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Combustion of a hadronic star into a quark star: the turbulent and the diffusive

regimes
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We argue that the full conversion of a hadronic star into a quark or a hybrid star occurs within
two different regimes separated by a critical value of the density of the hadronic phase nh. The first
stage, occurring for nh > nh, is characterized by turbulent combustion and lasts typically a few ms.
During this short time-scale neutrino cooling is basically inactive and the star heats up thanks to
the heat released in the conversion. In the second stage, occurring for nh < nh, turbulence is not
active anymore, and the conversion proceeds on a much longer time scale (of the order of tens of
seconds), with a velocity regulated by the diffusion and the production of strange quarks. At the
same time, neutrino cooling is also active. The interplay between the heating of the star due to the
slow conversion of its outer layers (with densities smaller than nh) and the neutrino cooling of the
forming quark star leads to a quasi-plateau in the neutrino luminosity which, if observed, would
possibly represent a unique signature for the existence of quark matter inside compact stars. We
will discuss the phenomenological implications of this scenario in particular in connection with the
time structure of long gamma-ray-bursts.

PACS numbers: 21.65.Qr,26.60.Dd

I. INTRODUCTION

The Bodmer-Witten hypothesis on the absolute stability of strange quark matter [1, 2] stimulated many interesting
investigations on the possible existence of compact stars entirely composed by this kind of matter [3, 4] or small
nuggets of strange quark matter which would propagate in the Universe as cosmic rays [5]. The exothermic process
of conversion of ordinary nuclear matter into strange quark matter has been studied for the first time in Ref. [6]
where it has been modeled as a slow combustion by means of a one dimensional stationary reaction-diffusion-advection
equation for the strange quarks concentration. This is a kinetic theory calculation in which the microphysical processes
occurring within a finite width combustion zone are taken into account and which allows to determine the velocity of
the conversion as a function of the quarks diffusion coefficient and the rate of conversion of down quarks into strange
quarks. It turns out that typical values for the burning velocities are within 103 − 104 cm/sec for a quark chemical
potential µq ∼ 300 MeV and a temperature of the quark phase T ∼ 10 MeV.
The limit of this kinetic theory approach is that it does not allow to take into account possible macroscopic collective

flows and hydrodynamical instabilities driven by pressure and density gradients between the fuel and the ashes fluids.
Gravity would also play an important role in the dynamics of the conversion. For a complete treatment of the
problem one would have to couple the equations of hydrodynamics (i.e. the equations of conservation of baryon
number, momentum and energy) and the equation of conservation of chemical species (which includes the diffusion
and the reaction rates within the combustion zone) in multidimensional numerical simulations, see [7, 8]. The width of

the combustion zone δ can be estimated by the simple relation δ ∼
√
Dτ [9] where D is the quark diffusion coefficient

(D ∼ 10−1cm2/sec for µq ∼ 300 MeV and T ∼ 10 MeV [8]) and τ is the inverse of the rate of conversion of down
quarks into strange quarks (τ ∼ 10−9 sec for µq ∼ 300 MeV [10]). One obtains δ ∼ 10−5 cm. Clearly, it would
be numerically unfeasible to resolve such a small length scale within a numerical simulation aiming at studying a
compact star whose size is of the order of ten km.
A similar problem exists in the context of numerical simulations of type Ia Supernovae where length scales from 10−4

to 108 cm characterize the physical system [11] and an alternative scheme has been devised: being the combustion
zone much smaller than the size of the system one can assume that it is actually an infinitely thin layer and it can be
treated as a surface of discontinuity which separates the ashes from the fuel. In this scheme, called flamelet regime [39],
one has to impose the Hugoniot jump conditions to relate the thermodynamical variables of the fluid at both sides of
the discontinuity. This approach, implemented in 3+1D, is one the most used in the context of type Ia Supernovae and
it has demonstrated the crucial role played in such explosive events by the hydrodynamical instabilities, specifically
the Rayleight-Taylor instability and the Landau-Darrieus instabilities [12, 13], which turns the laminar combustion
into a much faster turbulent combustion. In this sense the flamelet approximation is very sensible: since the burning
velocity is strongly enhanced by turbulence, the importance to know the exact value of the laminar velocity (governed
by the microphysics of the combustion zone) is subordinate.
The same method has been adopted for studying the conversion of nuclear matter into strange quark matter in
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semi-analytical calculations [14–17]. This process is most likely a deflagration (subsonic combustion) and not a
detonation (supersonic combustion) although its velocity is substantially increased, up to two orders of magnitude,
by the development of hydrodynamical instabilities. A common finding within this approach is that at some critical
density this rapid combustion stops and the neutron star cannot fully convert into a strange quark star. These results
have been recently confirmed in 3+1D hydrodynamics numerical simulations: the star is converted on a time scale of
ms thanks to hydrodynamical instabilities but a sizable fraction of the star, of the order of few 0.1M⊙, is left unburnt
[18, 19]. A natural question that we will address in this paper arises: does the combustion really stop or does it
proceed on a longer time scale?
After clarifying the reason for which, in a purely hydrodynamical approach, the turbulent combustion stops (the

