
RESOLUTION ANALYSIS OF IMAGING WITH `1 OPTIMIZATION
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Abstract. We study array imaging of a sparse scene of point-like sources or scatterers in a homogeneous medium. For
source imaging the sensors in the array are receivers that collect measurements of the wave field. For imaging scatterers the
array probes the medium with waves and records the echoes. In either case the image formation is stated as a sparsity promoting
`1 optimization problem, and the goal of the paper is to quantify the resolution. We consider both narrow-band and broad-
band imaging, and a geometric setup with a small array. We take first the case of the unknowns lying on the imaging grid,
and derive resolution limits that depend on the sparsity of the scene. Then we consider the general case with the unknowns
at arbitrary locations. The analysis is based on estimates of the cumulative mutual coherence and a related concept, which
we call interaction coefficient. It complements recent results in compressed sensing by deriving deterministic resolution limits
that account for worse case scenarios in terms of locations of the unknowns in the imaging region, and also by interpreting the
results in some cases where uniqueness of the solution does not hold. We demonstrate the theoretical predictions with numerical
simulations.

Key words. array imaging, sparse, `1 optimization, cumulative mutual coherence.

1. Introduction. Array imaging is an inverse problem for the wave equation, where the goal is to
determine remote sources or scatterers from measurements of the wave field at a collection of nearby sensors,
called the array. The problem has applications in medical imaging, nondestructive evaluation of materials,
oil prospecting, seismic imaging, radar imaging, ocean acoustics and so on. There is extensive literature on
various imaging approaches such as reverse time migration and its high frequency version called Kirchhoff
migration [2, 3, 14], matched field imaging [1], Multiple Signal Classification (MUSIC) [30, 23], the linear
sampling method [9], and the factorization method [25]. In this paper we consider array imaging using `1
optimization, which is appropriate for sparse scenes of unknown sources or scatterers that have small support
in the imaging region.

Imaging with sparsity promoting optimization has received much attention recently, specially in the
context of compressed sensing [21, 19, 29], where a random set of sensors collect data from a sparse scene.
Such studies use the restricted isometry property of the sensing matrix [10] or its mutual coherence [8] to
derive probability bounds on the event that the imaging scene is recovered exactly for noiseless data, or
with small error that scales linearly with the noise level. The array does not play an essential role in these
studies, aside from its aperture bounding the random sample of locations of the sensors, and for justifying
the scaling that leads to models of wave propagation like the paraxial one [21].

A different approach proposed in [11, 12] images a sparse scattering scene using illuminations derived
from the singular value decomposition (SVD) of the response matrix measured by probing sequentially the
medium with pulses emitted by one sensor at a time and recording the echoes. Iluminations derived from
the SVD are known to be useful in imaging [27, 6, 4, 5, 23] and they may mitigate noise. The setup in
[11], which is typical in array imaging, lets the sensors be closely spaced so that sums over them can be
approximated by integrals over the array aperture. We consider the same continuous aperture setup here and
study the resolution of the images produced by `1 optimization, also known as basis pursuit and `1−penalty.
We address two questions: (1) How should we chose the discretization of the imaging region so that we can
guarantee unique recovery of the sparse scene, at least when the unknowns lie on the grid? (2) If the imaging
region is discretized on a finer grid, for which uniqueness does not hold, are there cases where the solution
of the `1 optimization is still useful?

By studying question (1) we complement the existing results with deterministic resolution limits that
account for worse case scenarios, and guarantee unique recovery of the scene for a given sparsity s. This
is defined as the number of non-zero entries of the vector of unknowns or, equivalently, the number of grid
points in the support of the sources/scatterers that we image. We consider a geometric setup with a small
array, where wave propagation can be modeled by the paraxial approximation. We have a more general
paraxial model than in [21], which takes into consideration sources/scatterers at different ranges from the
array. This turns out to be important in narrow-band regimes. We also consider broad-band regimes and
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show that the additional multi-frequency data improves the resolution.
It is typical in imaging with sparsity promoting optimization to assume that the unknown sources or

scatterers lie on the discretization grid, meaning that they can be modeled by a sparse complex vector
ρ ∈ CN , where N is the number of grid points. If the unknowns lie off-grid the results deteriorate. We refer
to [24, 18] for a perturbation analysis of compressed sensing with small off-grid displacements. General tight
error bounds can be found in [13]. They may be quite large and increase with N . Thus, there is a trade-off
in imaging with `1 optimization: on one hand we need a coarse enough discretization of the imaging region
to ensure unique recovery of the solution, and on the other hand finer discretization to minimize modeling
errors due to off-grid placement of the unknowns. This trade-off is particularly relevant in the narrow-band
paraxial regime, where the resolution limits may grow significantly with the sparsity s of the scene.

At question (2) we consider fine discretizations of the imaging region, to mitigate the modeling error.
The problem is then how to interpret the result ρ? of the `1 minimization, which is no longer guaranteed
to be unique. We show that there are cases where the minimization may be useful. Specifically, we prove
that when the unknown sources/scatterers are located at points or clusters of points that are sufficiently
well separated, an `1 minimizer ρ? is supported in the vicinity of these points. While the entries of ρ? may
not be close in the point-wise sense to those of ρ, their average over such vicinities are close to the true
values in ρ in the case of well separated points, or the averages of the true values in the case of clusters
of points. That is to say, `1 optimization gives an effective vector of source/scatterer amplitudes averaged
locally around the points in its support. Note that question (2) was also investigated in [20], where novel
algorithms for imaging well separated sources have been introduced and analyzed. Our study complements
the results in [20] by analyzing directly the performance of the `1 minimization and `1-penalty, and also
considering clusters of sources/scatterers.

