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We investigate the decay of f1(1285) → πKK̄ with the assumption that the f1(1285) is dy-
namically generated from the K∗K̄ − cc interaction. In addition to the tree level diagrams that
proceed via f1(1285) → K∗K̄ − cc → πKK̄, we take into account also the final state interactions of
KK̄ → KK̄ and πK → πK. The partial decay width and mass distributions of f1(1285) → πKK̄

are evaluated. We get a value for the partial decay width which, within errors, is in fair agreement
with the experimental result. The contribution from the tree level diagrams is dominant, but the
final state interactions have effects in the mass distributions. The predicted mass distributions are
significantly different from phase space and tied to the K∗K̄ − cc nature of the f1(1285) state.

PACS numbers:

I. INTRODUCTION

The interaction of pseudoscalar mesons with vector
mesons can be tackled with the use of chiral Lagrangians
[1]. These chiral Lagrangians are also obtained by using
the local hidden gauge approach [2–5], exchanging vector
mesons between the vectors and the pseudoscalars in the
limit of small momentum transfers. Interesting develop-
ments using these Lagrangians within a unitary scheme
in coupled channels led to the generation of the low ly-
ing axial vectors from the interaction of these mesons,
which qualify then as dynamically generated states [6–
10]. The states could qualify as kind of molecular states
of a pair of mesons, or at least one can claim that this
is the dominant component in the wave function. One
of these resonances, the a1(1260) has been further in-
vestigated and found to require some extra components,
presumably qq̄, to explain some decay properties [11].
The extrapolation of these ideas to the charm sector has
also produced new states [12–15] as the D∗

s1(2460), gen-
erated from KD∗. QCD lattice simulations produce this
latter state by using KD∗ interpolators [16], suggesting
a molecular nature for this resonance. A more quantita-
tive study has been done in Ref. [17] and within errors of
about 25 % one determines in about 60 % the amount of
KD∗ component in the wave function of that resonance.
The molecular nature of some resonances is catching in-
terest, since the structure is different than the standard
qq̄ commonly accepted for mesons, and the recent devel-
opments with QCD lattice simulations have revived this
topic.
One of the cleanest example of these resonances is the

f1(1285) with quantum numbers IG(JP ) = 0+(1++).
This resonance appears very clean and precise in Ref. [7]

∗Electronic address: xiejujun@impcas.ac.cn

from the single channel K∗K̄ − cc, and the width is very
small, as in the experiment, because it cannot decay into
two pseudoscalar mesons (in principle KK̄ in this case)
for parity and angular momentum conservation reasons.
An extension of the work of Ref. [7], including higher or-
der terms in the Lagrangian, has shown that the effect of
the higher order terms is negligible [18]. Using these the-
oretical tools, predictions for lattice simulations in finite
volume have been done in Ref. [19].
The width of the f1(1285) is 24 MeV, quite small for

its mass, and naturally explained within the molecular
picture. Then the channels contributing to it are very
peculiar. For instance, the πa0(980) channel accounts
for 36% of the width. This channel has been very well
reproduced in Ref. [20] within this molecular picture for
the f1(1285), together with a similar description of the
a0(980) in the chiral unitary approach from the inter-
action of pseudoscalar mesons [21–26]. In Ref. [20] the
πf0(980) decay of the f1(1285) was also studied, and the
rate and shape of the π+π− mass distribution were pre-
dicted. These predictions have been confirmed in a recent
BESIII experiment [27].
Earlier work on the scalar resonances started from

seeds of qq̄, which, after unitarization with the meson me-
son channels, gives room to these meson meson channels
which become dominant in the wave function [28–31].
On the other hand, there is another large channel,the

KK̄π, which also accounts for about 9% of the width.
This decay channel should be tied to the KK̄∗−cc nature
of the state. The channelKK̄∗ is bound for the energy of
the f1(1285) by about 100 MeV, hence this decay is not
observed experimentally [32]. However, the decay of the
K∗ off shell can produce the Kπ and then one has KK̄π
in the final decay channel. Definitely, this decay channel
is related to the coupling of the f1(1285) to theKK̄

