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Abstract

The effect of the Gauss-Bonnet term on the existence and dynamical stability
of thin-shell wormholes as negative tension branes is studied in the arbitrary
dimensional spherically, planar, and hyperbolically symmetric spacetimes. We
consider radial perturbations against the shell for the solutions which have the
Z2 symmetry and admit the general relativistic limit. It is shown that the
Gauss-Bonnet term shrinks the parameter region admitting static wormholes.
The effect of the Gauss-Bonnet term on the stability depends on the space-
time symmetry. For planar symmetric wormholes, the Gauss-Bonnet term
does not affect their stability. If the coupling constant is positive but small,
the Gauss-Bonnet term tends to destabilize spherically symmetric wormholes,
while it stabilizes hypebolically symmetric wormholes. The Gauss-Bonnet term
can destabilize hypebolically symmetric wormholes as a non-perturbative effect,
however, spherically symmetric wormholes cannot be stable.
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1 Introduction

Wormhole is a spacetime configuration connecting multiple non-timelike infinities. Worm-
holes are still hypothetical objects at present but they are certainly realized as solutions
for the Einstein equations. Theoretical physicists have been attracted to traversable worm-
holes because they admit an apparently superluminal travel (a spacetime shortcut) as a
global effect of the spacetime topology [1, 2, 3] and also they are available to make time
machines [4, 5, 6]. (See [1] for a standard text book and [3] for a recent review.)

As clearly seen in its Penrose diagram, the Schwarzschild vacuum spacetime with positive
mass certainly possesses the wormhole structure. The static region in this spacetime covered
by the isotropic coordinates is called the Einstein-Rosen bridge connecting two distinct
asymptotically flat regions [7]. Of course, the Einstein-Rosen bridge is nothing but a
static portion of the maximally extended Schwarzschild spacetime, so it represents just an
instantaneous and non-traversable static wormhole [8].

Although the Einstein-Rosen bridge is not satisfactory as a static traversable wormhole,
such a spacetime can be constructed simply by gluing two Schwarzschild exterior space-
times [1]. There is no singularity in the resulting spacetime and an observer can travel
from one asymptotically flat region to the other. But unfortunately, this construction re-
quires a massive thin shell at the junction timelike hypersurface which violates the weak
energy condition. Actually, the requirement of such exotic matters is quite generic for the
wormhole construction [1]. From a classical viewpoint, exotic matters typically suffer from
the dynamical instability. However, wormholes might be realized by some quantum effects
which effectively violate the weak energy condition. For this reason, construction of a dy-
namically stable wormhole in a realistic situation has been a big challenge in gravitation
physics for a long time.

In 2011, Kanti, Kleihaus, and Kunz numerically constructed four-dimensional spherically
symmetric wormhole solutions in Einstein-Gauss-Bonnet-dilaton gravity and showed that
they are dynamically stable against spherical perturbations [9]. The Gauss-Bonnet term
non-minimally coupled to a dilaton scalar field appears in the Lagrangian as the ghost-free
quadratic correction in the low-energy limit of heterotic string theories [10]. Although this
Einstein-Gauss-Bonnet-dilaton theory is realized only in ten dimensions, their result gives
courage and hope toward the construction of wormholes in our universe described by a
well-motivated effective theory of gravity. Then a natural question arises: Which is the
main ingredient stabilizing the wormhole, the Gauss-Bonnet term or its dilaton coupling?

The main purpose of the present paper is to clarify the effect of the Gauss-Bonnet term
on the dynamical stability. For this purpose, we will study the simplest thin-shell worm-
hole which is made of its tension [13]. While dynamical stability of thin-shell wormholes
have been intensively investigated both in general relativity (Einstein gravity) [11] and in
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various models of modified gravity [12], this is the best set-up to analyze stability as a pure
gravitational effect because such a thin shell does not suffer from the matter instability.

In Einstein gravity, such thin-shell wormholes have been fully investigated by two of the
present authors in the spacetimes with a maximally symmetric base manifold in arbitrary
dimensions, namely arbitrary-dimensional spacetimes with spherical, planar, or hyperbolic
symmetry [14]. In the vacuum case, such thin-shell wormholes are stable against radial
perturbations only in the hyperbolically symmetric case with negative mass in the bulk
spacetime [14].

In the present paper, we will study the same system with the Gauss-Bonnet term but
without a dilaton in the Lagrangian. Since the Gauss-Bonnet term becomes total derivative
and does not affect the field equations in four or less dimensions in the absence of the non-
minimal coupling to a dilaton, we will consider five or higher-dimensional spacetimes. In
comparison with the general relativistic case, the equation of motion for the shell is much
more complicated. For this reason, although thin-shell wormholes have been investigated
in Einstein-Gauss-Bonnet gravity by many authors [15], the stability analysis has not been
completed yet even against radial perturbations.

The outline of the present paper is as follows. In section II, we derive the equation of
motion for a shell and the basic properties of the static shell are reviewed. In section III,
we study the existence and stability of static thin-shell wormholes in the cases except for
k = −1 with m < 0. Section IV is devoted to performing the pictorial analysis to study the
same problem in the case of k = −1 with m < 0. Our results are summarized in section V.
A detailed derivation of the equation of motion for a thin shell is summarized in appendix
A. Our basic notation follows [16]. The convention for the Riemann curvature tensor is
[∇ρ,∇σ]V µ = Rµ

νρσV
ν and Rµν = Rρ

µρν . The signature of the Minkowski metric is taken
as diag(−,+,+, · · · ,+,+), and Greek indices run over all spacetime indices. We adopt the
units in which only the d-dimensional gravitational constant Gd is retained.

2 Preliminaries

2.1 Einstein-Gauss-Bonnet gravity

In the present paper, we consider d(≥ 5)-dimensional Einstein-Gauss-Bonnet gravity in
vacuum, of which action is given by

S =
1

2κ2
d

∫
ddx
√
−g
(
R− 2Λ + αLGB

)
, (2.1)

4



where κd :=
√

8πGd and Λ is the cosmological constant. The Gauss-Bonnet term LGB is
defined by the following special combination of the Ricci scalar R, the Ricci tensor Rµν and
the Riemann tensor Rµ

νρσ:

LGB := R2 − 4RµνR
µν +RµνρσR

µνρσ. (2.2)

The Gauss-Bonnet term appears in the action as the ghost-free quadratic curvature correc-
tion term in the low-energy limit of heterotic superstring theory in ten dimensions (together
with a dilaton) [10]. In this context, the coupling constant α is regarded as the inverse
string tension and positive definite. For this reason, we assume α > 0 throughout this
paper. In addition, we put another conservative assumption 1 + 4α̃Λ̃ > 0, where

Λ̃ :=
2Λ

(d− 1)(d− 2)
, α̃ := (d− 3)(d− 4)α, (2.3)

so that the theory admits maximally symmetric vacua, namely Minkowski, de Sitter (dS),
or anti-de Sitter (AdS) vacuum solutions. Although there exists a maximally symmetric
vacuum for 1 + 4α̃Λ̃ = 0, we don’t consider this case for simplicity.

Variation of the action (2.1) with respect to the metric gµν gives the following vacuum
Einstein-Gauss-Bonnet equations:

Gµ
ν + αHµ

ν + Λδµν = 0, (2.4)

where

Gµν :=Rµν −
1

2
gµνR, (2.5)

Hµν :=2
(
RRµν − 2RµαR

α
ν − 2RαβRµανβ +Rµ

αβγRναβγ

)
− 1

2
gµνLGB. (2.6)

The tensor Hµν obtained from the Gauss-Bonnet term does not give any higher-derivative
term and Hµν ≡ 0 holds for d ≤ 4. As a result, Einstein-Gauss-Bonnet gravity is a second-
order quasi-linear theory as Einstein gravity is.

2.2 Bulk solution

We will study the properties of thin-shell wormholes in Einstein-Gauss-Bonnet gravity.
Such wormhole solutions are constructed by gluing two bulk solutions at a timelike hyper-
surface.

In the present paper, we consider the d-dimensional vacuum solution with a maximally
symmetric base manifold [17] as the bulk solution, of which metric is given by

ds2
d = gµνdx

µdxν = −f(r)dt2 + f(r)−1dr2 + r2γABdzAdzB, (2.7)
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where zA and γAB (A,B = 2, 3, · · · , d− 1) are the coordinates and the unit metric on the
base manifold and

f(r) := k +
r2

2α̃

(
1∓

√
1 +

4α̃m

rd−1
+ 4α̃Λ̃

)
. (2.8)

Here k = 1, 0,−1 is the curvature of the maximally symmetric base manifold corresponding
to the spherical, planar, and hyperbolically symmetric spacetime, respectively. m is called
the mass parameter.