The paper is organized as follows. In section 2 we formulate the problem, introduce notation, and
describe the relation between imaging sources vs. scatterers. Question (1) is studied in section 3. We
describe the paraxial scaling regime and derive resolution bounds that depend on the sparsity s of the
imaging scene. In section 4 we study question (2). In both sections we begin with the statement of results
and numerical illustrations, and end with the proofs. A summary is in section 5.

2. Formulation of the imaging problem. We formulate first the basic problem of imaging s point-
like sources with a remote array of sensors that record the incoming sound waves. The generalization to the
inverse scattering problem is described in section 2.2.

Suppose that there are s unknown sources located at points ~yj in the imaging region W ⊂ R3, emiting

signals f̂j(ω) at frequency ω, for j = 1, . . . , s. The hat stands for Fourier transform with respect to time, and
reminds us that we work in the frequency domain. The receivers are at locations ~xr ∈ A, for r = 1, . . . ,Mr,
where A is a set on the measuring surface, called the array aperture. The sound pressure wave measured at
~xr and frequency ω is modeled by

p̂(ω, ~xr) =

s∑
j=1

f̂j(ω)Ĝ(ω, ~xr, ~yj), (2.1)

where Ĝ is the outgoing Green’s function of Helmholtz’s equation. The propagation is through a homogeneous
medium with sound speed c, and the Green’s function is

Ĝ(ω, ~xr, ~yj) =
eik|~xr−~yj |

4π|~xr − ~yj |
, (2.2)

where k = ω/c is the wavenumber. The inverse source problem is to determine {f̂j}j=1,...,s from the
measurements (2.1) at one or more frequencies ω.

2.1. Imaging sources with `1 optimization. To state the inverse problem as an `1 optimization we
discretize W with a regular grid of rectangular prisms, and let WN ⊂ R3 be the set of N grid points denoted
by ~zj . The lengths of the edges of the rectangular prisms are the components of the vector ~h ∈ R3, called
the mesh size. The sources may be on or off the grid. If they are on the grid, as assumed in section 3, we
denote by S the set of indexes of the grid points that support them. Explicitly, we define the bijective map

2



J : {1, . . . , s} → S ⊂ {1 . . . , N}, such that ~z
J(j)

= ~yj , for j = 1, . . . , s, and S = {J(1), . . . , J(s)}. When the
sources are not on the grid, we let S index the nearest points ~zj to each source, as explained in more detail
in section 4. We assume henceforth that N � s, meaning that the imaging scene is sparse.

Let d ∈ CM be the data vector, with components p̂(ωl, ~xr), for l = 1, . . . ,Mω and r = 1, . . . ,Mr. The
number of measurements is M = MωMr. Let also G ∈ CM×N be the sensing matrix, with entries defined
by Ĝ(ωl, ~xr,~zj)/αj , where αj normalizes the columns of G, denoted by gj . Absorbing the normalization
constants in the vector ρ of unknowns, we obtain the linear system

Gρ = d. (2.3)

For single frequency measurements at ω = ω1 the normalization constant is

αj =
( Mr∑
r=1

|Ĝ(ω, ~xr,~zj)|2
)1/2

=
( Mr∑
r=1

1

16π2|~xr − ~zj |2
)1/2

,

so that when the sources lie on the grid there are s non-zero entries in ρ, equal to

ρj = αJ−1(j)f̂J−1(j)(ω), j ∈ S. (2.4)

Here J−1 : S → {1, . . . , s} is the inverse of the mapping J . For multiple frequency measurements we simplify
the problem by letting

f̂j(ω) = f̂(ω)Rj , ∀j = 1, . . . , s, (2.5)

so that all the sources emit the same known signal f̂(ω) multiplied by an unknown complex amplitude Rj .
This simplification is motivated by the inverse scattering problem described in section 2.2. It keeps the
same number N of unknowns as in the single frequency case, although we have more measurements. The
normalization constants are

αj = ‖f̂‖2
( Mr∑
r=1

1

16π2|~xr − ~yj |2
)1/2

, ‖f̂‖2 =
( Mω∑
l=1

|f̂(ωl)|2
)1/2

,

and the non-zero entries of ρ equal

ρj = αJ−1(j)RJ−1(j), j ∈ S. (2.6)

Note that we could have written the multiple frequency problem for MωN unknowns, the Fourier coefficients
f̂j(ωl) of the signals emitted by the sources. However, at each frequency these have the same spatial
support, so another optimization approach, known as Multiple Measurement Vector (MMV) [15] would be
more appropriate. For the purpose of this paper it suffices to consider the simpler model (2.6).

The `1 optimization (basis pursuit) formulation of the inverse source problem is

min
ρ∈CN

‖ρ‖1 such that Gρ = d, (2.7)

where ‖ρ‖1 =
∑N
j=1 |ρj |. Our goal in section 3 is to determine bounds on the mesh size ~h so that (2.7) has

a unique s sparse solution, equal to the true ρ defined in (2.4) and (2.6). The analysis is based on the next
lemma, following from [31, 32, 17].

Lemma 2.1. Suppose that (2.3) has an s sparse solution ρ and that the cumulative mutual coherence
µ(G, s) of matrix G with columns gj of Euclidian length equal to one satisfies

µ(G, s) = max
j=1,...,N

max
|S|=s

∑
q∈S,q 6=j

| 〈gq,gj〉 | <
1

2
, (2.8)

where 〈·, ·〉 denotes the usual inner product in CN , and S is a set of cardinality |S|. Then ρ is the unique s
sparse solution of (2.3) and the unique minimizer of (2.7).
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To deal with noise and modeling (discretization) error, we also consider in section 4 the `1−penalty
problem [32]

min
ρ∈CN

L (ρ), L (ρ) =
1

2
‖Gρ− d‖22 + γ‖ρ‖1, (2.9)

with parameter γ accounting for the trade-off between the approximation error and the sparsity of the
unknown vector ρ.

2.2. Imaging point scatterers. The problem of imaging a sparse scene of point scatterers at ~yj for
j = 1, . . . , s, can be written as one of imaging s sources, as we now explain.