critical density being given by the condition proposed by Coll in Ref.[20]), we will model the subsequent slow conversion
process (which is driven by strangeness diffusion and weak interaction processes). We will demonstrate that in such
a two steps scenario, a first stage of fast turbulent combustion and a second stage of slow laminar combustion, one
could obtain a noticeable imprint on the neutrino signal emitted from the formation of a strange quark star.
The paper is organized as follows: in Section II we will review the procedure adopted for treating the combustion

within a purely hydrodynamical approach and we will explain the meaning of the Coll’s condition. In Section III we
will model the slow combustion process and provide some example of the neutrino signals released by a strange star
at birth. We draw our conclusion in Section IV.

II. TURBULENT HYDRODYNAMICAL COMBUSTION

We review here the way the combustion is treated if the combustion zone is so thin to be considered as a surface
of discontinuity, usually called flame front. The generalization of the classical combustion theory within relativistic
(magneto-)hydrodynamics has been presented by Coll and Anile in Refs.[20, 21]. Denoting with pi, ei, ni and
Xi = (ei+pi)/n

2
i the pressure, energy density, baryon density and dynamical volume of fluid i, the so-called “condition

for exothermic combustion”, we will name it “Coll’s condition”, for the conversion of fluid 1 into fluid 2 reads:
e1(p,X) > e2(p,X), i.e. at fixed pressure and dynamical volume, the energy density of fluid 1, the fuel, must be
larger then the one of fluid 2, the ash, see also [22] for the case of classical hydrodynamics. Introducing the enthalpy
density wi = ei+ pi, the Coll’s condition can be equivalently expressed as w1(p,X) > w2(p,X). As we will show, this
condition is necessary in the case of a detonation, while in the case of a deflagration it determines the appearance

of hydrodynamical instabilities dramatically accelerating the combustion process. To our knowledge this issue is not
discussed in any standard textbook of hydrodynamics nor in any research paper. Our result also implies that Coll’s
condition corresponds to the request of exothermicity in the case of detonations while its violation does not exclude
the possibility of slow processes of combustion.
Let us consider the two fluids to be hadronic matter and quark matter. For the hadronic matter we adopt a generic

equation of state at zero temperature eh(ph, Xh) (this situation corresponds to the case of the conversion of a cold
hadronic star) while for quark matter we consider the simple case of the equation of state of the MIT bag model with
massless quarks as in Ref. [18]. The relation between energy density and pressure in this case reads: eq = 3pq + 4B
where B is the usual bag constant (notice that in the case of massless quarks the energy density is a function of only
p and not of X). The more general case of a polytrope is discussed in the appendix A, see also [23].
Similarly to the case of the discontinuity associated with a shock wave, also in the case of the flame front, one has to

impose the continuity equations for the fluxes of baryon number (or mass flux), momentum and energy. By indicating
with j the number of baryons ignited per unit time and unit area of the flame front, one obtains the following relations
between the thermodynamical quantities of the hadronic fluid and of the quark fluid:

nhuh = nquq = j (1)

(pq − ph)/(Xh −Xq) = j2 (2)

wh(ph, Xh)Xh − wq(pq, Xq)Xq = (ph − pq)(Xh +Xq) (3)

the last equation corresponding to the so-called relativistic detonation adiabat. uh and uq are the four-velocities of
hadronic and quark matter in the flame front rest frame. Starting from hadronic matter in the state A: ph = pA
and Xh = XA and for a given value of j, Eqs. 1-3 allow to determine the final state B of quark matter, pq = pB
and Xq = XB which lies on the detonation adiabat. In particular, the second equation represents a line in the (p,X)
plane passing through A and with angular coefficient equal to −j2. The intersections of this line with the detonation
adiabat allow to find the state B of quark matter. The baryon number flux j, or equivalently the flame front velocity
with respect to one of the two fluids ui, in general cannot be expressed in terms of the thermodynamical variables
of the states A and B. It is instead related to the specific microscopic properties of the chemical reactions of the
combustion, the heat transfer and the diffusion of chemical species across the flame front and therefore it must be
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FIG. 1: Illustrative plot of the detonation adiabat in the case in which the Coll’s condition is fulfilled (left panel) or not (right
panel). A, B, B’ indicate respectively the initial hadronic state and two possible final states for the quark phase. O and O’ are
the Chapman-Jouget points.