The expression of the metric function (2.8) shows that there are two branches of solutions
corresponding to the different signs in front of the square root. The branch with the minus
sign, called the GR branch, allows the general relativistic limit α→ 0 as

f(r) = k − m

rd−3
− Λ̃r2. (2.9)

On the other hand, the metric in the branch with the plus sign, called the non-GR branch,
diverges in this limit. In the following section, we will consider the bulk solution only in
the GR branch as a conservative choice.

The global structure of the spacetime (2.7) depending on the parameters has been com-
pletely classified [18]. There are two classes of curvature singularities in the spacetime.
One is the central curvature singularity at r = 0. Since we assume α̃ > 0 and 1 + 4α̃Λ̃ > 0,
the interior of the square root becomes zero at some r = rb(> 0) for negative m. This
corresponds to another curvature singularity called the branch singularity and the metric
becomes complex at r < rb. In this case, the domain of the coordinate r is r ∈ (rb,∞).

The spacetime has a Killing horizon at r = rh satisfying f(rh) = 0 depending on the
parameters. In order to construct static thin-shell wormholes, the bulk spacetime needs to
be static. For this reason, we consider the bulk solution (2.7) in the domain r ∈ (rh,∞)
if there is no branch singularity and r ∈ (max{rb, rh},∞) if there is a branch singularity.
We define the future (past) direction by increasing (decreasing) direction of t.

2.3 Equation of motion for a thin shell

A thin-shell wormhole spacetime is constructed by gluing two bulk spacetimes (2.7) at a
timelike hypersurface r = a. Here the bulk spacetimes are defined in the domain r ≥ a(>
rh) and may have different parameters. Then the junction conditions, which are the field
equations (2.4) in the distributional sense, tell us the matter content on the thin shell at
r = a. Finally, the equation of motion for the shell is obtained as a closed system when an
equation of state for the matter is assumed.
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The junction condition in Einstein-Gauss-Bonnet gravity is given by

[Ki
j]± − δij[K]± + 2α

(
3[J ij]± − δij[J ]± − 2P i

kjl[K
kl]±

)
= −κ2

dS
i
j, (2.10)

where i, j = 0, 1, · · · , (d − 1) are indices for the coordinates on the timelike shell [19, 20].
Here we have introduced

[X]± := X+ −X− , (2.11)

where X± is the quantity X evaluated either on the + or − side of the shell. In the junction
conditions (2.10), Ki

j is the extrinsic curvature of the shell and K := hijKij, where hij is
the induced metric on the shell. Other geometrical quantities are defined by

Jij :=
1

3

(
2KKikK

k
j +KklK

klKij − 2KikK
klKlj −K2Kij

)
, (2.12)

Pikjl := Rikjl + 2hi[lRj]k + 2hk[jRl]i +Rhi[jhl]k , (2.13)

where Rijkl, Rij, and R are the Riemann tensor, Ricci tensor, and Ricci scalar on the shell.
Pijkl is the divergence-free part of the Riemann tensor Rijkl satisfying DiP

i
jkl = 0, where

Di is the covariant derivative on the shell. Lastly, Sij is the energy-momentum tensor on
the shell, which satisfies the conservation equations DiS

i
j = 0.

A static thin-shell wormhole is realized as a static solution for the equation of motion.
However in general, a is not constant but changes in time, representing a moving shell. In
such a case, a may be written as a function of the proper time τ on the shell as a = a(τ).

Now let us derive the equation of motion for the shell. We describe the position of the
thin shell as r = a(τ) and t = T (τ) in the spacetime (2.7) and assume the form of Sij as

Sij = diag(−ρ, p, p, · · · , p) + diag(−σ,−σ,−σ, · · · ,−σ, ) . (2.14)

This assumption means that the matter on the shell consists of a perfect fluid and the
constant tension σ of the shell, where ρ and p are the energy density and pressure of
the perfect fluid. Assuming the Z2 symmetry for the bulk spacetime, we write down the
junction conditions (2.10) as

1

2
κ2
d(ρ+ σ) =− (d− 2)fṪ

a

{
1 +

2α̃

3

(
2
ȧ2

a2
+

3k

a2
− f

a2

)}
, (2.15)

−1

2
κ2
d(p− σ) =− a

fṪ

{
ä

a
+
f ′

2a
+ (d− 3)

(
ȧ2

a2
+
f

a2

)}
− 2α̃a

fṪ

{
d− 5

3

(
ȧ2

a2
+
f

a2

)(
2
ȧ2

a2
+

3k

a2
− f

a2

)
+

(
2
ȧ2

a2
+
k

a2
+
f

a2

)
ä

a
+
f ′

2a

(
k

a2
− f

a2

)}
, (2.16)
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where f = f(a). A dot and a prime denote the derivative with respect to τ and a,
respectively. (See Appendix A for the details of derivation.) The above equations give the
equation of motion for a thin shell in Einstein-Gauss-Bonnet gravity.

In order to obtain the equation of motion in a closed system, an equation of state for
the perfect fluid is required. One possibility is the following linear equation of state with a
constant γ :

p = (γ − 1)ρ. (2.17)

With this equation state, the energy-conservation equation on the shell DiS
i
j = 0, written

as

ρ̇ = −(d− 1)(p+ ρ)
ȧ

a
, (2.18)

is integrated to give

ρ =
ρ0

a(d−1)γ
, (2.19)

where ρ0 is a constant.

2.4 Effective potential for the shell

The dynamics of the shell governed by Eqs. (2.15) and (2.16) with an equation of state (2.17)
can be discussed as a one-dimensional potential problem. Then the shape of the effective
potential V (a) for the shell determines the stability of static configurations, namely the
static wormholes.

Let us derive the effective potential V (a). Squaring Eq. (2.15) and using Eq. (A.24), we
obtain

Ω(a)2 =

(
f

a2
+
ȧ2

a2

){
1 +

2

3
α̃

(
2
ȧ2

a2
+

3k

a2
− f

a2

)}2

, (2.20)

where

Ω(a)2 :=
κ4
d(ρ(a) + σ)2

4(d− 2)2
. (2.21)

This is a cubic equation for ȧ2. The position of the throat a = a0 for a static wormhole is
obtained by solving the following algebraic equation for a0:

Ω2
0 =

f0

a2
0

{
1 +

2

3
α̃

(
3k

a2
0

− f0

a2
0

)}2

, (2.22)

where f0 := f(a0) and Ω2
0 := Ω(a0)2.
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For convenience, we define

A(r) :=1 +
4α̃m

rd−1
+ 4α̃Λ̃ (2.23)

with which the metric function (2.8) in the GR branch is written as

f(r) =k +
r2

2α̃

(
1−

√
A(r)

)
. (2.24)

A > 0 is required for the real metric and the absence of branch singularity. In the GR
branch, because of the exitence of the squre root in Eq. (2.24), the following inequality
holds:

r2 + 2α̃k − 2α̃f(r) > 0, (2.25)

which will be used later.

Actually, Eq. (2.20) admits only a single real solution for ȧ2:

ȧ2 = −V (a), (2.26)

which has the form of the one-dimensional potential problem. The effective potential V (a)
is defined by

V (a) := f(a)− J(a)a2, (2.27)

where J(a) is defined by

J(a) :=

(
B(a)− A(a)1/2

)2

4α̃B(a)
, (2.28)

B(a) :=

{
18α̃Ω(a)2 + A(a)3/2 + 6

√
α̃Ω(a)2(9α̃Ω(a)2 + A(a)3/2)

}1/3

. (2.29)

One can see B > A1/2. Ω2 can be expressed in terms of A and B as

Ω2 =
(B3 − A3/2)2

36α̃B3
. (2.30)

2.5 Existence conditions for static shell

Here we summarize the existence conditions for a static shell located at a = a0. Equa-
tion (2.26) is interpreted as the conservation law of mechanical energy for the shell. By
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differentiating Eq. (2.26) with respect to τ , we obtain the equation of motion for the shell
as

ä = −1

2
V ′(a). (2.31)

From Eqs. (2.26) and (2.31), a0 is determined algebraically by V (a0) = 0 and V ′(a0) = 0.