Let the array probe the medium with a signal f̂(ω) emitted from the sensor at ~xe. Using the Foldy-Lax
model [22, 26] we write the scattered wave at ~xr in the form (2.1), with effective sources at {~yj}j=1,...,s

emitting signals

f̂j(ω) = f̂(ω)Rj ûj(ω). (2.10)

Here Rj is the reflectivity of the j−th scatterer, and ûj is the wave that illuminates it. It is given by the

sum of the incident wave Ĝ(ω, ~xe, ~yj) and the wave scattered at the other points

ûj(ω) = Ĝ(ω, ~xe, ~yj) +

s∑
l=1

(1− δlj)RlĜ(ω, ~yl, ~yj)ûl(ω), ∀j = 1, . . . , s, (2.11)

where δlj is the Kronecker delta.
In the Born approximation we neglect the sum in (2.11), and simplify (2.10) as

f̂j(ω) = f̂(ω)RjĜ(ω, ~xe, ~yj). (2.12)

This can be written in the form (2.3) with entries of ρ like in (2.6), and slightly redefined matrix G and
normalization constant

αj = ‖f̂‖2

√√√√Mr∑
r=1

1

(4π)4|~xr − ~yj |2|~xe − ~yj |2
.

Multiple scattering effects can be included by solving the Foldy-Lax equations (2.11) or, equivalently,
the linear system

Qû =

Ĝ(ω, ~xe, ~y1)
...

Ĝ(ω, ~xe, ~ys)

 ,

with û the vector with components ûj , and Q = (Qjl)j,l=1,...s the matrix with entries

Qjl = δlj − (1− δjl)Ĝ(ω, ~yl, ~yj)Rl.

Note that Q is a perturbation of the s×s identity matrix, and depending on the magnitude of the reflectivities
and the distance between the scatterers, it is invertible. Again we can write the problem in the form (2.3) with
entries of ρ like in (2.6), except that now αj are more complicated and depend on the unknown reflectivity.
An elegant solution of this nonlinear problem is in [12]. It amounts to solving a source imaging problem like
(2.7), to determine the locations ~yj , for j = 1, . . . , s. Because there are multiple emitters the authors use an
MMV approach. Then the reflectivities are estimated using the Foldy-Lax model.

Given the relation between inverse scattering and source problems describe above, we focus attention
henceforth on imaging sparse scenes of sources using (2.7) or (2.9).
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Fig. 3.1. Schematic for the paraxial setup.

3. Imaging with small arrays. The setup is illustrated in Figure 3.1. We consider a planar square
array of aperture size a, and a coordinate system with origin at the center of the array and range axis
orthogonal to it. The locations of the receivers are ~xr = (xr, 0), with xr = (x1,r, x2,r) and |x1,r|, |x2,r| ≤ a/2,
for r = 1, . . .Mr. The imaging region W is a rectangular prism with center on the range axis, at distance
L from the array. It has a square side [−D/2, D/2] × [−D/2, D/2] in the cross-range plane, parallel to the
array, and length D3 in the range direction. The discretization of W has grid points ~zj = (zj , z3,j), with

cross-range vector zj = (z1,j , z2,j) and range z3,j , and the mesh size is ~h = (h, h, h3). Our goal in this section

is to estimate ~h so that the `1 optimization problem (2.7) determines exactly the unknown sources supported
at ~zj for j ∈ S, a set of cardinality s.

We begin in section 3.1 with the scaling regime and the paraxial model of wave propagation. The
resolution limits are stated and illustrated with numerical simulations in sections 3.2 and 3.3. The setup of
the simulations is described in appendix A. The proofs are in section 3.4.

3.1. Scaling regime and the paraxial model. The scaling regime is defined by the relation between
the important length scales: the wavelength λ, the range scale L, the aperture a, and the size D and D3 of
the imaging region. We assume for now a single frequency ω, and refer to section 3.3 for the multi frequency
case where another important scale arises, the bandwidth B.

The scales are ordered as

λ� D � a� L, D3 � L, (3.1)

and satisfy the following assumptions

a2

λL
& 1,

a2

λL

D3

L
& 1, (3.2)

D2

λL
� 1,

a2

λL

aD

L2
� 1,

a2

λL

(
D3

L

)2

� 1,
a2

λL

( a
L

)2 D3

L
� 1. (3.3)

Roughly, conditions (3.3) say that the imaging region is small enough and far enough from the array, so that
we can linearize phases of the Green’s functions in ~zj , for all j = 1, . . . , N. Physically, this means that when
viewed from the imaging region, the wave fronts appear planar. The array aperture a is small with respect
to the distance L of propagation of the waves, but equations (3.2) say that the Fresnel number is large, so
we have diffraction effects.

We show in appendix B that

Mr∑
r=1

Ĝ(ω, ~xr,~zj)Ĝ(ω, ~xr,~zq) ≈
eik(z3,j−z3,q)

(4πL)2

Mr∑
r=1

e−ik
[ |xr|2(z3,j−z3,q)

2L2 +
xr·(zj−zq)

L

]
, (3.4)

where the bar denotes complex conjugate.
Remark 3.1. The terms eikz3 in (3.4) are highly oscillatory when k is large, but can be absorbed in

the vector of unknowns. This is convenient because it implies that when two points ~zj and ~zq are close to
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each other, the inner product of the j−th and q−th columns of the scaled sensing matrix is close to one.
Let Z be the diagonal matrix with jth entry eikz3,j , for j = 1, . . . , N , and rewrite the linear system (2.3) as
GZ (Z −1ρ) = d. To simplify the presentation we denote henceforth by G the new sensing matrix GZ and
by ρ the new unknown vector Z −1ρ, so that the scaled system looks the same as (2.3). The Green’s function
with the large phase removed is still denoted by Ĝ , and satisfies