∗−cc,
and consequently to the nature of this state. Our aim in
this paper is to evaluate this decay channel from this
perspective. In doing so we also have to face the final
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state interaction (FSI) of the KK̄ and the πK, which we
do using the chiral unitary approach [21, 22, 33].
Apart from the tree level contribution, the FSI leads to

loops with one vector meson and two pseudoscalars. This
triangular mechanism was shown to be very important in
the decay of the η(1405) to πa0(980) [34] and the mixing
with the isospin violated πf0(980) channel [35, 36]

1. We
follow the approach of Refs. [20, 35, 36] to complement
the tree level contribution with the final state interaction
of two mesons. We show that the tree level contribution
produces a decay rate of the f1(1285) to KK̄π of the
right order of magnitude, while the final state interac-
tion of two mesons is needed for a more refined result, in
good agreement with the experiment, hence supporting
the molecular nature of the f1(1285) resonance.
The picture that we present for the f1(1285) is some-

what unconventional, and hence the need to find support
for it, or otherwise. The current trend up to now was that
this resonance is a simple qq̄ state [38–43]. In Ref. [38] the
quark pair creation model is used to account for decays
of this resonance in two mesons and the πa0(980) decay
is addressed from this perspective. In Refs. [39, 40] the
f1(1285) is assumed to belong to a nonet of qq̄ mesons.
In Ref. [44] the B0 and B0

s decays into J/ψ and f1(1285)
are investigated and the results are interpreted in terms
of a qq̄ state, mostly made of u and d quarks. Yet, in
none of the works quoted, or others, have we found an
evaluation of the decay of this resonance into KK̄π.

II. FORMALISM

We study the decay of f1(1285) → πKK̄ with the
assumption that the f1(1285) is dynamically generated
from the K∗K̄ − cc interaction, thus this decay can pro-
ceed via f1(1285) → K∗K̄ − cc → πKK̄. The tree level
diagrams are shown in Fig. 1.

A. Decay amplitude at tree level

In order to evaluate the partial decay width of
f1(1285) → πKK̄, we need the decay amplitudes of the
tree level diagrams shown in Fig. 1, where the process
is described as the f1(1285) decaying to K∗K̄ − cc and
then the K∗ decaying into Kπ. As mentioned above, the
f1(1285) results as dynamically generated from the in-
teraction of K∗K̄ − c.c.. We can write the f1(1285)K

∗K̄

1 A recent paper reviews this issue and, based on the contribution
of the imaginary part of the loop, concludes that there is a reduc-
tion of the decay to the πf0(980) channel if the width of the K∗

is considered [37]. We have redone the calculations including also
the real parts and the reduction persists but is weaker. However,
the isospin allowed πa0(980) is more stable and in the present
case where we have a binding of the KK̄∗ by 100 MeV the effect
of the K∗ width in the isospin allowed channels is negligible.

vertex as

− it1 = −igf1C1ǫ
µǫ′µ, (1)

where ǫ is the polarization vector of the f1(1285) state
and ǫ′ is the polarization vector of the K∗ (K̄∗). The gf1
is the coupling constant of the f1(1285) to the K∗K̄− cc
channel and can be obtained from the residue in the pole
of the scattering amplitude for K̄K∗ − c.c. in I = 0.
We take gf1 = 7555 MeV in the present calculation as
it comes when the pole of the f1 is made to appear at
the nominal mass of the f1(1285) resonance. This result
is in line but a bit bigger than the value of 7230 MeV
found in Ref. [7], where a global fit to the axial vectors
was conducted. 2 We shall take the results with these
two couplings as a measure of the theoretical uncertain-
ties. Besides, the factors C1 account for the weight of
each K∗K̄ (K̄∗K) component in the I = 0 and C = +
combination of K∗K̄ mesons, which is represented by

1√
2
(K∗K̄ − K̄∗K) = −1

2
(K∗+K− +K∗0K̄0

−K∗−K+ − K̄∗0K0) . (2)

We take the convention CK∗ = −K̄∗, which is consistent
with the standard chiral Lagrangians. Then we can easily
obtain the factors C1 for each diagram shown in Fig. 1,