In addition, a0 must satisfy A(a0) > 0 and f(a0) > 0. The latter condition f(a0) > 0 is
called the horizon-avoidance condition in Ref. [13], which simply means that the position
of the throat is located in the static region of the spacetime. Actually, this condition is
always satisfied because we have V (a0) = 0 and Eq. (2.27) implies f(a) > V (a).

2.6 Negative energy density of the shell

In closing this section, we show that the energy density on the shell ρ+σ must be negative
for static wormholes. The condition ρ+ σ ≥ 0 and Eq. (2.15) with a = a0(> 0) yields

a2
0 ≤ −

4α̃k

2 +
√
A0

, (2.32)

where A0 := A(a0). Clearly, this is not satisfied for k = 1, 0 under the assumption α̃ > 0.
For k = −1. Eq. (2.32) gives

a2
0 ≤

4α̃

2 +
√
A0

< 2α̃ (2.33)

and this is not satisfied because there is a constraint a2
0 > 2α̃ for the throat radius in

the GR branch, which can be shown from the combination of Eq. (2.25) and f(a0) > 0.
Now we have shown that the energy density on the shell is negative in the physical set up
considered in the present paper.

3 Static thin-shell wormholes made of pure tension

In the present paper, we analyze stability of the static shell located at a = a0 against radial
linear perturbations. The shape of the effective potential V (a) determines the dynamical
stability of the static shell, as explained below. By Eqs. (2.26) and (2.31), a0 satisfies
V (a0) = 0 and V ′(a0) = 0. Using V (a0) = V ′(a0) = 0, we obtain the Taylor expansion of
the potential V (a) around a = a0 as

V (a) =
1

2
V ′′(a0)(a− a0)2 +O((a− a0)3). (3.1)
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The stability condition against radial perturbations for the shell is then given by

V ′′(a0) > 0. (3.2)

Hereafter we will consider the case without a perfect fluid on the shell (ρ = p = 0) and
assume σ < 0. The resulting static thin-shell wormholes are made of the pure (negative)
tension σ and satisfy the null energy condition. This simplest set up is preferred by the
minimal violation of the energy conditions. A technical advantage in this set up is the
constancy of Ω2.

3.1 Existence conditions

The location of the static wormhole throat a = a0 is determined by the following algebraic
equation obtained by eliminating σ from Eqs. (2.15) and (2.16):(

f0

a0

− f ′0
2

)(
1 + 2α̃

k − f0

a2
0

)
+

4α̃kf0

a3
0

= 0, (3.3)

where f ′0 := f ′(a0). In the limit of α→ 0, Eq. (3.3) reduces to the corresponding equation
in Einstein gravity [14]. The explicit form of Eq. (3.3) is

ka2
0

√
A0 = 2ka2

0 −
(d− 1)m

2ad−5
0

+ 4α̃k2. (3.4)

This equation shows that m = 0 is required for k = 0 and then a0 is totally undetermined in
the domain where both A0 > 0 and f0 > 0 hold. The metric function (2.8) with m = k = 0
shows that the horizon avoidance condition f0 > 0 is satisfied only for Λ < 0. Stability of
this wormhole will be investigated in Section 3.5.1.

On the other hand, for k = 1 (−1), the left-hand side of Eq. (3.4) is positive (negative)
and hence the throat radius must satisfy

k

{
2ka2

0 −
(d− 1)m

2ad−5
0

+ 4α̃

}
> 0 (A)

For k 6= 0, squaring Eq. (3.4) gives the following algebraic equation for a0:

(3− 4α̃Λ̃)a
2(d−3)
0 + 16α̃ka

2(d−4)
0 + 16α̃2a

2(d−5)
0

− 2(d− 1)kmad−3
0 − 4dα̃mad−5

0 +
1

4
(d− 1)2m2 = 0. (3.5)

Static wormhole solutions with the throat radius a0 must satisfy Eq. (3.5) and also several
constraints.
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The first constraint is the inequality (A). Another constraint comes from Eqs. (3.34)
and (3.35). Eliminating f 2

0 , we obtain

f0 =
1

4kα̃

{
(d− 1)m

ad−5
0

− 2(ka2
0 + 2α̃)

}
. (3.6)

Since the right-hand side of Eq. (3.6) must be positive, we have a necessary condition for
physical solutions:

k

{
(d− 1)m

ad−5
0

− 2(ka2
0 + 2α̃)

}
> 0. (B)

We do not have to impose the condition A0 > 0 to avoid the complex metric in the
bulk spacetime because any real solution of Eq. (3.5) satisfies it. This is shown as follows.
Eq. (3.5) is solved for m/ad−5

0 as

m

ad−5
0

=

2

(
2k(d− 1)a2

0 + 4dα̃±
√

(d− 1)2(1 + 4α̃Λ̃)a4
0 + 16k(d− 1)α̃a2

0 + 16(2d− 1)α̃2

)
(d− 1)2

.

(3.7)

Substituting this into A0 = 1 + 4α̃Λ̃ + 4α̃m/ad−1
0 , we obtain

A0 =
U ± 8α̃

√
U − 16α̃2

(d− 1)2a4
0

, (3.8)

where

U :=(d− 1)2(1 + 4α̃Λ̃)a4
0 + 16α̃

{
k(d− 1)a2

0 + 2dα̃
}
. (3.9)

For any real solution of Eq. (3.5), the interior of the square root in Eq. (3.7) is non-negative,
which gives the following lower bound of Λ̃:

Λ̃ ≥− (d− 1)2a4
0 + 16(d− 1)α̃ka2

0 + 16(2d− 1)α̃2

4(d− 1)2α̃a4
0

. (3.10)

This inequality implies U ≥ 16α̃2 and hence U is positive. Therefore A0 with the plus sign
in Eq. (3.8) is positive. Positivity of A0 with the minus sign is shown by direct computations
without using the inequality (3.10).

3.2 Non-existence for k = 1 with m ≤ 0 and k = −1 with m ≥ 0

It is shown that there is no static thin-shell wormhole for k = 1 with m ≤ 0 and k = −1
with m ≥ 0. For the proof, we use Eq. (2.26) in the following form:(

d ln a

dτ

)2

+ V̄ (a) = 0, (3.11)
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where

V̄ (a) :=
f(a)

a2
− J(a). (3.12)

There is no static solution if V̄ (a) is monotonic. V̄ ′ is computed to give

V̄ ′ = − 1

4α̃B2

{
8kα̃B2

a3
+ (B2 − A)B′ +BA′

}
. (3.13)

The following expressions;

A′(a) =− 4(d− 1)α̃m

ad
, (3.14)

B′(a) =
A(a)1/2A′(a)

2B2

(
1 +

3α̃Ω2√
α̃Ω2(9α̃Ω2 + A(a)3/2)

)
(3.15)

imply B′ ≤ 0 (≥ 0) and A′ ≤ 0 (≥ 0) for m ≥ 0 (m ≤ 0) with equality holding for m = 0.
Together with the facts A,B > 0 and B > A1/2, it is shown that V̄ ′ is negative definite for
k = 1 with m ≤ 0 and positive definite for k = −1 with m ≥ 0.

3.3 Stability criterion

As explained at the beginning of this section, stability of a static thin-shell wormhole is
determined by the sign of V ′′(a0). In this subsection, we will derive V ′′(a0) in a convenient
form to prove the (in)stability.

