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We report an observation of the process J/ψ → γX(1835) → γK0
SK

0
Sη at low K0

SK
0
S mass with a

statistical significance larger than 12.9σ using a data sample of 1.31×109 J/ψ events collected with
the BESIII detector. In this region of phase space theK0

SK
0
S system is dominantly produced through

the f0(980). By performing a partial wave analysis, we determine the spin parity of theX(1835) to be
JPC = 0−+. The mass and width of the observed X(1835) are 1844± 9(stat)+16

−25(syst) MeV/c2 and

192+20
−17(stat)

+62
−43(syst) MeV, respectively, which are consistent with the results obtained by BESIII

in the channel J/ψ → γπ+π−η′.

PACS numbers: 13.20.Gd, 13.66.Bc, 14.40.Be
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The non-Abelian property of quantum chromodynam-
ics (QCD) permits the existence of bound states beyond
conventional mesons and baryons, such as glueballs, hy-
brid states, and multiquark states. The search for these
unconventional states is one of the main interests in ex-
perimental particle physics. One of the most promising
candidates, the X(1835) resonance, was first observed in
its decay to π+π−η′ in the process J/ψ → γπ+π−η′ by
BESII [1]; this observation was subsequently confirmed
by BESIII [2]. The discovery of the X(1835) has stimu-
lated theoretical speculation concerning its nature. Pos-
sible interpretations include a pp̄ bound state [3], a sec-
ond radial excitation of the η′ [4], and a pseudoscalar
glueball [5]. In addition, an enhancement in the invariant
pp̄ mass at threshold, X(pp̄), was first observed by BESII
in the decay J/ψ → γpp̄ [6], and was later also seen by
BESIII [7] and CLEO [8]. In a partial-wave analysis of
J/ψ → γpp̄, BESIII determined the JPC of the X(pp̄) to
be 0−+ [9]. The mass of the X(pp̄) is consistent with the
X(1835) mass measured in J/ψ → γπ+π−η′ [2], but the
width of the X(pp̄) is significantly narrower.

To understand the nature of the X(1835), it is crucial
to measure its JPC and to search for new decay modes.
Because of its similarity to J/ψ → γπ+π−η′, J/ψ →
γKK̄η is a favorable channel to search for X(1835) →
KK̄η. In contrast to J/ψ → γK+K−η, there is no
background contamination for J/ψ → γK0

SK
0
Sη from

J/ψ → π0K0
SK

0
Sη and J/ψ → K0

SK
0
Sη, which are forbid-

den by exchange symmetry and CP conservation. There-
fore, the channel J/ψ → γK0

SK
0
Sη provides a clean envi-

ronment with minimal uncertainties due to background
modeling. In this Letter, we report the first observa-
tion and spin-parity determination of the X(1835) in
J/ψ → γK0

SK
0
Sη, where the K0

S and η are reconstructed
from their decays to π+π− and γγ, respectively. The
analysis is based on a sample of (1310.6±10.5)×106 J/ψ
events [10, 11] collected with the BESIII detector [12].

The BESIII detector is a magnetic spectrometer oper-
ating at BEPCII, a double-ring e+e− collider with center
of mass energies between 2.0 and 4.6 GeV. The cylin-
drical core of the BESIII detector consists of a helium-
based main drift chamber (MDC), a plastic scintilla-
tor time-of-flight system, and a CsI(Tl) electromagnetic
calorimeter (EMC) that are all enclosed in a supercon-
ducting solenoidal magnet providing a 1.0 T (0.9 T in
2012, for about 1087× 106 collected J/ψ) magnetic field.
The solenoid is supported by an octagonal flux-return
yoke with resistive plate counter muon identifier mod-
ules interleaved with steel. The acceptance of charged
particles and photons is 93% of the 4π solid angle, and
the charged-particle momentum resolution at 1 GeV/c is
0.5%. The EMC measures photon energies with a reso-
lution of 2.5% (5%) at 1 GeV in the barrel (end caps).
A geant4-based [13] Monte Carlo (MC) simulation soft-
ware package is used to optimize the event selection cri-
teria, estimate backgrounds, and determine the detection
efficiency.