Mr∑
r=1

Ĝ(ω, ~xr,~zj)Ĝ(ω, ~xr,~zq) ≈
1

(4πL)2

Mr∑
r=1

e−ik
[ |xr|2(z3,j−z3,q)

2L2 +
xr·(zj−zq)

L

]
. (3.5)

Assuming that the receivers are on a square grid of spacing hA , satisfying the scaling relations

hA �
λL

D
, hA �

λL2

aD3
, (3.6)

we see that the exponential in (3.5) is approximately constant in each grid cell in A. This allows us to use
the continuous aperture approximation in the analysis, where the sum over r can be replaced by the integral
over A = [−a/2, a/2]× [−a/2, a/2],

Mr∑
r=1

Ĝ(ω, ~xr,~zj)Ĝ(ω, ~xr,~zq) ≈
1

(4πLhA)2

∫
A
dx e−ik

[ |x|2(z3,j−z3,q)
2L2 +

x·(zj−zq)

L

]
. (3.7)

With our discretization the number of unknowns is N = (D/h)
2
D3/h3 and the problem is underdetermined

when the number of measurements M = Mr = (a/hA)
2

satisfies M < N or, equivalently,

hA > a
h

D

√
h3

D3
, (3.8)

which is consistent with (3.6) for h� D and h3 � D3.

3.2. Single frequency resolution limits. Using the paraxial model for our sensing matrix G, we
obtain from (3.7) and the definition of the cumulative coherence µ(G, s) that

µ(G, s) = max
j=1,...,N

max
|S|=s

∑
q∈S,q6=j

U
(z1,j − z1,q

H
,
z3,j − z3,q

H3

)
U
(z2,j − z2,q

H
,
z3,j − z3,q

H3

)
, (3.9)

where

H =
L

ka
=

λL

2πa
, H3 =

2L2

ka2
=
λL2

πa2
, (3.10)

and U(β, η) is the absolute value of the Fresnel integral

U(β, η) =

∣∣∣∣∣
∫ 1/2

−1/2

dt e−iβt−iηt
2

∣∣∣∣∣ . (3.11)

The search set of cardinality s is denoted by S, to distinguish it from the set of indexes of the true support
points of ρ, called calygraphic S.

As stated in Lemma 2.1, unique recovery of a sparse ρ with the `1 minimization (2.7) is guaranteed when
µ(G, s) < 1/2. This criterion allows us to estimate the resolution limit stated in the next two theorems.

Theorem 3.2. If the mesh size satisfies

h > h? =
2

π

λL

a
, h3 > h?3 =

16

π

λL2

a2
, (3.12)

`1 optimization recovers exactly two sources located at any distinct grid points.
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Fig. 3.2. Illustration of recovery of two imaging scenes discretized at base resolution (h?, h?, h?3). The results on the top
line are for 3 sources and on the bottom line for 20 sources. The distribution of the sources is displayed in the right column.
The left column shows a cross-section of the images. The range axis is in units of h?3 and the cross-range axis in units of h?.
The exact location of the sources is superposed on the images. They all have strength ρj = 1, for j ∈ S, and the magnitude of
the reconstruction is shown with the color bar.

We call the estimates h? and h?3 the “base resolution”. They are the same, up to order one constants, as the
well known resolution limits in array imaging [7]. We verified numerically the estimates (3.12) as follows.
To check the value of h?, we solved the optimization problem (2.7), as explained in appendix A, for data
corresponding to a vector ρ supported at any two grid points offset in cross-range. We determined the
smallest h so that the relative error between ρ and its numerical reconstruction was less than 1%. A similar
estimation was done for h?3, with ρ supported at points offset in range. The results were close to those in
Theorem 3.2: 0.46λL/a for h? and 3λL2/a2 for h?3.

The next result states that when there are more sources to estimate, the resolution limits deteriorate.
This is also illustrated in Figure 3.2, where we display images discretized at base resolution. The recon-
struction is perfect for 3 sources (top line), but not for 20 sources (bottom line). How the resolution limits
deteriorate with s depends on the distribution of the sources in the imaging region. Our estimate in the next
theorem accounts for worse case scenarios.

Theorem 3.3. There exists a constant C of order one such that if the mesh size satisfies the conditions

h/h?

h3/h?3
= 0(1) and

[( h
h?

)2 h3

h?3

]1/3

> Cs2/3, (3.13)

`1 optimization recovers exactly s sources located at any distinct grid points.

The isotropic dilation of the mesh in (3.13) is for convenience, but the result generalizes to anisotropic
dilations, where the mesh is stretched much more in one direction than the others. We refer to the proof in
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section 3.4.1 for details on the generalization. The resolution decrease with s predicted by Theorem 3.3 may
be traced to the slow decay with range offsets of the terms | 〈gj ,gk〉 | summed in µ(G, s). This is also why

h?3/h
? = 8L/a� 1.

Sources at different ranges may have strong interaction, hence they must be further apart in order to get
µ(G, s) < 1/2. In the next section we show that if the base range resolution improves, as it does with broad
band data, then there is almost no resolution loss with the sparsity s.

3.3. Broad band resolution limits. When we have Mω frequency measurements, the vector of un-
knowns is defined as in (2.6), and the rows of the sensing matrix G are indexed by the receiver-frequency
pair (r, j) ∈ {1, . . . ,Mr} × {1, . . . ,Mω}. Let ωo be the central frequency, so that

|ωj − ωo| . B, j = 1, . . . ,Mω, (3.14)

where B is the bandwidth assumed to satisfy the scaling relation

1 . max
{ D

λoL/a
,

D3

λoL2/a2

}
� ωo

B
�
(L
a

)2

. (3.15)

The lower bound says that ωo � B, so that ωo is the scale of all the measured frequencies ωj , for j = 1, . . .Mω.
The upper bound implies c/B � λoL

2/a2, where we recall from the previous section that λoL
2/a2 is, up

to a factor of order one, the base range resolution for single frequency measurements at ω = ωo. The next
theorem states that the base range resolution for multi frequency measurements is of order c/B, so (3.15)
implies a gain in range resolution.