3.3.1 General relativity

First let us consider Einstein gravity as a simple lesson. In the general relativistic limit
α→ 0, Eq. (2.20) reduces to

Ω2 =
f(a)

a2
+
ȧ2

a2
. (3.16)

By solving Eq. (3.16) for ȧ2, we define a potential V (a) of the conservation law of the
one-dimensional potential problem. Then we directly calculate the second derivative of
V (a). However, without such direct calculations, in principle we can derive the form of
V ′′(a0) by operating a systematic method below, which can be applied also in more general
theories of gravity.
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Suppose we get a master equation as ȧ2 + V (a) = 0. By this master equation, ȧ2 in
Eq. (3.16) is replaced by −V (a) to give

Ω2 =
f(a)− V (a)

a2
. (3.17)

Differentiating this equation twice, we obtain

0 =a(f ′ − V ′)− 2(f − V ), (3.18)

0 =a(f ′′ − V ′′)− (f ′ − V ′). (3.19)

In Einstein gravity, the metric function is

f(a) =k − m

ad−3
− Λ̃a2, (3.20)

which satisfies

f ′(a) =
(d− 3)(k − f)− Λ̃(d− 1)a2

a
, (3.21)

f ′′(a) =
Λ̃(d− 1)(d− 4)a2 − (k − f)(d− 2)(d− 3)

a2
. (3.22)

Substituting Eq. (3.21) into Eq. (3.18) and evaluating it at a = a0 satisfying V (a0) =
V ′(a0) = 0, we obtain

f0(:= f(a0)) =
d− 3

d− 1
k − Λ̃a2

0. (3.23)

Combining this with Eq. (3.20), we obtain the algebraic equation to determine a0:

2k

d− 1
=

m

ad−3
0

. (3.24)

For k = 0, Eq. (3.24) requires m = 0 and a0 is totally undetermined. For k = 1(−1),
Eq. (3.24) requires m > (<)0 and the throat radius a0 is given by

a0 =

(
(d− 1)m

2k

)1/(d−3)

. (3.25)

As seen in Eq. (3.25), Λ does not contribute to the size of the wormhole throat. However,
it appears in the horizon-avoidance condition f0 > 0. Equation (3.23) shows that f0 > 0
requires Λ < 0 in the case of k = 0,−1. In the case of Λ = 0, f0 > 0 is satisfied only for

14



k = 1. In the case of Λ > 0 and k = 1, f0 > 0 gives a constraint a0 < a
(GR)
c on the size of

the wormhole throat, where

a(GR)
c :=

(
(d− 3)k

(d− 1)Λ̃

)1/2

. (3.26)

On the other hand, in the case of Λ < 0 and k = −1, f0 > 0 gives a0 > a
(GR)
c . Combining

this inequality with Eq. (3.25), we obtain the range of the mass parameter admitting static

wormhole solutions; 0 < m < m
(GR)
c for k = 1 with Λ > 0 and m < m

(GR)
c (< 0) for k = −1

with Λ < 0, where

m(GR)
c :=

2k

d− 1

(
(d− 3)k

(d− 1)Λ̃

)(d−3)/2

. (3.27)

In Einstein gravity, a simple criterion for the stability of static solutions is available.
Substituting Eqs. (3.21) and (3.22) into Eq. (3.19), evaluating them at a = a0, we obtain

V ′′(a0) =− (d− 1)(d− 3)m

ad−1
0

=− 2(d− 3)k

a2
0

, (3.28)

where we used Eqs. (3.20) and (3.24). This simple expression clearly shows that the worm-
hole is stable only for k = −1 with m < 0 [14]. Existence and stability of static thin-shell
wormholes in Einstein gravity are summarized in Table 1.

Table 1: The existence and stability of Z2 symmetric static thin-shell wormholes made of
pure negative tension in Einstein gravity, where a

(GR)
c and m

(GR)
c are defined by Eqs. (3.26)

and (3.27), respectively.
Existence Possible range of a0 Stability

k = 1 Λ > 0 0 < m < m
(GR)
c 0 < a0 < a

(GR)
c Unstable

Λ ≤ 0 m > 0 a0 > 0 Unstable
k = 0 Λ ≥ 0 None – –

Λ < 0 m = 0 a0 > 0 Marginally stable
k = −1 Λ ≥ 0 None – –

Λ < 0 m < m
(GR)
c (< 0) a0 > a

(GR)
c Stable
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3.3.2 Einstein-Gauss-Bonnet gravity

Although it is more complicated, we can play this game in Einstein-Gauss-Bonnet gravity
in a similar manner. Replacing ȧ2 by −V (a) in the master equation (2.20), we obtain

Ω2 =
f(a)− V (a)

a2

{
1 +

2α̃(−2V (a) + 3k − f(a))

3a2

}2

. (3.29)

In Einstein-Gauss-Bonnet gravity, the metric function is

f(a) =k +
a2

2α̃

(
1−

√
1 + 4α̃Λ̃ +

4α̃m

ad−1

)
, (3.30)

which satisfies

f ′(a) =
(d− 5)α̃(k − f)2 + (d− 3)a2(k − f)− Λ̃(d− 1)a4

a{a2 + 2α̃(k − f)}
, (3.31)

f ′′(a) =
L(a)

a2{a2 + 2α̃(k − f)}3
, (3.32)

where

L(a) :=2(d− 1)2α̃Λ̃2a8 − Λ̃a4(d− 1)

{
12α̃2(k − f)2 + 12α̃a2(k − f)− (d− 4)a4

}
− (k − f)

{
2(d− 3)(d− 5)α̃3(k − f)3 + 4(d2 − 8d+ 13)α̃2a2(k − f)2

+ 3(d− 2)(d− 5)α̃a4(k − f) + (d− 2)(d− 3)a6

}
. (3.33)

Equation (3.30) gives

m = ad−3

{
−Λ̃a2 + (k − f(a)) + α̃a−2(k − f(a))2

}
. (3.34)

Differentiating (3.29) and evaluating at a = a0, we obtain

f 2
0 =
{(d− 1)a2

0 + 2k(d+ 1)α̃}f0 + (d− 1)Λ̃a4
0 − k{(d− 3)a2

0 + (d− 5)α̃k}
(d− 1)α̃

. (3.35)

where we used Eq. (3.31). This equation reduces to Eq. (3.23) for α→ 0. Equation (3.35)
will be used to replace fp0 (p = 2, 3, 4, · · · ) by f0.
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Differentiating Eq. (3.29) twice and using Eqs. (3.31) and (3.32), we finally obtain V ′′(a0)
in a rather compact form:

V ′′(a0) =− 2kP (a0)

a2
0(a2

0 + 2kα̃ + 2α̃f0)(a2
0 + 2kα̃− 2α̃f0)

, (3.36)

P (a0) := 4α̃2f0

{
6k − (d− 3)f0

}
+(a2

0 + 2kα̃)

{
(d− 3)a2

0 + 2(d− 5)kα̃

}
, (3.37)

where we have eliminated Λ̃ by using Eq. (3.35). This expression reduces to Eq. (3.28) for
α→ 0. Because of Eq. (2.25), the denominator in the expression of V ′′(a0) is positive and
therefore the sign of the function P (a0) determines the stability of the shell.

3.4 Effect of the Gauss-Bonnet term on the stability for α̃/a2E � 1

Before moving onto the full-order analysis, let us clarify how the Gauss-Bonnet term affects
the stability of thin-shell wormholes in the situation where α̃ is small.

In the general relativistic limit α̃→ 0 with k = ±1, Eq. (3.4) gives

ad−3
0 =

(d− 1)mk

2
=: ad−3

E . (3.38)

This is the static solution in Einstein gravity which requires mk > 0 [14]. Now we obtain
the static solution for ε := α̃/a2

E � 1 in a perturbative method. We expand a0 in a power
series of ε :

a0 = aE + a(1)ε+ a(2)ε
2 + . . . . (3.39)

Substituting this expression into Eq. (3.4) and expanding it in a series of ε, we obtain

a(1) =
2Λ̃(d− 1)a2

E − 4(d− 2)k

(d− 1)(d− 3)
aE. (3.40)

This allows us to derive the expansion of Eq. (3.36):

V ′′(a0) '− 2(d− 3)k

a2
E

+
4(d− 3)ka(1)ε

a3
E

+
8k2ε

a2
E

=− 2(d− 3)k

a2
E

− 8kε

a2
E

(
d− 3

d− 1
k − Λ̃a2

E

)
. (3.41)

The first term of Eq. (3.41) coincides with Eq. (3.28) and inside the bracket of the
second term is positive because of Eq. (3.23). Hence we arrive a simple conclusion about
the effect of the Gauss-Bonnet term for small α̃; it destabilizes wormholes in the spherically
symmetric case (k = 1), while it stabilizes in the hyperbolically symmetric case (k = −1).
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3.5 Stability for k = 0, 1

In this subsection, we will prove (in)stability of the static thin-shell wormhole in the frame-
work of Einstein-Gauss-Bonnet gravity. We are going to study the sign of V ′′(a0) given by
Eq. (3.36) for k = 0 and k = 1. Because the analysis is much more complicated in the case
of k = −1, it will be treated in the next section.

3.5.1 k = 0 with m = 0: Marginally stable

The analysis for k = 0 is very simple. For k = 0, Eq. (3.4) gives m = 0 and a0 is totally
undetermined. Therefore, any size of the static wormhole throat is allowed for k = 0.
This is consistent with the fact that Eq. (3.36) gives V ′′(a0) = 0, namely the wormhole is
marginally stable.