Charged tracks are reconstructed using hits in the

MDC. Because there are two K0
S with displaced vertices,

the point of closest approach of each charged track to
the e+e− interaction point is required to be within ±30
cm in the beam direction and within 40 cm in the plane
perpendicular to the beam direction. The polar angle
between the direction of a charged track and the beam
direction must satisfy | cos θ| < 0.93. Photon candidates
are selected from showers in the EMC with the energy
deposited in the EMC barrel region (| cos θ| < 0.8) and
the EMC end caps region (0.86 < | cos θ| < 0.92) greater
than 25 MeV and 50 MeV, respectively. EMC cluster
timing requirements are used to suppress electronic noise
and energy deposits unrelated to the event.

Candidate J/ψ → γK0
SK

0
Sη events are required to

have four charged tracks with zero net charge and at least
three photon candidates. All charged tracks are recon-
structed under the pion hypothesis. To reconstruct K0

S

candidates, the tracks of each π+π− pair are fitted to a
common vertex. K0

S candidates are required to satisfy
|Mπ+π− −mK0

S
| < 0.009 GeV/c2 and L/σL > 2, where

L and σL are the distance between the common vertex
of the π+π− pair and the primary vertex, and its error,
respectively. The γγγK0

SK
0
S candidates are subject to a

kinematic fit with four constraints (4C), ensuring energy
and momentum conservation. Only candidates where the
fit yields a χ2

4C value less than 40 are retained for further
analysis. For events with more than three photon candi-
dates, multiple J/ψ → γK0

SK
0
Sη candidates are possible.

Only the combination yielding the smallest χ2
4C is re-

tained for further analysis. Candidate J/ψ → γK0
SK

0
Sη

events are required to have exactly one pair of photons
within the η mass window (0.51 < Mγγ < 0.57 GeV/c2).
Simulation studies show this criterion significantly re-
duces the miscombination of photons from 3.20% to
0.16%. The miscombination of pions is also studied and
found to be negligible. To further suppress background
events containing a π0, events with any photon pair
within a π0 mass window (0.10 < Mγγ < 0.16 GeV/c2)
are rejected. The decay J/ψ → φK0

SK
0
S with φ → γη

leads to the same final state as the investigated reaction
J/ψ → γK0

SK
0
Sη. Therefore, events in the mass region

|Mγη −mφ| < 0.04 GeV/c2 are rejected.

After applying the selection criteria discussed above,
the invariant mass spectrum of K0

SK
0
Sη shown in Fig. 1

(a) is obtained. Besides a distinct ηc signal, a clear
structure around 1.85 GeV/c2 is observed. The K0

SK
0
S

mass spectrum, shown in Fig. 1 (b), reveals a strong
enhancement near the K0

SK
0
S mass threshold, which is

interpreted as the f0(980) by considering spin-parity
and isospin conservation. The scatter plot of the in-
variant mass of K0

SK
0
S versus that of K0

SK
0
Sη is shown

in Fig. 1 (c). A clear accumulation of events is seen
around the intersection of the f0(980) and the struc-
ture around 1.85 GeV/c2. This indicates that the struc-
ture around 1.85 GeV/c2 is strongly correlated with
f0(980). By requiring MK0

S
K0

S
< 1.1 GeV/c2, the struc-

ture around 1.85 GeV/c2 becomes much more prominent
in the K0

SK
0
Sη mass spectrum [Fig. 1 (d)]. In addition,



4

there is an excess of events around 1.6 GeV/c2.
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FIG. 1. Invariant mass distributions for selected events: In-
variant mass spectra of (a) K0

SK
0
Sη and (b) K0

SK
0
S ; (c) scat-

ter plot of MK0
S
K0

S

versus MK0
S
K0

S
η ; (d) K0

SK
0
Sη invariant

mass spectrum for events with the requirement MK0
S
K0

S

<

1.1 GeV/c2. Dots with error bars are data; the shaded his-
tograms are the non-η backgrounds estimated by the η side-
band; the solid histograms are phase space MC events of
J/ψ → γK0

SK
0
Sη with arbitrary normalization.