Let us assume, for simplicity of the calculations, a Gaussian signal

f̂(ωj) = e−
(ωj−ωo)

2

4B2 . (3.16)

The results should extend to any signal with bandwidth B, with modifications of the constants in the bounds.
We show in appendix C that

Mω∑
j=1

Mr∑
r=1

|f̂(ωj)|2Ĝ(ωj , ~xr,~zq)Ĝ(ωj , ~xr,~zl) ≈
1

(4πL)2

Mω∑
j=1

e−
(ωj−ωo)

2

2B2 +i
(ωj−ωo)

c (z3,q−z3,l)×

Mr∑
r=1

e
−iko

[
|xr|2(z3,q−z3,l)

2L2 +
xr·(zq−zl)

L

]
, (3.17)

where ko = ωo/c is the central wavenumber, and we proceeded as in Remark 3.1 to absorb the large phases
eikoz3,q in the vector of unknowns. Assuming that the array is discretized on a mesh with spacing hA
satisfying (3.6), we approximate the sum over r by an integral over the aperture A, as in the previous
section. We also suppose that the frequencies ωj are spaced at intervals hω satisfying hω � c/D3, so that
we can write the sum over the frequencies as an integral over the bandwidth. Equation (3.17) becomes

Mω∑
j=1

Mr∑
r=1

|f̂(ωj)|2Ĝ(ωj , ~xr,~zq)Ĝ(ωj , ~xr,~zl) ≈
√

2πB

(4πLhA)2hω
e−

B2(z3,q−z3,l)
2

2c2 × (3.18)

∫
A
dx e

−iko

[
|x|2(z3,q−z3,l)

2L2 +
x·(zq−zl)

L

]
, (3.19)

and we can simplify it further by neglecting the quadratic phase in the integral over the aperture. This is
because

ko|x|2|z3,q − z3,l|
L2

. O
(koa2c

L2B

)
= O

(ωoa2

BL2

)
� 1,
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for range offsets in the support of order c/B of the Gaussian factor in (3.19). Integrating over the aperture
and normalizing, we arrive at the following model of the products of the columns of the sensing matrix G,

| 〈gq,gl〉 | = e
−

(z3,q−z3,l)
2

2(c/B)2

∣∣∣sinc
(z1,q − z1,l

2L/(koa)

)∣∣∣∣∣∣sinc
(z2,q − z2,l

2L/(koa)

)∣∣∣. (3.20)

These are the terms in the cumulative coherence µ(G, s), and the resolution limits are as stated next.

Theorem 3.4. Assume a sensing matrix G with inner products of the columns defined by (3.20). If the

mesh size ~h = (h, h, h3) satisfies

h > h? =
2

π

λoL

a
, h3 > h?3 =

√
2 ln 2

c

B
, (3.21)

`1 optimization recovers exactly any two sources on the grid. Moreover, there exists an order one constant
C > 1, independent of s, such that if

h

h?
,
h3

h?3
> C ln s, (3.22)

`1 optimization recovers exactly any s sources on the grid.

We call h? and h?3 the base resolution, as in the previous section. While the cross-range resolution h? is
the same as in the single frequency case, the base range resolution h?3 is significantly better. Moreover, there
is little loss of resolution at large s. The mesh size grows at most logarithmically with s, as opposed to s2/3

in the single frequency case. This agrees with the known fact in array imaging that bandwidth improves the
quality of images.

3.4. Proofs. The proofs of Theorems 3.2 and 3.3 which estimate the resolution in the single frequency
case are in section 3.4.1. The proof of the broad band result in Theorem 3.4 is in section 3.4.1.

3.4.1. Single frequency. We begin with some basic bounds on the Fresnel integral (3.12). The simplest
estimate is for η = 0, in which case

U(β, 0) =
∣∣∣sinc

(
β/2

)∣∣∣ ≤ min{1, 2/β}. (3.23)

For η 6= 0 we can change variables and rewrite (3.12) in the form

U(β, η) =
1
√
η

∣∣∣∣∣
∫ β+η

2
√
η

β−η
2
√
η

dt e−it
2

∣∣∣∣∣ ≤ 1
√
η

[∣∣∣∣∣
∫ β+η

2
√
η

0

dt
(

cos t2 − i sin t2
)∣∣∣∣∣+

∣∣∣∣∣
∫ β−η

2
√
η

0

dt
(

cos t2 − i sin t2
)∣∣∣∣∣
]

≤ 2
√

2
√
η
, (3.24)

for any η 6= 0 and β ≥ 0, where we used that∣∣∣ ∫ α

0

dt cos t2
∣∣∣ ≤ 1,

∣∣∣ ∫ α

0

dt sin t2
∣∣∣ ≤ 1, ∀α ∈ R.

The final estimate

U(β, η) =
1
√
η

∣∣∣∣∣
∫ β+η

2
√
η

β−η
2
√
η

dt eit
2

∣∣∣∣∣ ≤ π + 1

α
, for β > α+ η, ∀α, η > 0, (3.25)

follows from contour integration, as shown in appendix D.
Proof of Theorem 3.2: We wish to estimate h and h3 so that µ(G, 2) < 1/2. The cumulative coherence

for s = 2 is the same as the mutual coherence [17, 32], and in our case it takes the simple form

µ(G, 2) = max
~ζ∈Z3,~ζ 6=0

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
. (3.26)

9
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Fig. 3.3. Surface and top view display of the Fresnel integral U(β, η) for |β|, |η| ≤ 60. In the right plot abscissa is η and
the ordinate is β.