3.5.2 k = 1 with m > 0: Unstable

In Section 3.2, we have shown that there is no static wormhole for k = 1 with m ≤ 0. In
the present paper, we don’t clarify the parameter region with positive m admitting static
wormhole solutions because they are all dynamically unstable in any case. In Fig. 1, we
plot the profile of V̄ (a) with k = 1 and m > 0, in which there is a local maximum. This
implies that the corresponding static solution is unstable. We will prove this analytically.

For k = 1, positivity of P (a0) in Eq. (3.36) means instability of the static wormhole.
Using the inequality (2.25), we evaluate the lower bound of P (a0) as

P (a0) =4α̃2f0

{
6− (d− 3)f0

}
+(a2

0 + 2α̃)

{
(d− 3)a2

0 + 2(d− 5)α̃

}
>4α̃2f0

{
6− (d− 3)f0

}
+2α̃f0

{
(d− 3)a2

0 + 2(d− 5)α̃

}
=2α̃f0

{
2(d− 3)α̃

(
a2

0

2α̃
− f0

)
+2(d+ 1)α̃

}
>2α̃f0

{
−2(d− 3)α̃ + 2(d+ 1)α̃

}
= 16α̃2f0 > 0. (3.42)

Therefore, the wormhole is dynamically unstable.
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Figure 1: The potential V̄ (a) for d = 5, 6, 7 in Einstein and Einstein-Gauss-Bonnet (EGB)
gravity with k = 1, α = 0.02, m = 1, Λ = 1 and σ = −0.1.

4 Stability for k = −1 with m < 0

In the present section, we will provide the stability analysis for k = −1. Since we have
shown that there is no static wormhole for k = −1 with m ≥ 0 in Section 3.2, we will
discuss the case with m < 0.

4.1 Preliminaries for pictorial analysis

For our purpose, we introduce x := a2
0 and y := m/ad−5

0 , with which Eq. (3.5) is written
as h(x, y) = 0, where

h(x, y) :=(3− 4α̃Λ̃)x2 − 2(d− 1)kxy +
1

4
(d− 1)2y2 + 16α̃kx− 4dα̃y + 16α̃2. (4.1)

We adopt a pictorial analysis in the (x, y) plane in the domain of x > 0 and y < 0.

For 3− 4α̃Λ̃ 6= 0, h(x, y) = 0 is solved to give x = x±(y), where

x±(y) :=
2k{(d− 1)y − 8α̃} ±

√
Z(y)

2(3− 4α̃Λ̃)
. (4.2)
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The function Z(y) in the above expression is defined by

Z(y) :=4

{
(d− 1)y − 8α̃

}2

−(3− 4α̃Λ̃)

{
(d− 1)2y2 − 16dα̃y + 64α̃2

}
=(d− 1)2(1 + 4α̃Λ̃)y2 − 16α̃(4dα̃Λ̃ + d− 4)y + 64α̃2(1 + 4α̃Λ̃). (4.3)

In the limit α→ 0, we obtain

lim
α→0

x+(y) =
k(d− 1)y

2
, lim

α→0
x−(y) =

k(d− 1)y

6
. (4.4)

Among these two, only the former satisfies Eq. (3.4) with α = 0. For this reason, we will
focus only on x+(y) hereafter because x−(y) does not admit the general relativistic limit.

4.1.1 Physical domain of solutions

Solutions of Eq. (3.5) are realized as intersections of h(x, y) = 0 with y = m/x(d−5)/2 in
the (x, y) plane. In addition, they must be located in the physical domain where all the
constraints on the solutions are satisfied.

The inequality (A) gives a constraint between x and y for physical solutions:

x >
(d− 1)k

4
y − 2α̃k =: xmin(y). (4.5)

Also, the inequality (B) gives another constraint:

−2kα̃ < x <
(d− 1)k

2
y − 2kα̃ =: xmax(y), (4.6)

where the left inequality comes from a2
0 + 2kα̃ > 0. In summary, physical solutions must

be located in the domain of xmin(y) < x < xmax(y) and y < 0. Since a static solution is
realized as an intersection of the hyperbola with y = m/x(d−5)/2 in this domain, the number
of static solutions depend on the value of m. (See Fig. 2 as an example.)

4.1.2 Stable domain of solutions

Substituting Eq. (3.6) into Eq. (3.37), we write P (a0) as a function of x and y as

P (x, y) =k

{
(d− 1)(d− 3)y − 16α̃

}
x

− 1

4

{
(d− 3)(d− 1)2y2 − 8d(d− 1)α̃y + 128α̃2

}
. (4.7)
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Figure 2: The (x, y) plane for −1 < 4α̃Λ̃ < −(2d − 5)/(2d − 1) with k = −1, α > 0,
and d = 6. The thick hyperbola consists of x = x+(y) and x = x−(y), while dashed lines
consist of x = xmax(y) and x = xmin(y). Thin curves correspond to y = m/x(d−5)/2 with
three different values of negative m. It moves to the left as m(< 0) decreases. Since a
static solution is realized as an intersection of the hyperbola with y = m/x(d−5)/2 in the
shadowed region, the number of static solutions depend on the value of m.
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The stable domain of solutions are given by P (x, y) > 0 in the (x, y) plane. The curve
P (x, y) = 0 representing marginal stability is given by

x =
(d− 3)(d− 1)2y2 − 8d(d− 1)α̃y + 128α̃2

4k{(d− 1)(d− 3)y − 16α̃}
=: xP(y). (4.8)

We have xP(0) = −2kα̃ and

lim
y→−∞

xP(y) 'd− 1

4k
y − 2dα̃

k(d− 3)
. (4.9)

Since P (x, y) is an increasing function of x in the negative domain of y and we have

P (xmin(y), y) =2(d− 1)α̃y < 0, (4.10)

P (xmax(y), y) =− (d− 1)y {8α̃− (d− 1)(d− 3)y}
4

> 0, (4.11)

xP(y) satisfies xmin(y) < xP(y) < xmax(y). (See Fig. 3 as an example.)

Now we are ready to perform the stability analysis. We will treat the cases of Λ ≥ 0
and −1 < 4α̃Λ̃ < 0, separately.

4.2 Non-existence for Λ ≥ 0

In this subsection, we treat the case of Λ ≥ 0. Similar to the general relativistic case,
Einstein-Gauss-Bonnet gravity also does not admit static thin-shell wormholes in this pa-
rameter region.

For 4α̃Λ̃ > 3, Eq. (4.2) shows that x+ < 0 < x− holds in the domain of y < 0 with
k = −1. Since x = x+(y) does not satisfy the necessary condition x > 0, there is no static
solution in this case.

In the special case of 4α̃Λ̃ = 3, h(x, y) = 0 is solved to give

x(y) =
(d− 1)2y2 − 16dα̃y + 64α̃2

8k{(d− 1)y − 8α̃}
(> 0), (4.12)

which satisfies

xmin(y)− x(y) =
(d− 1)2y2 − 16(d− 2)α̃y + 64α̃2

8k{(d− 1)y − 8α̃}
> 0, (4.13)

where xmin(y) is defined in Eq. (4.5). Because the necessary condition x > xmin is not
satisfied, there is no static solution for 4α̃Λ̃ = 3.
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Lastly, in order to show the non-existence for 0 ≤ 4α̃Λ̃ < 3, we will use the following
fact: The sign of xmax(y) − x+(y) is definite in some domain of y if the curves x+(y) and
xmax(y) do not intersect and x+(y) is continuous there. Actually, x+(y) is continuous in
the negative domain of y for 4α̃Λ̃ ≥ −(2d− 5)/(2d− 1) because Eq. (4.3) shows that Z(y)
is non-negative then.

It is also possible to show that x+(y) and xmax(y) do not intersect in the negative domain
of y. For Λ = 0, x+(y) = xmax(y) is solved to give

y =
2α̃

d− 3
, (4.14)

which is positive. For 0 < 4α̃Λ̃ < 3, the solution is

y =
4(d− 1)α̃Λ̃ + d− 3±

√{
4(d− 1)α̃Λ̃ + d− 3

}2

− 4(d− 1)2α̃Λ̃(1 + 4α̃Λ̃)

(d− 1)2Λ̃

=
4(d− 1)α̃Λ̃ + d− 3±

√
4(d− 1)(d− 5)α̃Λ̃ + (d− 3)2

(d− 1)2Λ̃
=: yc(±), (4.15)

where inside the square-root is positive for 4α̃Λ̃ > −1. By direct calculations, both yc(+)

and yc(−) are shown to be positive for Λ > 0. (We note that yc(+) < 0 and yc(−) > 0 are
satisfied for Λ < 0.)