CA,B
1 = −1

2
; CC,D

1 = −1

2
; CE,F

1 =
1

2
; CG,H

1 =
1

2
.(3)

To compute the decay amplitude, we also need the
structure of the K∗Kπ vertices which can be derived
using the hidden gauge symmetry Lagrangian describ-
ing the vector-pseudoscalar-pseudoscalar (V PP ) interac-
tion [2–5], given by

LV PP = −ig < V µ[P, ∂µP ] > , (4)

where g = mV

2f with mV ≈ mρ and f = 93 MeV the pion

decay constant. The symbol <> stands for the trace in
SU(3), while the P and V matrices contain the nonet of
pseudoscalar and vector mesons, respectively.
From the Lagrangian of Eq. (4), the vertex of K∗Kπ

can be written as

− it2 = igC2(k − p)µǫ′µ, (5)

2 In Ref. [20] a coupling of gf1 = 9687 MeV was used, but this was
based on an incorrect method to evaluate the coupling. We take
advantage here to say what we would get with gf1 = 7555 MeV.
We obtain BR(f1(1285) → a0(980)π)|th = (19 ± 2)%, where we
have added some uncertainty induced by the discussion in the
present work. This should be compared with the experimental
value of BR(f1(1285) → a0(980)π) = (36± 7)%. The agreement
is, thus, at a qualitative level.
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FIG. 1: Tree level diagrams representing the process f1(1285) → πKK̄.

where k and p are the momenta of π and K mesons,
respectively. From Eq. (4) and from the explicit expres-
sions of the P and V matrices, the factors C2 for each
diagram shown in Fig. 1 can be obtained,

CA,H
2 =

1√
2
; CB,C

2 = 1; CD,E
2 = − 1√

2
; CF,G

2 = −1.(6)

We can now sum the amplitudes of the diagrams that
have same final state. By means of Eqs. (1) and (5) and
taking into account the values of C1 and C2, the decay
amplitude is obtained straightforwardly:

MA+E
tree =MD+H

tree =Mtree ,

MB+G
tree =MC+F

tree =
√
2Mtree ,

(7)

with

Mtree =
ggf1
2
√
2

(

[−(k − p)µ +
m2

π −m2
K

m2
K∗

(k + p)µ]D1

+ [−(k − p′)µ +
m2

π −m2
K

m2
K∗

(k + p′)µ]D2

)

ǫµ

=
ggf1
2
√
2

(

[(~k − ~p)− m2
π −m2

K

m2
K∗

(~k + ~p)]D1

+ [(~k − ~p′) +
m2

π −m2
K

m2
K∗

(~k + ~p′)]D2

)

· ~ǫ, (8)

where

D1 =
1

(k + p)2 −m2
K∗ + imK∗ΓK∗

, (9)

D2 =
1

(k + p′)2 −m2
K∗ + imK∗ΓK∗

. (10)

Taking diagrams A) and E) for reference to calculate
Mtree, the variables p, p′ and k refer to the K+, K− and
π0, and ΓK∗ is the total decay width of the K∗ meson.
Since the dominant decay channel of K∗ is Kπ, we can

take

ΓK∗ = Γon

(

qon
qoff

)3

, (11)

with Γon = 49.1 MeV, and

qon =
λ1/2(M2

K∗ ,m2
K ,m

2
π)

2MK∗

, (12)

qoff =
λ1/2(M2

inv,m
2
K ,m

2
π)

2Minv
θ(Minv−mK−mπ),(13)

where λ is the Källen function, with λ(x, y, z) = (x −
y − z)2 − 4yz, and Minv is the invariant mass of the πK

system, which is
√

(k + p)2 for the D1 propagator and
√

(k + p′)2 for D2.
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FIG. 2: Triangular loop contributions to the f1(1285) → πKK̄ decay.