determined within a kinetic theory approach such as the one of Ref. [6]. We remark however that hydrodynamical
instabilities can substantially affect the flame front velocities as we will discuss later on.
We will now show that Coll’s condition determines the position of the initial state A with respect to the detonation

adiabat. To this purpose we will consider a point on the detonation adiabat having the same value of X of the initial
state A (XA = XB) and we will compute the corresponding value of the pressure pB (this procedure corresponds to
the limit j → ∞): in this way we will find if A lies below or above the detonation adiabat. Coll’s condition, written
in terms of the enthalpy density, reads [20]: ∆(p,X) = eh(p,X)− eq(p,X) = wh(p,X)−wq(p,X) > 0. One can write
Eq.3, adding and subtracting eq(pA, XA), as:

wh(pA, XA)− wq(pB, XA) = 2pA − 2pB

eh(pA, XA) + pA − eq(pB, XA)− pB + eq(pA, XA)− eq(pA, XA) = 2pA − 2pB

∆(pA, XA) + eq(pA, XA)− eq(pB, XA) = pA − pB

∆(pA, XA) + 3pA + 4B − 3pB − 4B = pA − pB

∆(pA, XA) = 2(pB − pA) (4)

Therefore if ∆(pA, XA) > 0, i.e. if the Coll’s condition is fulfilled, then pB > pA which means that the initial state
of the hadronic phase A lies in the region of the (p,X) plane below the detonation adiabat. In turn, this implies that
there are two specific values of j, jO and jO′ , for which the lines passing through A are tangent to the detonation
adiabat. The two points of tangency are the Chapman-Jouget points, see Fig.1. Following the standard treatment,
one could obtain strong and weak detonations and strong and weak deflagrations depending on the specific values of
j and on the boundary conditions of the problem. The point O corresponds to the Chapman-Jouget detonation and
it is the only possible realization of detonation in a physical system, such a compact star, in which no external force
is producing the shock wave, see[9]. Moreover a detonation taking place in a compact star can be assimilated to a
detonation in a closed pipe and also in this case it can take place only at the Chapman-Jouget point [9]. Clearly, if
the Coll’s condition is not fulfilled, the state A lies in the region of the (p,X) plane above the detonation adiabat (see
Fig.1 right panel) and there are no Chapman-Jouget points in this case. Detonation is therefore excluded when the
Coll’s condition is not fulfilled.
Let us discuss now how the Coll’s condition is related to the deflagration regimes. We consider the simplest case

of a slow combustion, i.e. a process in which the velocities vh and vq are much smaller than the sound velocities ch
and cq of the two fluids (this case is particularly interesting for the combustion of hadronic stars into quark stars for
which the laminar velocities, found in [6], are much smaller than the sound velocities). By using Eqs.(1-3) one finds in
this regime that ph = pA = pq = pB′ and wA/nA = wB′/nB′ or equivalently (eA + pA)/nA = (eB′ + pA)/nB′ , i.e. the
enthalpy per baryon is conserved during the combustion (see [9] for the case of non-relativistic hydrodynamics).
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FIG. 2: Difference between the energy density of the hadronic phase and the quark phase as a function of the baryon density.
The solid black and red lines correspond to the LS180 and GM3 equations of state with only nucleons. The green lines
correspond to the SFHo model with only nucleons (solid line), deltas (dotted line) and deltas and hyperons (dashed line). The
Coll’s condition is fulfilled within the density window for which this difference is positive.

One sees immediately that in this case the Coll’s condition implies, see Fig.1 (left panel), that X ′
B > XA i.e.

(eB′ + pA)/n
2
B′ > (eA + pA)/n

2
A which together with the conservation of the enthalpy per baryon implies nB′ < nA.

Moreover, from nA(eB′ + pA) = nB′(eA + pA) < nA(eA+ pA) on obtains eB′ < eA. Thus the quark phase is produced
with baryon density and energy density smaller than the one of the hadronic phase. This fact opens the possibility
of obtaining the Rayleigh-Taylor instabilities. These instabilities arise, in the presence of gravity, if the gradient
of the gravitational potential and the gradient of the energy density point in opposite directions (inverse density
stratification). Indeed as shown in Refs. [17, 18], the Rayleight-Taylor instabilities do occur during the conversion of
an hadronic star and they substantially increase the efficiency of burning leading to time scales of the order of ms for
the conversion of a big portion of the star.
On the other hand, if the Coll’s condition is violated, the new phase is produced (again in the case of a slow

combustion) with eB′ > eA and therefore the burning can proceed but with velocities which are dominated by the
diffusion and the rate of the chemical reactions and which are therefore much smaller than the velocities obtained
during the turbulent regime. Moreover one can notice that since the new phase is produced with an energy density
larger than the one of the fuel one cannot speak in this case of a deflagration (for which the inequality eB′ < eA must
hold true).
One can separate the turbulent from the diffusive regime by finding the critical density of the hadronic phase,

nh, for which the Coll’s equality is satisfied eh(p,X) = eq(p,X). For this value of density the state A lies on the
detonation adiabat. Moreover one also obtains that nq = nh: thus pressure, energy density and baryon density are
continuous across the interface of the flame front. The evolution of the flame for nh < nh is not turbulent anymore.
A simple way to understand the role played by the instabilities is to use the analytic model proposed in [13] which