We have shown that the sign of x+(y)− xmax(y) is definite in the domain of negative y
for Λ > 0. This sign is actually negative, as shown below. From the following expression;

xmax(y)− x+(y) =
k(d− 1)(1− 4α̃Λ̃)y + 4kα̃(1 + 4α̃Λ̃)−

√
Z(y)

2(3− 4α̃Λ̃)

=
−4kα̃{(d− 1)y − 4α̃}Λ̃ + k(d− 1)y + 4kα̃−

√
Z(y)

2(3− 4α̃Λ̃)
, (4.16)

we obtain

xmax(0)− x+(0) =
2kα̃(1 + 4α̃Λ̃)− 4α̃

√
1 + 4α̃Λ̃

3− 4α̃Λ̃
, (4.17)

which is negative for −1 < 4α̃Λ̃ < 3. Because x+(y)−xmax(y) is continuous, it is concluded
that x+(y) > xmax(y) is satisfied in the negative domain of y for 0 < 4α̃Λ̃ < 3.

4.3 Pictorial analysis for −1 < 4α̃Λ̃ < 0

Now we focus on the case of −1 < 4α̃Λ̃ < 0. In this case, there exit static solutions but
their existence and stability depend on the parameters in a complicated manner. We will
clarify them by a pictorial analysis.
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4.3.1 Geometric shape of h(x, y) = 0

In the case of −1 < 4α̃Λ̃ < 0, h(x, y) = 0, where h(x, y) is defined by Eq. (4.1), is a
hyperbola in the (x, y) plane in general. In order to understand the shape of the hyperbola,
we present

h(0, y) =
1

4
(d− 1)2y2 − 4dα̃y + 16α̃2, (4.18)

h(x, 0) =(3− 4α̃Λ̃)x2 + 16α̃kx+ 16α̃2. (4.19)

h(0, y) = 0 has two positive solutions y = y1(> 0) and y = y2(> y1), where

y1 :=
8α̃(d−

√
2d− 1)

(d− 1)2
, y2 :=

8α̃(d+
√

2d− 1)

(d− 1)2
. (4.20)

h(x, 0) = 0 also has two positive solutions x = x1(> 0) and x = x2(> x1), where

x1 :=
−8α̃k − 4α̃

√
1 + 4α̃Λ̃

3− 4α̃Λ̃
. x2 :=

−8α̃k + 4α̃
√

1 + 4α̃Λ̃

3− 4α̃Λ̃
. (4.21)

The shape of the hyperbola drastically changes at the following critical value;

4α̃Λ̃ = −2d− 5

2d− 1
, (4.22)

which is located in the domain −1 < 4α̃Λ̃ < 0. With this critical value of Λ, h(x, y)
becomes factored;

h(x, y) =
1

4
(d− 1)2

(
y − 64kα̃x

(d− 1){8α̃− (d− 1)w}
+

64α̃2

(d− 1)2w

)
×
(
y +

8kwx

8α̃− (d− 1)w
+ w

)
, (4.23)

where a constant w satisfies (d − 1)2w2 + 16dα̃w + 64α̃2 = 0, and therefore h(x, y) = 0
consists of two straight lines.

x = x+(y) and x = x−(y) coincide when Z(y) vanishes. These points are located on
x = xP(y) only for d = 5 or 4α̃Λ̃ = −(2d − 5)/(2d − 1). For 4α̃Λ̃ = −(2d − 5)/(2d − 1),
Z(y) vanishes at

y = − 8α̃

d− 1
=: y0. (4.24)

For d = 5, it vanishes at

y =

α̃

{
20α̃Λ̃ + 1±

√
(4α̃Λ̃− 3)(36α̃Λ̃ + 5)

}
2(1 + 4α̃Λ̃)

=: y5(±). (4.25)

The (x, y)-planes for −1 < 4α̃Λ̃ < 0 are drawn in Figs. 4–6.
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4.3.2 Existence of solutions

In the present case, existence of static solutions depends on the value of the mass parameter
m. First of all, as in Einstein gravity, it is shown that there is no static solution for
sufficiently small |m|. For −1 < 4α̃Λ̃ < 0, Eq. (4.15) shows that x+(y) < xmax(y) holds
in the domain y < yc(+). As seen in Fig. 2, the curve y = m/x(d−5)/2 moves to the right
as m(< 0) increases approaching the x-axis in the limit of m → −0. Therefore, there
exists a critical value mc such that, for mc < m(< 0), the intersection of x = x+(y) with
y = m/x(d−5)/2 is located outside the physical domain in the (x, y) plane and hence there
is no static solution. This critical value mc is obtained by solving the following algebraic
equations:{

2x = (d− 1)ky(mc)− 4kα̃,

(d− 1)2Λ̃y(mc) = 4(d− 1)α̃Λ̃ + d− 3 +
√

4(d− 1)(d− 5)α̃Λ̃ + (d− 3)2,
(4.26)

where y(mc) := mc/x
(d−5)/2.

In the case of −(2d− 5)/(2d− 1) ≤ 4α̃Λ̃ < 0, Z(y) is non-negative and hence x = x+(y)
is continuous. Therefore, as seen in Figs. 4 and 5, there is a static solution for each value
of m satisfying m ≤ mc.

In the case of −1 < 4α̃Λ̃ < −(2d − 5)/(2d − 1), in contrast, Z(y) is negative in the
domain of y− < y < y+, where

y± :=

8α̃

{
4dα̃Λ̃ + (d− 4)±

√
(4α̃Λ̃− 3)[4(2d− 1)α̃Λ̃ + 2d− 5]

}
(d− 1)2(1 + 4α̃Λ̃)

(< 0). (4.27)

As seen in Fig. 6, the curve x = x+(y) is no more continuous and does not exist in the
domain of y− < y < y+. Since the curve y = m/x(d−5)/2 moves to the left as m decreases,
there exists a range of negative m ∈ (m−,m+) such that the curve y = m/x(d−5)/2 does not
intersect with the hyperbola h(x, y) = 0 and hence there is no static solution. This shows
a sharp difference from the general relativistic case.

4.3.3 Stability of solutions for d = 5

Now let us study the stability of solutions. For this purpose, we use the following quantity:

x+(y)− xP(y) =
S(y) + 2k {(d− 1)(d− 3)y − 16α̃}

√
Z(y)

4k(3− 4α̃Λ̃) {(d− 1)(d− 3)y − 16α̃}
, (4.28)
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x=x+(y)

x=x
- (y)

x

y
O

     x=xP(y)     x=x
min (y)

     x=x
max (y)

Figure 3: The (x, y) plane with Λ = 0, α̃ = 1, and d = 6. Thick solid curves consists of
x = x+(y) and x = x−(y), while thin solid curves are x = xP(y) corresponding to P = 0.
The dashed lines consist of x = xmax(y) and x = xmin(y). The shadowed region corresponds
to P > 0 in the physical region in the domain of x > 0, y < 0.

x

y
O

x=x+(y)

x=x
- (y)

yc(+)

Figure 4: The (x, y) plane for −(2d − 5)/(2d − 1) < 4α̃Λ̃ < 0. If 4α̃Λ̃ is close to
−(2d − 5)/(2d − 1), a part of x = x−(y) enters the physical region but the corresponding
solutions are unstable.
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x
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x=x
+ (y)

x=x
- (y)

x=x
+ (y)

x=x
- (y)

y0 yc(+)

Figure 5: The (x, y) plane for 4α̃Λ̃ = −(2d − 5)/(2d − 1). The intersection between
x = x+(y) and x = x−(y) is located on x = xP(y) (thin solid curve) for any d.

x

y
O

x=x
- (y)

x=x
- (y)

x=x
+ (y)

x=x
+ (y)

y- y+y0 yc(+)

Figure 6: The (x, y) plane for −1 < 4α̃Λ̃ < −(2d − 5)/(2d − 1). At y = y±, Z = 0 (and
hence x+ = x−) are satisfied. It is noted that the points (x+, y+) and (x+, y−) are located
on x = xP(y) (thin solid curve) only for d = 5.
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where

S(y) :=(d− 3)(d− 1)2(1 + 4α̃Λ̃)y2 − 8(d− 1)α̃(4dα̃Λ̃ + d− 4)y + 128α̃2(1 + 4α̃Λ̃)

=4α̃Λ̃{(d− 3)(d− 1)2y2 − 8α̃(d− 1)dy + 128α̃2}
+ (d− 3)(d− 1)2y2 − 8α̃(d− 1)(d− 4)y + 128α̃2. (4.29)

If S(y) is positive in some negative domain of y, then x+(y) > xP(y) holds there, which
means that P > 0 is satisfied at x = x+(y). Therefore, if there are intersections of
x = x+(y) with y = m/x(d−5)/2 in the physical domain with S(y) > 0, the corresponding
static solutions are stable. Since the stability of static solutions is different between d = 5
and d ≥ 6, we treat the case of d = 5 here and the case of d ≥ 6 will be treated separately.