B. Decay amplitude for the triangular loop

In addition to the tree level diagrams shown in Fig. 1,
we study also the contributions of the KK̄ and πK FSIs.
We use the triangular mechanism contained in the dia-
grams shown in Fig. 2, consisting in the rescattering of
the KK̄ and πK pairs. Since the f1(1285) has I = 0,
considering only isospin conserving terms, the KK̄ will
be in I = 1 and the πK in I = 1/2. The rescat-
tering of the KK̄ and πK pairs with this isospin dy-
namically generates in coupled channels the a0(980) and
κ(800) resonances, respectively. We write for simplicity
the KK̄ → KK̄ and πK → πK rescattering amplitudes
as,

tKK̄
FSI (MKK̄) = tI=1

KK̄→KK̄(MKK̄), (14)

tπKFSI(MπK) = t
I=1/2
πK→πK(MπK), (15)

where MKK̄ and MπK are the invariant masses for
the KK̄ and πK systems, respectively. The quantities

tI=1
KK̄→KK̄

and t
I=1/2
πK→πK stand for the scattering ampli-

tudes of KK̄ → KK̄ in I = 1 and πK → πK in I = 1/2,
respectively, and they can be obtained using the Bethe-
Salpeter equation

t = (1− V G)−1V, (16)

with the potential V taken from Ref. [21]. The G func-
tion in the above equation is the loop function for the
propagators of the intermediate particles

G(P 2) =

∫

d4q

(2π)4
1

q2 −m2
1 + iǫ

1

(P − q)2 −m2
2 + iǫ

,(17)

where P is the total four-momentum (s = P 2 is the in-
variant mass square of the two particles in the loop) and

m1,m2 the masses of the particles in the considered chan-
nel. We take KK̄ and πη channels for the case of KK̄
FSI, while for πK FSI, we take πK and ηK channels.
After the regularization by means of a cutoff [21], we
obtain

G(s) =

∫

|~q|<qmax

d3q

(2π)3
ω1 + ω2

2ω1ω2

1

s− (ω1 + ω2)2 + iǫ
,(18)

with ωi =
√

|~q|2 +m2
i . For a good description of a0(980)

and κ(800) we take a cutoff qmax = 900 MeV, for both
KK̄ and πK FSIs.

With the ingredients given above, we can explicitly
write the decay amplitude for the diagrams in Fig. 2. As
for the tree level case, we sum the diagrams with the same
final state. In Fig. 2 A), we show the four possible final
states for the KK̄ FSI. The amplitude corresponding to
the first diagram, that is the π0K+K− final state, is then
given by

MKK̄
FSI = −ggf1

2
√
2
(2I1 + I2)2t

I=1
KK̄→KK̄(MKK̄)~ǫ · ~k, (19)

with MKK̄ =
√

(p+ p′)2. Here we have summed explic-
itly the contributions of four diagrams corresponding to
the intermediate states K∗KK̄: K∗+K−K+, K∗0K̄0K0,
K∗−K+K− and K̄∗0K0K̄0, easily done taking into ac-
count the C1 and C2 coefficients and the fact that

tI=1
KK̄→KK̄ = tK+K−→K+K− − tK+K−→K0K̄0

= tK0K̄0→K0K̄0 − tK+K−→K0K̄0 , (20)

with the phase convention |K−〉 = −|1/2,−1/2〉. The

quantities I1 and I2 for the case of MKK̄
FSI are given by
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I1 = −
∫

d3q

(2π)3
1

8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iǫ

1

P 0 − ω∗(q)− ω(q) + iǫ

×2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iǫ)(P 0 + ω(q) + ω′(q)− k0 − iǫ)
, (21)

I2 = −
∫

d3q

(2π)3

~k · ~q/|~k|2
8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iǫ

1

P 0 − ω∗(q)− ω(q) + iǫ

×2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iǫ)(P 0 + ω(q) + ω′(q)− k0 − iǫ)
, (22)

where ω(q) =
√

~q 2 +m2
K , ω′(q) =

√

(~q + ~k)2 +m2
K ,

and ω∗(q) =
√

~q 2 +m2
K∗ are the energies of the K (K̄),

K̄ (K), and K∗ in the triangular loop, respectively. A
more detailed derivation can be found in Ref. [20].
It is worth mentioning that after performing the inte-

grations, the I1 and I2 integrals in the above equations
depend only on the modulus of the momentum of the π0,
which can be easily related to the invariant mass of the

KK̄ system via M2
KK̄

= M2
f1

+m2
π − 2Mf1

√

|~k|2 +m2
π.