allows to estimate the increase in the laminar velocities ui due to turbulence in terms of the fractal dimension of
the flame front. In particular, the fractal excess of the wrinkled front surface ∆D is proportional to the square of
Γ = 1− eB/eA and it therefore vanishes when the Coll’s condition is met at nA = nh. The mean velocity vmh of the
front (with respect to the hadronic fluid) is significantly larger than the laminar velocity vlh and it reads:

vmh = vlh(λmax/λmin)
∆D (5)

where λmax and λmin are two length scales which regulate the maximal and the minimal size of the wrinkle for which
the velocity of the Rayleight-Taylor growing modes is larger than the laminar velocity, see [17]. As one can indeed
notice in the simulations of [18], the velocity of the flame front approaches the laminar velocity when the density is
close to nh. Clearly a fraction of the star cannot be converted by means of a fast hydrodynamical deflagration and
actually a mass of a few 0.1M⊙ remains unburnt at the end of the turbulent regime [18].
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FIG. 3: Enclosed gravitational mass and radius as a function of the baryon density for a 1.5M⊙ hadronic star before the
turbulent conversion (black lines) and after the turbulent conversion (red lines). The black dashed line marks the appearance
of hyperons: the seed of strange quark matter is formed at densities larger than this threshold. The red dashed line marks the
density below which Coll’s condition is no more fulfilled and the turbulent combustion does not occur anymore. Below this
density, the combustion proceeds via the slow diffusive regime.

To provide some example of the results obtained by imposing the Coll’s condition, we display in Fig.2 the difference
between the energy density of hadronic matter and of quark matter (again massless quarks for simplicity) for the
following equations of state: the LS180 model from [24], the GM3 model from [25] and the SFHo model from [26]
also with the inclusion of delta resonances and hyperons [27]. Pure nucleonic equations of state provides two values
of baryon density for which the Coll’s equation holds (as also found in [14, 18]). In general, the stiffer the hadronic
equation of state the smaller the density window for which the turbulent hydrodynamical combustion can take place.
One the other hand, when considering deltas and hyperons, within the SFHo model, the turbulent hydrodynamical
combustion is always possible above the threshold for the formation of deltas (see dashed line). Notice that once a
certain amount of hyperons is present in a hadronic star, the conversion is a necessary process in the scenario of the
Witten’s hypothesis [28].

III. DIFFUSIVE REGIME

A. Diffusion of strangeness and exothermicity

As explained before, when the flame front reaches nh = nh the hydrodynamical instabilities responsible for the very
fast conversion of the inner part of the star are not active anymore. The subsequent evolution of the system can be
described by using the laminar burning velocity of the front vlh computed in [6, 10]: it corresponds to vmh in the limit
∆D → 0 (see Eq. 5). Let us first review how the conversion process is described within microscopic kinetic theory
approaches: we follow in particular the more recent treatment presented in [10]. The conversion is basically due to
two simultaneous processes: diffusion of quarks within the combustion layer and flavor changing weak interactions
among quarks (the process u+ d → u+ s being the most relevant for our case). One starts by introducing a position

dependent strangeness unbalance a(x) = (nK(x) − nQ
K)/nQ where the coordinate x = 0 defines the position of the

conversion boundary, nK(x) = (nd(x) − ns(x))/2 and nQ
K = nK(x) for x → +∞ (it would vanish for instance in the

case of massless strange quarks). In the limit x → +∞ one has bulk equilibrated strange quark matter with baryon
density nQ, while for x < 0, a(x) = cost = a(0−) ≡ aN . If the hadronic phase is assumed to be made only of neutrons

and if nQ
K = 0 then aN = nN/nQ with nN being the baryon density of neutron matter. In the following, for simplicity,

we will adopt these conditions. Within the combustion zone, where both diffusion and chemical reactions are active,
strange quark matter is out of beta equilibrium. There are two useful reference frames: the one in which the flame



6

front is at rest and the one in which quark matter is at rest. If vlh and vlq are the (laminar) velocities of hadronic
matter and quark matter in the front frame, in the quark matter frame the velocity of the front is vlf = −vlq and
v′lh = vlh − vlq . We remind that vlq and vlh are related by the baryon flux continuity equation: vlqnq = vlhnh.
By solving the steady state transport equation for a given in [6, 10] with the boundary conditions a(0+) ≡ aQ∗ =

nQ
K(0+)/nQ and a(x → +∞) = 0 (notice that a(x) monotonically decreases from x = 0 to x → +∞) one obtains for

the velocity of the front in the quark matter rest frame (in the suprathermal regime of Ref.[10]):

vlf =

√

D

τ

a4Q∗

2aN (aN − aQ∗)
. (6)