In the case of d = 5, the solution cannot be unstable, shown as follows. For d = 5,
S(y) = 2Z(y) is satisfied and so Eq. (4.28) becomes quite simple. Since Z(y) ≥ 0 is
satisfied on the curve x = x+(y), we have x+(y) ≥ xP(y) there and the corresponding static
solutions are stable or marginally stable.

Marginally stable static solutions are realized at y = y5(±) satisfying Z(y5(±)) = 0, where

y5(±) is given by Eq. (4.25). Because the reality of y5(±) requires 4α̃Λ̃ ≤ −5/9, static

solutions for −5/9 < 4α̃Λ̃ < 0 are all stable. (See Fig. 4.)

On the other hand, for −1 < 4α̃Λ̃ ≤ −5/9, the static solutions with m = y5(±) are
marginally stable, while the solutions with m < y5(−) or y5(+) < m are stable. For y5(−) <

m < y5(+), there is no solution. Figure 5 shows the case of 4α̃Λ̃ = −5/9, in which y0

becomes y5(+) = y5(−) for d = 5. Figure 6 shows the case of −1 < 4α̃Λ̃ < −5/9, in which
y+ and y− become y5(+) and y5(−) for d = 5, respectively.

4.3.4 Stability of solutions for d ≥ 6

In order to discuss the stability for d ≥ 6, we evaluate the function h(x, y) on the marginally
stable curve x = xP(y):

h(xP(y), y) =− W (y)

16{(d− 1)(d− 3)y − 16α̃}2
, (4.30)

where

W (y) :=4α̃Λ̃
{

(d− 3)(d− 1)2y2 − 8d(d− 1)α̃y + 128α̃2
}2

+ (d− 3)2(d− 1)4y4 − 16(d− 3)(d2 − 5d+ 12)(d− 1)2α̃y3

+ 64(d− 1)(d3 + 3d2 − 52d+ 112)α̃2y2

− 2048(d2 − d− 8)α̃3y + 16384α̃4. (4.31)
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We will show that the sign of h(xP(y), y) is definite in the domain of negative y for
−(2d − 5)/(2d − 1) < 4α̃Λ̃ < 0, which means that x = x+(y) does not intersect with
x = xP(y). Then, by continuity of the curves x = x+(y) and x = xP(y) for y ≤ 0, the sign
of x+(y)− xP(y) is the same as x+(0)− xP(0) and it is actually positive;

x+(0)− xP(0) =
−2kα̃(1 + 4α̃Λ̃) + 4α̃

√
(1 + 4α̃Λ̃)

3− 4α̃Λ̃
> 0. (4.32)

Therefore, x+(y) > xP(y) is satisfied for y < 0 and hence the corresponding static solutions
are stable. (See Fig. 4.)

In order to prove the definiteness of the sign of h(xP(y), y) for −(2d − 5)/(2d − 1) <
4α̃Λ̃ < 0, we use the fact that W (y) is an increasing function of Λ. From the following two
expressions;

W (y)|Λ̃=0 =(d− 3)2(d− 1)4y4 − 16(d− 3)(d2 − 5d+ 12)(d− 1)2α̃y3

+ 64(d− 1)(d3 + 3d2 − 52d+ 112)α̃2y2

− 2048(d2 − d− 8)α̃3y + 16384α̃4 > 0, (4.33)

W (y)|4α̃Λ̃=− 2d−5
2d−1

=
4 {(d− 1)y + 8α̃}2 {(d− 1)2(d− 3)2y2 − 32d(d− 3)α̃y + 256α̃2}

2d− 1
≥ 0,

(4.34)

it is concluded that the sign of W (y) and hence the sign of h(xP(y), y) is definite in the
negative domain of y.

In the case of 4α̃Λ̃ = −(2d−5)/(2d−1), the solution can be marginally stable. Because
the equality in Eq. (4.34) holds only at y = −8α̃/(d−1), h(xP(y), y) = 0 is satisfied only at
y = −8α̃/(d−1) and the sign of h(xP(y), y) is definite elsewhere. Therefore, x+(y) > xP(y)
and x+(y) = xP(y) are satisfied at y 6= −8α̃/(d − 1) and y = −8α̃/(d − 1), respectively.
Namely, the static solution with a critical value of m corresponding to y = −8α̃/(d− 1) is
marginally stable and solutions with other values of negative m are stable. (See Fig. 5.)

The situation is complicated for −1 < 4α̃Λ̃ < −(2d − 5)/(2d − 1). In this parameter
region, the solution may be dynamically unstable which shows a sharp difference from the
general relativistic case.

Figure 6 shows the (x, y)-plane in this case. x = x+(y) exists only in the domains of
y ≤ y− and y+ ≤ y(< 0) because Z(y) is negative in the domain of y− < y < y+, where y±
are defined by Eq. (4.27) and satisfy Z(y±) = 0. From the following expression;

Z(y0) =
128α̃2

{
4(2d− 1)α̃Λ̃ + (2d− 5)

}
d− 1

(< 0), (4.35)

where y0 := −8α̃/(d− 1), we obtain an inequality y− < −8α̃/(d− 1) < y+.
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For our purpose, we use the fact that S(y) is an increasing function of Λ. Non-negativity
of Z gives the following inequality:

4α̃Λ̃ ≥ 3− 4{(d− 1)y − 8α̃}2

{(d− 1)2y2 − 16dα̃y + 64α̃2}
. (4.36)

This lower bound gives a lower bound of S:

S(y) ≥32(d− 5)α̃y {64α̃2 − (d− 1)2y2}
(d− 1)2y2 − 16dα̃y + 64α̃2

. (4.37)

If the right-hand side is positive in some domain of y, x+(y) > xP(y) is satisfied there and
hence the corresponding static solutions are stable.

Because of the inequality y− < −8α̃/(d − 1) < y+, static solutions corresponding to
y ≤ y− are dynamically stable. In contrast, the static solution with y = y+ is dynamically
unstable since we have

x+(y+)− xP(y+) =
8(d− 5)α̃y+

{
64α̃2 − (d− 1)2y2

+

}
k(3− 4α̃Λ̃) {(d− 1)(d− 3)y+ − 16α̃} {(d− 1)2y2

+ − 16dα̃y+ + 64α̃2}
< 0.

(4.38)

Figure 6 shows that the dynamically unstable solutions are realized only very close to
y = y+ and the solutions with y+ � y(< 0) become stable. All the results obtained in the
present paper are summarized in Table 2.

Table 2: The existence and stability of Z2 symmetric static thin-shell wormholes made of
pure negative tension in the GR branch with α̃ > 0 and 1 + 4α̃Λ̃ > 0. ”S”, ”M”, ”U” stand
for ”Stable”, ”Marginally stable”, and ”Unstable”, respectively

Static solutions exist? Stability
k = 1 m > 0 Yes U

m ≤ 0 No –
k = 0 m = 0 Λ ≥ 0: No –

Λ < 0: Yes M
m 6= 0 No –

k = −1 m ≥ 0 No –
m < 0 Λ ≥ 0 : No –

−(2d− 5)/(2d− 1) < 4α̃Λ̃ < 0: Yes S

4α̃Λ̃ = −(2d− 5)/(2d− 1): Yes S or M

−1 < 4α̃Λ̃ < −(2d− 5)/(2d− 1) with d = 5: Yes S or M

−1 < 4α̃Λ̃ < −(2d− 5)/(2d− 1) with d ≥ 6: Yes S, M, or U
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5 Summary and discussions

In the present paper, d(≥ 5)-dimensional static thin-shell wormholes with the Z2 symmetry
have been investigated in the spherically (k = 1), planar (k = 0), or hyperbolically (k =
−1) symmetric spacetime in Einstein-Gauss-Bonnet gravity. For our primary motivation
to reveal the effect of the Gauss-Bonnet term on the static configuration and dynamical
stability of a wormhole, we have studied the stability against linear perturbations preserving
symmetries in the simplest set up where the thin shell is made of pure negative tension,
which satisfies the null energy condition.