Potential background processes are studied using a
simulated sample of 1.2 × 109 J/ψ decays, in which
the decays with measured branching fractions are gen-
erated by EvtGen [14] and the remaining J/ψ decays
are generated according to the lundcharm [15] model.
Simulated events are subject to the same selection pro-
cedure applied to data. No significant peaking back-
ground sources have been identified in the invariant mass
spectrum of K0

SK
0
Sη. Dominant backgrounds stem from

J/ψ → γK0
SK

0
Sπ

0 and J/ψ → γK0
SK

0
Sπ

0π0. These non-
η backgrounds are considered in the partial wave anal-
ysis (PWA) by selecting events from data in the η side-
band regions defined as 0.45 < Mγγ < 0.48 GeV/c2 and
0.60 < Mγγ < 0.63 GeV/c2, and they account for about
2.5% of the total number of events in the η signal region.
A PWA of events satisfying MK0

S
K0

S
η <

2.8 GeV/c2 and MK0
S
K0

S

< 1.1 GeV/c2 is performed to
determine the parameters of the structure around 1.85
GeV/c2. These restrictions reduce complexities due to
additional intermediate processes. The signal ampli-
tudes are parameterized as sequential two-body decays,
according to the isobar model: J/ψ → γX, X → Y η
or ZK0

S, where Y and Z represent the K0
SK

0
S and

K0
Sη isobars, respectively. Parity conservation in the

J/ψ → γK0
SK

0
Sη decay restricts the possible JPC of the

K0
SK

0
Sη (X) system to be 0−+, 1++, 2++,2−+, 3++, etc.

In this Letter, only spins J < 3 and possible S-wave or
P -wave decays of the X are considered. The amplitudes
are constructed using the covariant tensor formalism
described in Ref. [16]. The relative magnitudes and
phases of the partial wave amplitudes are determined
by an unbinned maximum likelihood fit to data. The
contribution of non-η background events is accounted
for in the fit by subtracting the negative log-likelihood
(NLL) value obtained for events in the η sideband region
from the NLL value obtained for events in the η signal
region. The statistical significance of a contribution is
estimated by the difference in NLL with and without
the particular contribution, taking the change in degrees
of freedom into account.

Our initial PWA fits include an X(1835) resonance in
the f0(980)η channel and a nonresonant component in
one of the possible decay channels f0(980)η, f0(1500)η or
f2(1525)η. All possible J

PC combinations of theX(1835)
and the nonresonant component are tried. We then ex-
tend the fits by including an additional resonance at lower
K0

SK
0
Sη mass. This additional component, denoted here

as the X(1560), improves the fit quality when it is al-
lowed to interfere with the X(1835). Our final fits show
that the data can be best described with three compo-
nents: X(1835) → f0(980)η, X(1560) → f0(980)η, and
a nonresonant f0(1500)η component. The JPC of the
X(1835), the X(1560), and the nonresonant component
are all found to be 0−+. The X(1835), X(1560), and
f0(1500) are described by nonrelativistic Breit-Wigner
functions, where the intrinsic widths are not energy de-
pendent. The masses and widths of the X(1835) and
X(1560) are derived by scanning each over a certain
range. The f0(1500) mass and width are fixed to the
values reported in Ref. [17]. The f0(980) is parame-
terized by the Flatté formula [18], with the parameters
fixed to the values reported by BESII [19] in the channels
J/ψ → φπ+π− and J/ψ → φK+K−. The scan returns a
mass and width of the X(1835) of 1844± 9MeV/c2 and
192+20

−17MeV, respectively. The mass and width of the

X(1560) are determined to be 1565 ± 8MeV/c2 and
45+14

−13MeV, respectively. Using a detection efficiency
of 5.5%, obtained by a MC sample weighted by par-
tial wave amplitudes, the product branching fraction of
J/ψ → γX(1835) and X(1835) → K0

SK
0
Sη (BX(1835))

is calculated to be (3.31+0.33
−0.30) × 10−5, where the decay

X(1835) → K0
SK

0
Sη is dominated by f0(980) production.

The K0
SK

0
Sη, K

0
SK

0
S , K

0
Sη mass spectra and the distri-

butions of the J/ψ, K0
SK

0
Sη and K0

SK
0
S decay angles are

shown in Fig. 2. Overlaid on the data are the PWA
fit projections, as well as the individual contributions
from each component. The χ2/nbin value is displayed
on each figure to demonstrate the goodness of fit. We
evaluate the significance by applying the likelihood ratio
test, performing a separate fit for every systematic vari-
ation detailed below. The most conservative statistical
significances of the X(1835) and X(1560) are 12.9σ and
8.9σ, respectively.