The quark diffusion coefficient D and the inverse rate of chemical reactions (for the process u + d → u + s) τ are
given by [8, 10]:

D = 0.1
( µq

300MeV

)2/3
(

T

10MeV

)−5/3

cm2/sec, τ = 1.3× 10−9

(

300MeV

µq

)5

sec. (7)

Notice that vlf scales as ∼ T−5/6: the more the star is heated up by the conversion process the slower the burning
velocity. This fact will have important consequences for the thermal evolution of the star and the neutrino signal
which will be discussed in the following. The value of the parameter aQ∗ is crucial: the larger aQ∗ the larger vlf .
This quantity is just the boundary condition for the transport equation but its value cannot be taken arbitrarily large
because one needs to impose the exothermicity of the process of combustion. In other terms, if the unbalance aQ∗ is
too large the front cannot move because there are not enough strange quarks to trigger deconfinement. Its maximum
value amax

Q∗
is estimated in Appendix B.

Let us now explain how we model the conversion during the diffusive regime. Once the initial state A of the hadronic
phase is fixed, at a density nh ≤ nh, one needs two equations to determine the state of the newly produced quark
phase (for instance in terms of µq and T ). As in the case of a weak deflagration discussed before, since the velocities
during the diffusive regime are small with respect to the sound velocities, we can set ph = pA = pq = pB′ (as also
assumed in [6, 10]) and moreover wh/nh = wA/nA = wq/nq = wB′/nB′ [40] Notice that these two equations match
continuously at nh = nh with the equations for the turbulent hydrodynamical regime.
The process of conversion is exothermic if during the temporal evolution of the system some heat is released to

the environment. Let us discuss how the heat per baryon generated by the conversion can be calculated. The
equation of conservation of the enthalpy per baryon wA/nA(pA, TA) = wB/nB(pA, TB) allows to find the value of
TB and if it turns out that TB > TA, the process is exothermic. By indicating with N the number of baryons
composing the system, the total initial enthalpy is given (for uniform matter) by NwA/nA(pA, TA). Because of
cooling, asymptotically the system will reach again the initial temperature TA and the total enthalpy of the system
after the full conversion and after the cooling process will be NwB/nB(pA, TA). Hence, the total heat Q released by
the process of conversion and emitted into the environment (via neutrino cooling in the case of a compact star) is given
by Q ≡ N(wB/nB(pA, TB)−wB/nB(pA, TA)) = N(wA/nA(pA, TA)−wB/nB(pA, TA)). Thus, the difference between
the enthalpy per baryon of the fuel and of the ashes calculated at the same pressure and temperature corresponds to
the heat per baryon q released by the conversion: q = wA/nA(pA, TA)− wB/nB(pA, TA).
A natural question concerns the point at which the conversion will stop. Let us indicate with ph(r) and pq(r) the

hadronic matter and quark matter pressure profiles inside the star (r is the radial coordinate). The radius of the
star R, is obtained by imposing p(r) = 0 whatever is the composition of the surface of the star. When the burning
front is close to the surface of the star, the conservation of the enthalpy per baryon (for an initially cold star) implies
eA/nA(TA = 0, pA = 0) = eB/nB(TB > 0, pA = 0) > eB/nB(TB = 0, pA = 0). But eA/nA(TA = 0, pA = 0) =
930 MeV (corresponding the energy per baryon of the iron nuclei composing the outer crust) and it is necessarily
larger than eB/nB(TB = 0, pA = 0) under the hypothesis of absolutely stable strange quark matter. This means
that the conversion is exothermic, and therefore it will continue, up to the surface of the star. Therefore, just by
thermodynamics arguments, one would expect that the whole hadronic star converts into a quark star. On the other
hand, the existence of a crystalline structure in the outer crust can significantly hinder the conversion process [6]. It
has been noticed in Ref. [29] that the preheating of the crust due to the heat released by the conversion of the inner
region leads to the dissociation of nuclei which greatly facilitates the burning into quark matter. In [29] it has been
estimated that the time needed to dissolve and convert the outer crust is of the order of few tens of ms. We will
neglect in our calculation the conversion of the outer crust and consider only the, slower, conversion of the hadronic
layer between nh and the neutron drip line density nd = 2.6 × 10−4fm−3. The conversion of the outer layer can be
important e.g. when discussing short gamma-ray-bursts. We will consider this problem in a future paper.
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B. Solving the diffusion equations