The d3q integrations are done with a cutoff qmax = 900
MeV.
In the group B) of diagrams in Fig. 2, we show the

possible final states corresponding to the πK FSI. Each
one of the diagrams has two possible πK̄ or πK final
states. In addition, each one of the diagrams has two
possible K∗K̄ or K̄∗K intermediate states: in the first
diagram we can have K∗+K− or K∗0K̄0 and this leads,
after considering the C1 and C2 coefficients to the com-
bination tπ0K−→π0K− +

√
2tπ−K0→π0K− , proportional to

the t
I=1/2
πK→πK . The sum of the first and third diagram

with π0K+K− in the final state is then easily done and
can be cast as

MπK
FSI =

ggf1
2
√
2
(2I ′1 + I ′2)t

I=1/2
πK→πK(M

(1)
πK)~ǫ · ~p

+
ggf1
2
√
2
(2I ′′1 + I ′′2 )t

I=1/2
πK→πK(M

(2)
πK)~ǫ · ~p′,

(23)

where now I ′1, I
′
2 are evaluated with Eqs. (21) and

(22) replacing one kaon propagator by a pion and sim-

ply putting ω′(q) =
√

(~q + ~p)2 +m2
π and substituting

k0 by p0. Similarly I ′′1 and I ′′2 are also evaluated with

Eqs. (21) and (22) putting ω′(q) =
√

(~q + ~p ′)2 +m2
π

and substituting k0 by p′0. The integrals I ′1, I
′
2 are func-

tions of |~p| and I ′′1 , I
′′
2 of |~p ′|, which can be written in

terms of the invariant masses M
(1)
πK =

√

(k + p′)2 and

M
(2)
πK =

√

(k + p)2 respectively, similarly as done before
for the KK̄ interaction terms.
The relative minus sign between Eqs. (19) and (23) is

easily traced back to the sign of the K∗ → Kπ when we
have either the K or the π in the loop.

III. NUMERICAL RESULTS

With the decay amplitudes obtained above, we can
easily get the total decay width of f1(1285) → πKK̄
which is

Γ = 6
1

64π3Mf1

∫ ∫

dωK+dωK−

∑

|M |2

× θ(1− cos2θKK̄)θ(Mf1 − ωK+ − ωK− −mπ),

(24)

where M is the full amplitude of the process f1(1285) →
π0K+K− including the FSIs,

M =Mtree +MKK̄
FSI +MπK

FSI , (25)

with Mf1 = 1281.9 MeV the mass of f1(1285) state and

ωK+ =
√

m2
K + ~p 2 and ωK− =

√

m2
K + ~p′

2
the energies

of the K+ and K− mesons, respectively. The symbol
∑

stands for the average over the polarizations of the ini-
tial f1(1285) state. The factor 6 in the formula of Γ ac-
counts for the different final charges for πKK̄: π0K+K−,
π+K0K−, π−K+K̄0, and π0K0K̄0, having weights 1, 2,
2, and 1, respectively, which can be easily obtained using
simple Clebsch-Gordan coefficients. Besides, the cosθKK̄

is defined by energy conservation as

cosθKK̄ =
1

2|~p||~p ′| [M
2
f1 + 2m2

K − 2Mf1(ωK+ + ωK−)

+2ωK+ωK− −m2
π]. (26)

With the full amplitude of Eq. (25), the numerical re-
sult for the partial decay width is, using gf1 = 7555 MeV,
Γ = 1.9 MeV, which corresponds to a branching ratio

B.R.[f1(1285) → πKK̄] = 7.8%. (27)

If we use the coupling of Ref. [7], gf1 = 7230 MeV, then
we get Γ = 1.74 MeV, corresponding to a branching ratio

B.R.[f1(1285) → πKK̄] = 7.2%. (28)