Various fits are performed by changing the JPC and
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FIG. 2. Comparisons between data and PWA fit projections. (a), (b), and (c) are the invariant mass distributions of K0
SK

0
Sη,

K0
SK

0
S, and K

0
Sη (two entries/event), respectively. (d)-(f) are the angular distributions of cos θ, where θ is the polar angle of (d)

γ in the J/ψ rest system; (e) η in the K0
SK

0
Sη rest system; and (f) K0

S in the K0
SK

0
S rest system (two entries/event). The dots

with error bars are data, the solid histograms are the PWA total projections, the shaded histograms are the non-η backgrounds
estimated by the η sideband, and the short-dashed, dash-dotted, and long-dashed histograms show the contributions ofX(1835),
X(1560), and the nonresonant component, respectively.

decay mode of the nonresonant component compared to
the nominal solution described above. The NLL value
of a fit with a 1++ nonresonant f0(1500)η component
is only worse by 0.8 compared to the nominal solution,
which indicates that we cannot distinguish between the
two spin assignments of the nonresonant component with
our present statistics. This ambiguity introduces large
systematic uncertainties in the BX(1835), since the inter-
ference between the X(1835), X(1560), and the nonres-
onant component depends on the spin assignment of the
latter. To establish the JPC of the X(1835), we per-
form a series of PWA fits assuming alternative JPC hy-
potheses for both the X(1835) and the nonresonant con-
tribution. For the nonresonant contribution, we also test
several possible decay channels [f0(980)η, f0(1500)η, and
f2(1525)η] in turn. For each nonresonant component as-
sumption, the X(1835) 0−+ hypothesis is significantly
better than the 1++ or 2−+ hypotheses, with the NLL
value improving by at least 41.6 units. Analogously, we
perform the same series of PWA fits for the X(1560).
Again the 0−+ hypothesis for the X(1560) always yields

a significantly better fit result than other JPC assign-
ments, with the NLL value improving by at least 12.8
units.

We evaluate the contributions from additional well-
known resonances by adding them individually to the
fit. We consider all possible combinations for X
and its subsequent decay products Y and Z as given
in Ref. [17]: for X , this includes η(1760), η(2225),
f1(1510), η2(1870), f2(1810), f2(1910), f2(1950),
f2(2010), f2(2150), f2(2300), f2(2340), fJ(2220); for Y ,
f0(980), f0(1500), f0(1710), f2(1270) and f2(1525); for
Z, K∗(1410), K∗(1680), K∗

0 (1430),K
∗
0 (1950), K

∗
2 (1430),

and K∗
2 (1980). Additional nonresonant contributions

with various JPC and decay modes are studied as well.
The statistical significances of the additional contribu-
tions are smaller than 5σ. In order to check the pos-
sible contribution from a nonresonant K0

SK
0
S process,

we add a X(1835) → (K0
SK

0
S)Sη process into the nom-

inal solution, where (K0
SK

0
S)S refers to a nonresonant

K0
SK

0
S contribution in a relative S wave. We find the

resulting significance of the X(1835) → f0(980)η pro-
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cess and the X(1835) → (K0
SK

0
S)Sη process to be 6.8σ

and 1.6σ, respectively, so we do not include the latter
process in the nominal solution. We also test a fit by
changing the decay mode of the X(1560) in the nom-
inal solution from f0(980)η to (K0

SK
0
S)Sη; the fit with

X(1560) → (K0
SK

0
S)Sη has almost the same fit quality as

the nominal solution. Therefore, with the present statis-
tics, we cannot draw a conclusion about the X(1560) de-
cay mode. The largest differences in masses and widths
of the X(1835) and X(1560) and the product branching
fraction BX(1835) between all above alternative fits and
the nominal solution are taken as systematic uncertain-
ties from the components in the nominal solution.