We want now to discuss an example of the temporal evolution of the burning of a hadronic star during the diffusive
regime. As a first ingredient, we need an initial profile for the star after the first stage of turbulent burning: this
configuration is composed by hot quark matter for densities larger than nh and by cold hadronic matter for densities
smaller than nh. The equation of state of hot quark matter is computed as explained above by requiring that at fixed
pressure, the enthalpy per baryon of the quark phase is equal to the one of the hadronic phase as in the case of a
slow combustion. This assumption is not correct for the turbulent regime, during which the conversion velocity is
significantly increased by the hydrodynamical instabilities; one can expect that the kinetic energy of the fluid flow is
completely dissipated into heat once turbulence is over.
We start from 1.5M⊙ hadronic star obtained with the SFHo model with the inclusion of deltas and hyperons. The

central density of this stellar object is larger than the critical density for the formation of hyperons. In Fig.3, the black
lines correspond to the enclosed gravitational mass (upper panel) and the radius (lower panel) as a function of the
baryon density for the initial hadronic star configuration. The black dashed line indicates the onset of hyperons which
are needed, in our scenario, to seed quark matter. The red lines correspond to the hybrid configuration, hot quark
core and cold hadronic layer, after the turbulent regime. For the quark matter equation of state we have adopted the
MIT bag model with massive strange quarks and with the inclusion of the perturbative QCD corrections (parameter
set 1 of Ref.[19]). Finally, the red dashed line located at n = nh separates the turbulent from the diffusive regime.
During the conversion the total baryonic mass, which turns out to be MB = 1.71M⊙, is conserved. Notice that the
total gravitational mass is also conserved during the turbulent conversion: this is due to the fact that cooling is not
active during this stage and can be neglected. After the turbulent regime, a layer of hadronic matter of about 0.5M⊙

with a width of about 3km is left unburnt. This situation is exactly the one obtained also in the numerical simulation
of Ref.[19] and depicted in Figs 2 and 3 of that paper.
Let us now introduce the two differential equations describing the propagation of the flame front and the thermal

evolution of the star. We work in the reference frame of quark matter. Concerning the position of the flame front, by
labeling with rf (t) its radial coordinate, one can write:

drf
dt

= vlf (µq, T ) (8)

with the initial condition rf (0) = r where r is obtained from the baryon density profile by using the equation
nh(r) = nh.
For handling the thermal evolution of the star, in principle, one should couple Eq.8 with a partial differential

equation describing the heat transport through neutrinos and the heat source term related to the energy released by
the conversion. Moreover one should also introduce the thermal conductivity which determines how the new release
of energy is distributed within the star. The effect of gravity should also be considered to take into account the
readjustment of the star during this stage. This is a very complicated task that we will not face in this work. We
will adopt instead some simplifying assumptions that allow us to understand qualitatively how the conversion process
proceeds and to obtain some order of magnitude estimates.
First we can notice that the equations describing heat diffusion (and also the readjustment of the star) have been

numerically solved in Ref.[19]. In that paper the diffusion regime was not discussed, but since strangeness diffusion
is a rather slow process we can assume that the first few seconds of the thermal evolution of the star are dominated
by the diffusion of the heat deposited during the rapid burning of its central region. We therefore assume that the
temperature of the surface of the star and the neutrino luminosity evaluated in [19] are the correct ones during the
first seconds, even if the slow conversion of the outer layer is not taken into account. From Fig. 3 of Ref.[19] one
can also notice that after a few seconds the thermal profile inside the star flattens and that in particular the outer
region (r > r) is almost isothermal after about 7-8 seconds. This first contribution to the neutrino luminosity can be
approximated by using the simple formula

L(t) = Q/τe−t/τ (9)

where Q is the total energy released during the rapid conversion and τ is the time-scale of neutrino diffusion [30].
The results of [19] are well approximated by taking τ ∼ 3 s and Q ∼ 8.5× 1052 erg.
To simplify the description of the conversion of the outer layer we assume that: i) the conduction of heat is extremely

fast (infinite thermal conductivity) in comparison with the burning velocity and therefore the heat generated by
the conversion is distributed throughout the star (the very same assumption has been made in [6]); ii) we assume
that neutrinos are completely trapped and only the black body surface emission is considered for the cooling. The
corresponding luminosity reads L = 21/8σ(T/K)44πr2s erg/s [30] with rs the radius of the neutrinosphere (we will
assume that it is located at the interface between the inner crust and the outer crust where nh = nd.) These two
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FIG. 4: Neutrino luminosity associated with the burning during the diffusive regime of the combustion for three choices of
the parameter amax

Q∗ . The black line represents the luminosity obtained from the rapid combustion of the core as estimated by
using Eq.9.

assumptions imply that the temperature is uniform within the star and one can write a simple equation that expresses
the energy conservation:

C(T )
dT

dt
= −L(T ) + 4πr2f j(rf , T ) q(rf , T ) (10)

where C is the heat capacity of the star, L the neutrino luminosity and j = nhv
′

lh is the number of baryons ignited
per unit time and unit area. The thermodynamical variables nh, q and µq (which appears in v′lh) are all functions of
rf (t) and T (t). Concerning the heat capacity, we use C = 2 × 1039M/M⊙(T/10