Here we used that the sources are on the grid and denote by ~ζ = (ζ1, ζ2, ζ3) vectors with integer components.
We display in Figure 3.3 the Fresnel integral U(β, η), and note that it is bounded above by 1, and larger

than 1/2 for ~ζ near the origin. When ζ3 = 0 we get from (3.23) that

U
(hζ1
H

, 0
)
U
(hζ2
H

, 0
)
≤ 2H

h
,

because at least one of ζ1 and ζ2 is not equal to zero. If ζ3 6= 0 we have by (3.24)

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ 8H3

h3
, ∀ ζ1, ζ2 ∈ Z.

Thus, µ(G, 2) is guaranteed to be less than 1/2 if h > 4H = h? and h3 > 16H3 = h?3. This concludes the
proof of Theorem 3.2. �

Proof of Theorem 3.3: Note from the expression (3.9) of the cumulative coherence that it is translation
invariant in R3. Thus, we can fix the origin at one source location and rewrite (3.9) as

µ(G, s) = max
|Λ|=s−1

∑
~ζ∈Λ

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
, (3.27)

where Λ ⊂ Z3 \ {0} is a set of cardinality s− 1. The proof of the theorem follows from the bound on µ(G, s)
stated in the next lemma and the relation h? = 4H and h?3 = 16H3 established above. The constant C in
the lemma is the same as in (3.13).

Lemma 3.5. There exists constants C, C1 and C2 of order one such that

max
|Λ|=s−1

∑
~ζ∈Λ

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ 25/3C

[
s2

(h/H)2h3/H3

]1/3

+

C1
H3

h3
ln s+ C2

(H
h

)2

ln2s. (3.28)

The assumption in Theorem 3.3 that the mesh is dilated in an isotropic fashion, and the relations H = h?/4
and H3 = h?3/16 established above imply[

s2

(h/H)2h3/H3

]1/3
H3

h3
ln s

=
s2/3

ln s

[(
h3

H3

)
/

(
h

H

)]2/3

= O

(
s2/3

ln s

)
,

10



and [
s2

(h/H)2h3/H3

]1/3
(
H
h

)2

ln2s
=
s2/3

ln2 s

h

H

[(
h

H

)
/

(
h3

H3

)]1/3

= O

(
s2/3

ln2s

h

H

)
.

Thus, the first term in the right hand side of (3.28) dominates the others for large s and h & h? = 4H, and
the result stated in Theorem 3.3 follows. For anisotropic dilations of the mesh the logarithmic terms in (3.28)
may become important. For example, when h3/H3 > (h/H)4s2/ ln6s, the last term in (3.28) dominates the
bound, and we can get a unique solution for a modest mesh stretch in the cross-range direction h/H = O(ln s)
at the expense of a very large stretch in range h3/H3 = O(s2/ ln2s).

Proof of Lemma 3.5: Let Λ? be the set on which the maximum in (3.27) is achieved. It is difficult to
determine Λ? explicitly, so we construct another set Λτ , which allows us to bound the cumulative coherence.
We use the behavior of the Fresnel integral U , shown in Figure 3.3, to guide us in the construction. We write
Λτ as the union of two sets Λ+

τ and Λ0
τ . The first set contains the left and right cones (in Figure 3.3 they are

defined by the diagonal lines |β| = |η|), where U displays a slower decay, as well as a vicinity of the origin

Λ+
τ =

{
~ζ ∈ Z3 s.t. 0 < |ζ3| ≤

τ

h3/H3
, |ζ1|, |ζ2| ≤

H

h

[
τ√

h3|ζ3|/H3

+
h3

H3
|ζ3|

]}
. (3.29)

The second set is for the points with ζ3 = 0,

Λ0
τ =

{
~ζ ∈ Z3 \ {0} s.t. |ζ1|, |ζ2| ≤

τ

h/H

}
. (3.30)

The parameter τ > 1 is used to control the volume of Λτ = Λ+
τ ∪Λ0

τ , so that it contains at least s grid points,

τ = min

{[
3s

8

( h
H

)2 h3

H3

]1/3

,
sh

H
,
sh3

H3

}
. (3.31)

The proof consists of two steps. First we derive the bound∑
ζ∈Λ?

U
(hζ1,q

H
,
h3ζ3,q
H3

)
U
(hζ2,q

H
,
h3ζ3,q
H3

)
≤
∑
ζ∈Λτ

Z(~ζ), (3.32)

where

Z(~ζ) =


2
√

2(π+1)H3

h3|ζ3| , if ~ζ ∈ Λ+
τ ,[

δζ1,0 +
2H(1−δζ1,0)

h|ζ1|

][
δζ2,0 +

2H(1−δζ2,0)

h|ζ2|

]
, if ~ζ ∈ Λ0

τ .
(3.33)

Then we estimate the sum in the right hand side of (3.32). To prove (3.32) we show:
(i) Λ+

τ contains at least s grid points.

(ii) For any ~ζ ∈ Λτ , we have

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
< Z(~ζ).

(iii) For any ~ζ /∈ Λτ ,

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ 2
√

2(π + 1)

τ
= min

~ζ∈Λ+
τ

Z(~ζ).

11



By showing (i), we establish that there are at least as many terms to sum on the right hand side of (3.32)

as on the left, and we can define a one to one map M : Λ? → Λτ , such that M (~ζ) = ~ζ if ~ζ ∈ Λ? ∩ Λτ and

M (~ζ) ∈ Λ+
τ if ~ζ ∈ Λ? \

(
Λ? ∩ Λτ

)
. Points (ii) and (iii) ensure that

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ Z(M (~ζ)), ∀~ζ ∈ Λ?,

from which (3.32) follows.