For the measurements of the masses and widths of the
X(1835) and X(1560) and the product branching frac-
tion BX(1835), we include the following sources of sys-
tematic uncertainties in addition to the sources discussed
above: we change the K0

SK
0
S mass range to MK0

S
K0

S

<

1.05, 1.15 and 1.20 GeV/c2; we change the f0(980)
mass and coupling constants in the Flatté formula to
other experimental measurements [20–22]; we change the
f0(1500) mass and width by one standard deviation [17];
we increase and decrease the non-η background level by
one standard deviation; we change the parameterization
of the X(1835) andX(1560) line shape to a Breit-Wigner
function whose intrinsic width is energy-dependent [23];
and we replace the X(1560) by η(1405) or η(1475). For
the systematic errors of the product branching fraction
BX(1835), we also consider the following additional un-

certainties. The K0
S reconstruction efficiency is stud-

ied using two control samples of J/ψ → K∗±K∓ and
J/ψ → φK0

SK
±π∓, while the photon detection efficiency

is investigated based on a clean sample of J/ψ → ρπ. The
differences between data and MC simulation are 1.0%
for each K0

S and 1.0% for each photon [24]. A control
sample of J/ψ → γK0

SK
0
Sπ

0 is selected to estimate the
uncertainty associated with the 4C kinematic fit. The ef-
ficiency is the ratio of the signal yields with and without
the kinematic fit requirement χ2

4C < 40. The difference
between data and MC simulation, 1.5%, is assigned as
the systematic uncertainty. We also consider the uncer-
tainties from the number of J/ψ events [10, 11] and the
branching fractions of K0

S → π+π− and η → γγ [17]. We
change the mass and width of X(1835) or X(1560) by
1 standard deviation of the statistical uncertainty. The
individual uncertainties are assumed to be independent
and are added in quadrature to obtain the total system-
atic uncertainties as presented in the Supplemental Ma-
terial [25].

In summary, a PWA of J/ψ → γK0
SK

0
Sη has been

performed in the mass range MK0
S
K0

S
η < 2.8 GeV/c2 af-

ter requiring MK0
S
K0

S

< 1.1 GeV/c2. The PWA fit re-

quires a contribution from X(1835) → K0
SK

0
Sη with

a statistical significance greater than 12.9σ, where the
X(1835) → K0

SK
0
Sη is dominated by f0(980) produc-

tion. The spin parity of the X(1835) is determined
to be 0−+. The mass and width of the X(1835)
are measured to be 1844± 9(stat)+16

−25(syst)MeV/c2 and

192+20
−17(stat)

+62
−43(syst)MeV, respectively. The corre-

sponding product branching fraction BX(1835) is mea-

sured to be (3.31+0.33
−0.30(stat)

+1.96
−1.29(syst))×10−5. The mass

and width of the X(1835) are consistent with the values
obtained from the decay J/ψ → γπ+π−η′ by BESIII [2].
These results are all first-time measurements and provide
important information to further understand the nature
of the X(1835).
Another 0−+ state, the X(1560), also is observed

in data with a statistical significance larger than 8.9σ
and is seen to interfere with the X(1835). The mass
and width of the X(1560) are determined to be 1565 ±
8(stat)+0

−63(syst)MeV/c2 and 45+14
−13(stat)

+21
−28(syst)MeV,

respectively. The mass and width of the X(1560) are
consistent with those of the η(1405) and η(1475) as given
in Ref. [17] within 2.0σ and 1.4σ, respectively. Present
statistics do not allow us to conclusively determine if the
X(1560) is the same state as the η(1405)/η(1475) or a
new meson. More statistics in this analysis and an am-
plitude analysis of J/ψ → γηπ0π0 and J/ψ → γK0

SK
0
Sπ

0

processes may help to understand the nature of the
X(1560).
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