9) erg/K obtained in Ref. [30] for a
uniform density quark star or a hadronic star.
By solving simultaneously Eqs. 8 and 10 with initial conditions: r(0) = r, T (0) = T0 MeV (which is the temperature

of the star for r > r after the turbulent regime and it is of the order of 5 MeV as found in [19]) we can calculate the
time needed to complete the conversion of the star and the neutrino luminosity due to the conversion of the material
left unburnt after the turbulent stage. In Fig.4, we show three cases corresponding to different values of amax

Q∗
(aN is

fixed to one as in [6]). We also display the curve of luminosity corresponding to Eq. 9.
As discussed above, we assume that the neutrino luminosity estimated in [19] and approximated by Eq. 9 is close

to the exact one during the first seconds. After some 10 seconds the luminosity estimated by taking into account the
conversion of the outer layer becomes larger than the one obtained in [19] where the outer layer remained unburnt.
From that moment forward we assume that the estimate for the neutrino luminosity obtained by solving Eqs. 8
and 10 is close to the exact one. In other words, we have separated the complicated problem of the heat diffusion
and of the burning of the outer layer into two stages: the first one lasting a few seconds during which the neutrino
luminosity is dominated by the heat deposited during the rapid combustion of the core and is evaluated by solving
the problem of heat transport as in [19] and a second stage, starting after a few seconds, during which the process
of exothermic conversion of the outer layer provides enough heat to dominate the temperature of the star and the
neutrino luminosity. During this second slow stage we have assumed the star to be isothermal.
A quasi-plateau in the neutrino luminosity associated with the combustion of the hadronic layer is obtained (partic-

ularly evident for the smallest value of amax
Q∗

). This feature is a necessary consequence of the temperature dependence
of the burning velocity: as the conversion proceeds, the temperature increases due to the release of energy and there-
fore the velocity decreases. It is a self-regulating mechanism which rapidly leads to an almost constant velocity of
burning and an almost constant luminosity of neutrinos. The process goes on until the whole star is converted. The
kink appearing in the luminosity curves signals the end of the conversion: the following evolution is governed only by
the cooling and the standard power law luminosity is obtained.
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IV. CONCLUSIONS

The conversion of a hadronic star into a strange quark star and the related neutrino emission can be divided into
three different stages:

• turbulent conversion of the inner part of the star, r < r, lasting a few ms. During this phase cooling is negligible
due to neutrino trapping.

• Diffusive conversion which burns the region r > r:
a) during the first few seconds (at least for stars initially cold and having masses . 1.5M⊙) the neutrino
luminosity is dominated by the cooling of the inner region r < r
b) neutrino luminosity dominated by the cooling of the outer region r > r. This phase lasts a few tens of seconds
and displays a quasi-plateau which originates from the burning velocity which is inversely proportional to the
temperature.

The quasi-plateau produced during the phase b) has a rather large luminosity ∼ 1051−52 erg/s for tens of seconds
and, if detected, would be a unique feature of the conversion of an hadronic star into a quark star. This very interesting
possibility deserves a more refined treatment of the cooling process possibly via a neutrino transport code.
The prolonged conversion of the star is very promising also in connection with the mechanism generating long

gamma-ray-bursts within the protomagnetar model [31]. This model needs three crucial ingredients: high rotation
frequency, high magnetic field and a significant neutrino emission (provided by the cooling of the protomagnetar)
which, through ablation of the external layers of the compact star, allows to obtain the correct value of the Lorentz
factor of the wind within which the gamma-ray-burst is generated. The neutrino emission caused by the conversion of
an old hadronic star could lead to a long gamma-ray-burst if the other two requirements (i.e. high magnetic filed and
high rotation frequency) are fulfilled. One possibility is given by a merger of a neutron star with a white dwarf. It has
been shown that this process produces a spinning Thorne-Zytkow-like object with a low temperature, T ∼ 109 K [32].
If large magnetic fields are generated, for instance via magnetorotational instabilities, the conditions for producing a
gamma-ray-burst are fulfilled. The accretion of matter onto the hadronic star would trigger the conversion to a quark
star and the expected neutrino luminosities are similar to the ones presented in Fig. 4. Such a gamma-ray-burst would
be similar to a short gamma-ray-burst because it is associated with the merger of two compact stars but its duration
would be comparable to the one of long gamma-ray-bursts. These features are in agreement with the analyses of
GRB060614 [33–35] where it has been argued that this burst is not associated with a supernova.