This gives a band of theoretical results of

B.R.[f1(1285) → πKK̄] = (7.2− 7.8)%, (29)



6

which is in fair agreement with the experimental value:
(9.0± 0.4)% [32, 45, 46]. The result would be 9.1%, with
the big gf1 coupling, if we considered only the tree level
diagrams. This indicates that the contribution from the
FSIs is small. This occurs because of the relative minus
sign in Eqs. (19) and (23), which makes the effects of the
FSIs for KK̄ and πK go in opposite directions bringing
a partial cancelation in Γ.
We should take into account that in order to get the

f1(1285) state, cut offs of the order of 1000 MeV in the G
function of K̄K∗ are used. On the other hand for the G
function of KK̄ and πK a cut off of 900 MeV was used.
In the triangular loop function of Fig. 2 we have then
θ(1000−|~q|) θ(900−|~q|) = θ(900−|~q|) (in MeV). This jus-
tifies the choice of qmax in that loop function. We can see
the variation of our results by changing these cut offs in
a range such that the masses of the f1(1285) and a0(980)
are not much changed with respect to the experimental
values. In this sense, changes of qmax from 980 MeV to
1040 MeV bring changes in the mass of the f1(1285) by
12 MeV and only 1% changes in the couplings. These
changes are smaller than the range of couplings accepted
in Eq. (29). Similarly, changes in qmax for a0(980) from
860 MeV to 940 MeV change the mass of the a0(980) in
7 MeV. Reevaluating the branching ratios with values of
qmax within this range, change the result that we quote
in Eq. (29) to

B.R.[f1(1285) → πKK̄] = (7.2− 8.3)%, (30)

with the upper limit a little closer to the experimental
value.
Next, we study the invariant mass distribution of the

f1(1285) → π0K+K− decay to see the effect of the K∗

propagator in the tree level and of the KK̄ and πK FSIs.
The invariant mass distributions are given by the for-

mulas

dΓ

dMK+K−

=
MK+K−

64π3M2
f1

∫

dωK+

∑

|M |2θ(1− cos2θKK̄)×

θ(Mf1 − ωK+ − ωK− −mπ)θ(ωK− −mK),(31)

dΓ

dMπ0K+

=
Mπ0K+

64π3M2
f1

∫

dωK+

∑

|M |2θ(1− cos2θKK̄)×

θ(Mf1 − ωK+ − ωK− −mπ)θ(ωK− −mK),(32)

where

ωK− =
1

2Mf1

(M2
K+K− +M2

f1 −m2
π)− ωK+ , (33)

for dΓ
dM

K+K−

, while

ωK− =
1

2Mf1

(M2
f1 +m2

K −M2
π0K+), (34)

for dΓ
dM

π0K+
.

The results for dΓ
dM

K+K−

and dΓ
dM

π0K+
are shown in

Fig. 3 and Fig. 4, respectively. It is very interesting to

compare the different curves in Figs. 3 and 4. We show
there the results assuming just a phase space distribu-
tion (

∑|M |2 in Eqs. (31) and (32) is set to a constant),
and with the tree level or tree level plus final state in-
teraction of KK̄ and πK. For the sake of comparison,
the curves are normalized to the same Γ. In Fig. 3 we
see that the tree level alone shows a distinct shape, very
different from phase space, with a peak at low MK+K− .
This must be attributed to the effect of the K∗ off shell
propagator. The implementation of FSI, particularly the
KK̄ in this case, is responsible for a further shift of the
mass distribution to lower invariant masses, closer to the
KK̄ threshold, where the a0(980) resonance appears.
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0.002

0.003

0.004

0.005

0.006

 

 

d
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M
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v
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 Tree diagram
 Phase space

FIG. 3: The mass distribution dΓ
dM

K+K−

for f1(1285) →

π0K+K− as a function of the invariant mass of the K+K−

system.

In Fig. 4, where the πK invariant mass distribution
is plotted, we see a similar behaviour. The tree level
alone already produces a shape quite different from phase
space, with a peak at high values of MπK , to be at-
tributed once again to the off shell K∗ propagator. The
implementation of FSI, particularly the πK in this case,
pushes the peak of the mass distributions to higherMπK ,
closer to the region where the κ(800) resonance appears.