In this system, the dynamics of the shell can be treated as a one-dimensional potential
problem characterized by a mass parameter m in the vacuum bulk spacetime for a given
value of d, k, the cosmological constant Λ, and the Gauss-Bonnet coupling constant α. We
have studied solutions which admit the general relativistic limit α → 0 and considered a
very conservative region in the parameter space. The shape of the effective potential for the
shell dynamics clarifies possible static configurations of a wormhole and their dynamical
stability.

As seen in Tables 1 and 2, the results with and without the Gauss-Bonnet term are
similar in many cases. For k = 1, static wormholes require m > 0 and they are dynamically
unstable. For k = 0, static wormholes require m = 0 and Λ < 0 and they are marginally
stable. For k = −1, m < 0 and Λ < 0 are required for static wormholes.

We have clarified the effect of the Gauss-Bonnet term on the stability in a perturbative
method by expanding the equation in a power series of α̃. We have shown that, for α̃/a2

E �
1, the Gauss-Bonnet term tends to destabilize spherically symmetric thin-shell wormholes
(k = 1), while it stabilizes hyperbolically symmetric wormholes (k = −1). For planar
symmetric wormholes (k = 0), the Gauss-Bonnet term does not affect their stability and
they are marginally stable, same as in Einstein gravity. However, we have observed that
the non-perturbative effect is quite non-trivial.

Notable difference between Einstein gravity and Einstein-Gauss-Bonnet gravity appears
in the case of k = −1. In Einstein gravity, static wormholes exist when the mass parameter
m is less than a critical negative value and they are dynamically stable. This is also the
case in Einstein-Gauss-Bonnet gravity for −(2d − 5)/(2d − 1) < 4α̃Λ̃ < 0. However, for
4α̃Λ̃ = −(2d− 5)/(2d− 1), a static wormhole becomes marginally stable if m is fine-tuned.
For −1 < 4α̃Λ̃ < −(2d−5)/(2d−1), in contrast, static wormholes cease to exist for a finite
range of m and furthermore, dynamical property of the wormhole is different for d = 5 and
d ≥ 6. For d = 5, static wormholes are generically stable but become marginally stable if
m is fine-tuned. For d ≥ 6, in addition to them, wormholes are dynamically unstable in a
finite range of m. In summary for k = −1, the Gauss-Bonnet term shrinks the parameter
region admitting static wormholes and tends to destabilize them non-perturbatively.
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As the effect of the Gauss-Bonnet term on the existence and stability of static wormholes
has been revealed in the present paper, the effect of its dilaton coupling is now of great
interest. Unfortunately in the presence of a dilaton, exact bulk solutions are not available
to construct thin-shell wormholes. Nevertheless, this is a promising direction of research
leading to understand the result in [9]. We hope that the result will be reported elsewhere.
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A Derivation of the equation of motion for a thin shell

In this appendix, we present the details how to derive the equation of motion for the shell
(2.15) and (2.16) from the junction conditions (2.10).

For the following vacuum bulk metric (2.7);

ds2
d =gµνdx

µdxν = −f(r)dt2 + f(r)−1dr2 + r2γABdzAdzB, (A.1)

f(r) :=k +
r2

2α̃

(
1∓

√
1 +

4α̃m

rd−1
+ 4α̃Λ̃

)
, (A.2)

the non-vanishing components of the Levi-Civitá connection are given by

Γrtt =
1

2
f

df

dr
, Γttr =

1

2f

df

dr
, Γrrr = − 1

2f

df

dr
,

ΓrAB = −rfγAB, ΓABr =
1

r
δAB, ΓABC = Γ̂ABC(z),

(A.3)

where Γ̂ABC is the Levi-Civitá connection on the maximally symmetric base manifold.

In this spacetime, the position of the thin shell is described by r = a(τ) and t = T (τ),
where τ is the proper time on the shell. The future directed unit tangent vector to the
shell is

uµ
∂

∂xµ
= Ṫ

∂

∂t
+ ȧ

∂

∂r
, (A.4)

of which normalization condition uµu
µ = −1 is written as

1 = f(a)Ṫ 2 − ȧ2

f(a)
, (A.5)
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where a dot denotes the differentiation with respect to τ . The unit normal one-form nµ to
the shell is given by

nµdxµ = −ȧdt+ Ṫdr , (A.6)

which satisfies nµu
µ = 0 and nµn

µ = 1. The vector nµ(∂/∂xµ) is pointing increasing
direction of r.

The (d− 1)-dimensional induced metric hij on the shell is given by

ds2
d−1 = hij(ξ)dξ

idξj = −dτ 2 + a(τ)2γABdzAdzB . (A.7)

where ξ0 = τ . Non-zero components of the Levi-Civitá connection (d−1)Γijk in this spacetime
are

(d−1)ΓτAB = aȧγAB,
(d−1)ΓAτB =

ȧ

a
δAB,

(d−1)ΓABC = Γ̂ABC . (A.8)

From our definition of the Riemann tensor;

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµκρΓ

κ
νσ − ΓµκσΓκνρ, (A.9)

the non-zero components of the Riemann tensor Ri
ijk, Ricci tensor Rij, and Ricci scalar

R are computed to give

Rτ
BτD =aäγBD, RA

BCD = (k + ȧ2)(δACγBD − δADγBC), (A.10)

Rττ =− (d− 2)
ä

a
, RAB =

{
aä+ (d− 3)(k + ȧ2)

}
γAB, (A.11)

R =2(d− 2)
ä

a
+ (d− 2)(d− 3)

(
k

a2
+
ȧ2

a2

)
. (A.12)

From these expressions, we obtain the non-zero components of P i
jkl:

P τ
BτD =

1

2
(d− 3)(d− 4)(k + ȧ2)γBD, (A.13)

PA
BCD =(d− 4)

{
aä+

1

2
(d− 5)(k + ȧ2)

}
(δACγBD − δADγBC). (A.14)

The extrinsic curvature of the shell is computed from the following definition:

Kij :=(∇µnν)e
µ
i e
ν
j

=− nµeµi,j − Γκµνnκe
µ
i e
ν
j , (A.15)

where eµi := ∂xµ/∂ξi. Using

e0
idξ

i = Ṫdτ , e1
idξ

i = ȧdτ , eAi dξi = δABdzB , (A.16)
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and Eq. (A.5) together with its derivative with respect to τ , we obtain the non-zero com-
ponents of Ki

j:

Kτ
τ =

1

fṪ

(
ä+

f ′

2

)
, KA

B =
fṪ

a
δAB , (A.17)

where a prime denotes the derivative with respect to a. From the above expressions, we
compute

K =
1

fṪ

(
ä+

f ′

2

)
+

(d− 2)fṪ

a
, (A.18)

KijK
ij =

1

f 2Ṫ 2

(
ä+

f ′

2

)2

+ (d− 2)

(
fṪ

a

)2

, (A.19)

Jτ τ =− (d− 2)(d− 3)

3

fṪ

a2

(
ä+

f ′

2

)
, (A.20)

JAB =− (d− 3)fṪ

3a

{
2

a

(
ä+

f ′

2

)
+ (d− 4)

(
fṪ

a

)2}
δAB , (A.21)

J =− (d− 2)(d− 3)fṪ

3a

{
3

a

(
ä+

f ′

2

)
+ (d− 4)

(
fṪ

a

)2}
. (A.22)

Now we are ready to write down the equation of motion for the shell. Under the as-
sumptions of the Z2 symmetry and the form of Sij as

Sij = diag(−ρ, p, p, · · · , p) + diag(−σ,−σ,−σ, · · · ,−σ, ) , (A.23)

the junction conditions (2.10) give (2.15) and (2.16), where we used Eq. (A.5) in the
following form: (

fṪ

a

)2

=
f

a2
+
ȧ2

a2
. (A.24)
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