G.P. acknowledges financial support from the Italian Ministry of Research through the program “Rita Levi Montal-
cini”. The authors gratefully acknowledge the COST Action MP1304 ”NewCompStar” for supporting their networking
and collaboration activities.
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V. APPENDIX A

We generalize the discussion presented in Sec.II, where we have adopted the quark matter equation of state with
massless quarks, to the case in which the equation of state of fluid 2 is a generic polytrope given by: eq = αnq+pq/(γ−1)
([36]), pq = knγ

q , where γ is the adiabatic index and 1 < γ ≤ 2 (the second inequality implying that the equation of
state is causal at all densities [37]).
One can derive the following expression for the energy density as a function of pq and Xq:

eq(pq, Xq) =
α2(γ − 1) + 2pqXq + α

√
γ − 1

√

α2(γ − 1) + 4γpqXq

2Xq(γ − 1)
(11)

Let us fix XB = XA and assume ∆(pA, XA) > 0. If pB > pA, the initial point A lies in the region of the (p,X)
plane below the detonation adiabat. The detonation adiabat reads (adding and subtracting eq(pA, XA)):

∆(pA, XA) = pA − pB + eq(pB , XA)− eq(pA, XA) (12)

which after some manipulation and using Eq.11 reads:

∆(pA, XA) =
α

2XA

√
γ − 1

(

√

α2(γ − 1) + 4γpBXA −
√

α2(γ − 1) + 4γpAXA

)

(13)

+ (pB − pA)
2− γ

γ − 1
(14)

Since 1 < γ ≤ 2 the sign of ∆(pA, XA) clearly determines the sign of pB − pA. Thus, if ∆(pA, XA) > 0, i.e. if the
Coll’s condition holds true, the initial point A lies in the region of the (p,X) plane below the detonation adiabat. One
sees again the Coll’s condition establishes the position of the initial state of the hadronic phase with respect to the
detonation adiabat. [41]

VI. APPENDIX B

In this section we aim at providing an estimate on the allowed values of the parameter aQ∗ ≡ (nd(0
+) −

ns(0
+))/(2nQ). Please notice that in this definition, appear quantities computed at the interface and a quantity

computed for x → +∞. In particular we estimate amax
Q∗

which is the maximum value of the strangeness unbalance at
the interface between hadronic matter and quark matter in order for the process of conversion to still proceed because
of its exothermicity, see Fig.4 of Ref. [10]. We assume, as in Ref. [10], that the deconfinement always takes place with
maximal velocity i.e. with aQ∗ = amax

Q∗
. We consider the case of a bag-model equation of state with massless quarks

and we limit our discussion to the case of vanishing pressure p. This case is particular relevant for the burning of the
most external layers of the hadronic star where the pressure approaches zero. Following the scheme of Ref. [38], we
introduce the parameter rs which is the ratio between the baryonic density of strange quarks and the baryon density:
rs = ns/3n. The Fermi momenta of up, down and strange quarks read: kFu,d

(n, rs) = kF (n, rs) = (1.5 π2n(1−rs))
1/3,

kFs
(n, rs) = (3π2(rsn))

1/3 where we have assumed that up and down quarks have the same Fermi momenta (as in
beta stable quark matter for the case of massless quarks). The energy density reads:

e =
6k4F
4π2

+
3k4Fs

4π2
+B. (15)

The bag constant B varies in the range Bmin < B < Bmax where for B = Bmax the energy per baryon of strange
quark matter is 930 MeV and for B = Bmin the energy per baryon of two flavor quark matter is 930 MeV.
We first compute nQ which corresponds to finding the baryon density n = nQ for which beta stable quark matter

(i.e. rs = 1/3) has vanishing pressure. At this value of density the energy per baryon (e/n)β is strictly smaller than
930 MeV because we are assuming the hypothesis of absolutely stable strange quark matter.
We now calculate the maximum value of nd(0

+)− ns(0
+). We define n and rs as the values of n and rs for which

the pressure p = 0 and the energy per baryon of non beta-stable quark matter (e/n)non−β = 930 MeV. rs represents
therefore the minimum amount of strangeness for which non-beta stable strange quark matter has an energy per
baryon equal to the one of iron. A quark phase with rs > rs would be favored with respect to nuclear matter and the
conversion process would therefore be exothermic.
amax
Q∗

is related to rs and n by the following equation:

amax
Q∗ =

k3F (n, rs)− k3Fs
(n, rs)

2π2nQ
(16)
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For each value of B, rs, n and nQ are completely determined and thus also amax
Q∗

is fixed.
We display the results in Fig. 5. In general amax

Q∗
< 1, its maximum value equals 1 only if one considers for x → +∞

non beta-stable 2 flavor quark matter with nd = 2nu (see [6]). We consider instead, as in [10], beta stable strange
quark matter for x → +∞. One can show analytically that in this case the maximum value of amax

Q∗
is 1.53/4/2 ∼ 0.667

and it is obtained for B = Bmin [42].

The minimum value of amax
Q∗

is zero and it is obtained at B = Bmax. Notice that for this value of B,
damax

Q∗

dB → ∞.

This basically implies that the parameter space (i.e. the range of B) has little room for the minimum value of amax
Q∗

.
In other words, it is very unlikely that amax

Q∗
∼ 0. In turns, this means that while the value of the velocity of conversion

is quite uncertain it cannot be vanishingly small.
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FIG. 5: Dependence of amax
Q∗ on the bag constant.
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