Proof of (i): This statement is trivial when τ = sh/H or τ = sh3/H3, because Λ+
τ has cardinality larger

than s, by definition. Thus, let τ =
[

3s
8

(
h
H

)2
h3

H3

]1/3
, and calculate the number sτ of grid points in Λ+

τ as

sτ =
∑
~ζ∈Λ+

τ

1 ≥
∑

ζ3∈Z,0<|ζ3|≤τH3/h3

[
2

⌊
H

h

(
τ√

h3|ζ3|/H3

+
h3

H3
|ζ3|

)⌋]2

≥ 4
(Hh3

hH3

)2 ∑
ζ3∈Z,0<|ζ3|≤τH3/h3

|ζ3|2

≥ 4
(Hh3

hH3

)2 2

3

(τH3

h3

)3

=
8

3

(H
h

)2H3

h3
τ3 ≥ s.

The first inequality is by definition of Λ+
τ . The factor 2 is due to the absolute values and b·c denotes the

integer part. The second inequality is because we omit one positive term in the sum. The third inequality
is by direct summation

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
>
n3

3
.

Again the factor 2 is due to the absolute values. The last inequality is by definition of τ . This concludes the
proof of (i).

Proof of (ii): This follows immediately from bounds (3.23) and (3.24).

Proof of (iii): We note from definition (3.33) of Z(~ζ) and (3.29) that

min
~ζ∈Λ+

τ

Z(~ζ) =
2
√

2(π + 1)

τ
.

Now consider an arbitrary ~ζ /∈ Λτ . Recalling definitions (3.29)-(3.30), we distinguish three cases:
1. If |ζ3| ≥ τH3

h3
we have by (3.24) that

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ 8

h3|ζ3|/H3
≤ 8

τ
<

2
√

2(π + 1)

τ
.

2. If ζ3 = 0 we can assume without loss of generality that |ζ1| > τ
h/H since at least one of ζ1 and ζ2 must

satisfy this condition. We obtain from (3.23) that

U
(hζ1
H

, 0
)
U
(hζ2
H

, 0
)
≤ 2

h|ζ1|/H
<

2

τ
<

2
√

2(π + 1)

τ
.

3. If 0 < |ζ3| ≤ τH3

h3
we can assume without loss of generality that

|ζ1| >
H

h

[
τ√

h3|ζ3|/H3

+
h3

H3
|ζ3|

]
,
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since at least one of ζ1 and ζ2 must satisfy this condition. Then

U
(
h

H
ζ1,

h3

H3
ζ3

)
≤ π + 1

τ

√
h3

H3
|ζ3|,

by estimate (3.25), and using (3.24) for the other Fresnel integral we get

U
(hζ1
H

,
h3ζ3
H3

)
U
(hζ2
H

,
h3ζ3
H3

)
≤ 2
√

2(π + 1)

τ
.

This concludes the proof of (3.32).
It remains to estimate the right hand side in (3.32),

∑
~ζ∈Λτ

Z(~ζ) =
2
√

2(π + 1)H3

h3

∑
~ζ∈Λ+

τ

1

|ζ3|
+
∑
~ζ∈Λ0

τ

[
δζ1,0 +

2H(1− δζ1,0)

h|ζ1|

][
δζ2,0 +

2H(1− δζ2,0)

h|ζ2|

]
. (3.34)

For the first sum we have by the definition (3.29) of Λ+
τ that

H3

h3

∑
~ζ∈Λ+

τ

1

|ζ3|
≤ H3

h3

∑
ζ3∈Z,0<|ζ3|≤H3τ

h3

1

|ζ3|

[
1 +

2H

h

(
τ√

h3|ζ3|/H3

+
h3

H3
|ζ3|

)]2

≤
∑

ζ3∈Z,0<|ζ3|≤H3τ
h3

{
16
(H
h

)2
[

τ2(
h3|ζ3|/H3

)2 +
h3

H3
|ζ3|

]
+

2H3

h3|ζ3|

}
.

Now using that

n∑
j=1

j ≤ n(n+ 1)

2
,

n∑
j=1

1

j2
≤ π2

6
,

n∑
j=1

1

j
≤ 1 + ln(j),

and substituting in the bound above, we get

H3

h3

∑
~ζ∈Λ+

τ

1

|ζ3|
≤ 8
(H
h

)2
[
τ +

τ2H3

h3

(
1 +

π2H3

3h3

)]
+

2H3

h3

[
1 + ln

(τH3

h3

)]
.

For the second sum in (3.34) we have∑
~ζ∈Λ0

τ

[
δζ1,0 +

2H(1− δζ1,0)

h|ζ1|

][
δζ2,0 +

2H(1− δζ2,0)

h|ζ2|

]
=
∑
~ζ∈Λ0

τ

[
δζ1,0(1− δζ2,0)

2H

h|ζ2|
+

δζ2,0(1− δζ1,0)
2H

h|ζ1|
+ (1− δζ1,0)(1− δζ2,0)

2H

h|ζ1|
2H

h|ζ2|

]
,

because we cannot have both ζ1 and ζ2 = 0. The first term is bounded as

∑
~ζ∈Λ0

τ

δζ1,0(1− δζ2,0)
2H

h|ζ2|
=

4H

h

bτH/hc∑
ζ=1

1

ζ
≤ 4H

h

[
1 + ln

(
τH/h

)]
,

and similar for the second term. For the last term we have

∑
~ζ∈Λ0

τ

(1− δζ1,0)(1− δζ2,0)
2H

h|ζ1|
2H

h|ζ2|
= 4
(2H

h

)2

bτH/hc∑
ζ=1

1

ζ

2

≤ 16H2

h2

[
1 + ln

(
τH/h

)]2
.
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Gathering the results we have for large s, and therefore large τ ,∑
~ζ∈Λτ

Z(~ζ) ≤ C̃
(H
h

)2H3

h3
τ2 + C̃1

H3

h3
ln τ + C̃2

(
H

h

)2

ln2τ, (3.35)

with constant C̃ close to 16
√

2(π + 1), C̃1 close to 2 and C̃2 close to 16. Here we used the expectation that
h > h? = 4H and h3 > h?3 = 16H. To finish the proof of the Lemma we obtain from definition (3.31) of τ
that

H3

h3
ln τ ≤

ln
(
sh3/H3

)
h3/H3

≤ ln s

h3/H3
+ e−1,

and similarly for H/h ln τ , where we used that lnx/x attains its maximum over the interval [1,∞) at
x = e. Moreover, we note that the first term in (3.35) is negligible in comparison with the others unless

τ =
[

3s
8

(
h
H

)2
h3

H3

]1/3
. Substituting this expression of τ in the first term and using that s is large, we get

Lemma 3.5 with constant C close to (3/2)2/3(π + 1), C1 close to C̃1 and C2 close to C̃2. This concludes the
proof of Theorem 3.3. �

3.4.2. Broad band. The proof of Theorem 3.4 is similar to that of Theorems 3.2 and 3.3, with modi-
fications that account for the faster decay with the range offset of the inner products (3.20) of the columns
of the sensing matrix.