The two figures show how the most drastic change in
the shape of the two mass distributions is already caused
by the tree level alone and, as mentioned before, this is
tied to the K∗ propagators, which appears at tree level
because of the K̄∗K − cc nature of the f1(1285) state
that we have assumed. These mass distributions have
not been measured yet and it is clear from the present
study that their observation would be very important to
determine the nature of this resonance.
So far we have assumed that the f1(1285) resonance

is fully made from KK̄∗. There are hints that the res-
onance could have also other components. Indeed, in
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FIG. 4: The mass distribution dΓ
dM

π0K+
for f1(1285) →

π0K+K− as a function of the invariant mass of the π0K+

system.

the study of this resonance in finite volume [19] it was
shown that applying the compositeness sum rule [47–49]
to this case with the chiral potential, the KK̄∗ molecular
component accounted for about 50% of the probability
of the wave function, but there could still be a sizable
fraction for other non KK̄∗ components. The size of
these components is uncertain because it relies on the
energy dependence contained in the chiral potential and
it is unclear that this accounts for missing channels (see
Ref. [50]), but it really hints at the possibility to have
some non negligible non KK̄∗ molecular component in
the f1(1285) wave function. This might seem to be in
conflict with our claims of a basically molecular state for
this resonance. This requires some explanation. Differ-
ent parts of the wave function revert in different ways
on certain observables. The easiest such case is the nu-
cleon form factor, which at low momentum transfer is
dominated by the meson baryon components of the nu-
cleon, while at high momentum transfers it is the core of
quarks that is responsible for it [51, 52]. In this sense,
it is logical that the decay of the f1(1285) into KK̄π
and related channels is mostly due to the KK̄∗ molec-
ular component of the wave function, and other compo-
nents would show up in other reactions. In this sense
it is interesting to note that in Ref. [44] the B0 and B0

s

decays into J/ψ and f1(1285) are investigated and the
interpretation in terms of a qq̄ state leads to a f1(1285)
state mostly made of u and d quarks. In our case we
have four quarks to start with and a sizable fraction of
strange quarks in our KK̄∗ molecular component, so the
models seem to be contradictory. Yet, one must recall
that in this latter case we have production of the res-
onance in B decays and the resonance must be formed
starting from a qq̄ component. The investigation done in

Refs. [53, 54] of the B decays, and the ratio of the rates
of B̄0 → J/ψf0(500) [55] and B̄

0 → J/ψρ [32], show that
the hadronization of the primary qq̄ component to give
two mesons has a penalty factor that reverts into a fac-
tor of 0.37 decrease in the partial decay width. In this
sense, the decays of heavy mesons leading to light ones
might reveal themselves into a source of information on
the non molecular components of states like the present
one. Further research considering both the molecular and
qq̄ components for this resonance in the B decays would
be most welcome after the discussion made here.

IV. SUMMARY

In this work, we evaluate the partial decay width of
the f1(1285) → πKK̄ with the assumption that the
f1(1285) is dynamically generated from the K̄∗K − cc
interaction. The tree level diagrams proceeding via
f1(1285) → K∗K̄ − cc → πKK̄ are considered. Besides,
we also take into account the final state interactions of
KK̄ → KK̄ and πK → πK. It is found that the contri-
butions from the FSIs are small compared to the tree level
diagrams to the partial decay width, but they change the
mass distributions of the f1(1285) → πKK̄ decay.
The result that we obtained for the width is compat-

ible with experiment within errors. Yet, we find some
relevant features in the KK̄ and πK mass distributions,
which turn out to be very different from phase space.
The FSI is partly responsible for the shapes obtained but
we found that the tree level contribution, which is domi-
nant in the process, is mostly responsible for this different
shape, which must be attributed to the off shell K∗ prop-
agator appearing in the process under the assumption
that the f1(1285) is a K∗K̄ − cc molecule. The exper-
imental observations of those mass distributions would
then provide very valuable information on the relevance
of this component in the f1(1285) wave function.
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