

and small µ̃. The strategy is as follows: we expand the integrand of (B.1) to the second
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subleading order in µ̃, and integrate each coefficient to obtain an expression for F
(1)
± (u)

which is perturbative in µ̃ and exact in m̃. This enters as a source in the equations

of motion for F
(2)
±
′
(u), for which we can write down formal integral solutions which

are much too lengthy to include here. We then expand these integrands to the same

order in µ̃ and again integrate term-by-term to obtain expressions for F
(2)
±
′
(u) which

are exact in m̃ but perturbative in µ̃. The final step is to integrate these expressions,

but we could not do this analytically, even in the small µ̃ expansion. Since we are only

interested in the leading order behaviour at small m̃, we expanded each term in the

small µ̃ expansion of the integrand to the lowest order in m̃. For F
(2)
− (u), this again

was preceded by a rescaling of the integration variable x = m̃2y due to the singularity

of the m̃→ 0 limit of the integrand. The results are as follows

F
(2)
+

′
(0) =

[
1

18

(√
3π + 9 log 3

)
+

µ̃2

216

(
5
√

3π − 63 log 3
)

+O(µ̃4)

]
+O(m̃2),

F
(2)
−
′
(0) =

1

m̃4

[
µ̃2

6

(√
3π − 18 + 9 log 3

)
− µ̃4

24

(
9 + 2

√
3π − 12 log 3

)
+O(µ̃6)

]
+O(m̃−2),

F
(2)
+ (0) =

[
− 1

216

(
π2 + 6

√
3π log 3 + 27 (log 3)2

)
+
µ̃2

432

(
π2 − 9 (log 3)2 + 18

√
3π log 3 + 16ψ(1)

(
2

3

)
− 16ψ(1)

(
1

3

))
+O(µ̃4)

]
+O(m̃2),

F
(2)
− (0) =

1

m̃2

[
µ̃2

18

(
18−

√
3π − 9 log 3

)
− µ̃4

48

(
6− 2

√
3π + 2 log 3

)
+O(µ̃6)

]
+O(m̃0).

where ψ(n)(z) is the polygamma function. A byproduct of this analysis is that we

obtain the O(m̃0) correction to (B.5), perturbatively in µ̃:

F
(1)
− (0) = −3i (4 + µ̃2)

4m̃2
+

[
i

18

(
9 +
√

3π − 9 log 3
)

+
i

216

(√
3π − 72− 9 log 3

)
µ̃2

− i

864

(
−84 +

√
3π + 3 log 3

)
µ̃4 +O(µ̃6)

]
+O(m̃2).

(B.6)

The calculation we have described is quite complex and involves taking two limits

(small µ̃ and small m̃) which, in principle, may not commute. But there are a number

of consistency checks we have performed to make sure the expressions above are correct.

For example, the location of the Drude-like pole (3.10) is sensitive to the value of F
(2)
− (0),

the final quantity derived in the procedure above, and our analytic expression agrees

with the exact numerical result (see figure 1). The form of the conductivities in the

m = 0 limit also depend non-trivially on these coefficients (as described in section 3.2),
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and we have checked that we recover the correct results in this limit. Finally, where

possible we have numerically computed the integrals and checked that the results are

consistent with our analytic expressions.
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