Using the translation invariance of (3.20) and writing explicitly that the points ~zq are on the grid, we
can write the cumulative coherence as

µ(G, s) = max
|Λ|=s−1

∑
~ζ∈Λ

e−
(
h3|ζ3|
H3

)2∣∣∣sinc
(h|ζ1|
H

)∣∣∣∣∣∣sinc
(h|ζ2|
H

)∣∣∣. (3.36)

Here Λ ∈ Z3 \ {0} is a set of cardinality s− 1, as before, and we introduced the notation

H3 =

√
2c

B
, H =

2L

koa
.

To derive the base resolution limits, let s = 2 in (3.36) and observe that

e−
(
h3|ζ3|
H3

)2 ∣∣∣sinc
(h|ζ1|
H

)∣∣∣∣∣∣sinc
(h|ζ2|
H

)∣∣∣ ≤ e−(h3|ζ3|H3

)2
, for ζ3 6= 0, (3.37)

uniformly in ζ1, ζ2 ∈ Z, and when ζ3 = 0,∣∣∣sinc
(h|ζ1|
H

)∣∣∣∣∣∣sinc
(h|ζ2|
H

)∣∣∣ ≤ [δζ1,0 +
1− δζ1,0
h|ζ1|/H

][
δζ2,0 +

1− δζ2,0
h|ζ2|/H

]
. (3.38)

Thus, µ(G, 2) < 1/2 when H/h < 1/2 and e−h
2
3/H

2
3 < 1/2 or, equivalently, when

h > 2H = h? and h3 >
√

ln(2)H3 = h?3, (3.39)

as stated in equation (3.21) of Theorem 3.4.
To prove the second statement of Theorem 3.4, for large s, we use assumption (3.22) and the relation

(3.39) to write

h

H
,
h3

H3
> β := C̃ ln s, (3.40)

for a constant C̃ that is slightly larger than C. We also define Z : Z3 → R by

Z(~ζ) = e−β
2ζ23

[
δζ1,0 +

1− δζ1,0
β|ζ1|

][
δζ2,0 +

1− δζ2,0
β|ζ2|

]
, (3.41)
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and using (3.40) in (3.36) we get

µ(G, s) ≤ max
|Λ|=s−1

∑
~ζ∈Λ

Z(~ζ). (3.42)

Now let Λ? denote the maximizing set in (3.42). We do not know it explicitly, but we can define a
one-to-one mapping from Λ? to another set Λβ which allows us to bound µ(G, s). The construction of the
set

Λβ =
{
~ζ ∈ Z3 \ {0} s.t. Z(~ζ) ≥ 1

βs

}
, (3.43)

is motivated by the rapid decay in range of the terms in the sum in (3.36). Explicitly, we note that when
~ζ ∈ Λβ we have ζ3 = 0 because if this were not true, definition (3.41) would give

Z(~ζ) ≤ e−β
2ζ23 ≤ e−β

2

≤ e−2β < e− ln(βs) =
1

βs
.

Here we assumed β > 2, which is consistent with (3.40) for large s, and since β > lnβ, we also have
2β > ln(β) + ln s = ln(βs).

Let Λjβ be the intersection of Λβ with the ζj axis, for j = 1, 2. Then, the cardinality |Λβ | of the set Λβ
satisfies

|Λβ | ≥ |Λ1
β |+ |Λ2

β | = 4s,

because by definition (3.43), ζj ∈ Λjβ means that |ζj | ≤ s, for j = 1, 2. Thus, there are at least 4s points
in Λβ , and we can define a one to one mapping from the maximizing set Λ? to Λβ . Moreover, since for any
~ζ /∈ Λβ we have Z(~ζ) < 1/(βs) we conclude from (3.42) that

µ(G, s) ≤
∑
~ζ∈Λβ

Z(~ζ).

To bound the right hand side in this equation, note from definitions (3.41) and (3.43) that Λβ is contained
in the punctured disk Ds of radius s,

Ds =
{
~ζ ∈ Z3 \ {0} s.t. ζ3 = 0, |ζ1|, |ζ2| ≤ s

}
,

and obtain

µ(G, s) ≤
∑
~ζ∈Ds

Z(~ζ) =

2∏
j=1

∑
|ζj |≤s

[
δζj ,0 +

1− δζj ,0
β|ζj |

]
−Z(0) ≤

[
1 +

2

β

(
1 + ln s

)]2

− 1

=
4 ln s

β
+

4 ln2s

β2
=

4 ln s

β
+

4

β
+

[
2

β
(1 + ln s)

]2

.

The proof of Theorem 3.4 is completed with the observation that we can make the bound in this estimate
less than 1/2 by choosing the constant C̃ in (3.40) large enough, independent of s. �

4. Imaging on fine grids. The resolution estimates in Theorems 3.2-3.4 do not account for noise
and modeling errors due to off-grid placement of the sources, which may be large for coarser discretizations
required by the theorems. In this section we mitigate the modeling error by discretizing the imaging region
on a fine mesh, and then study the results of the `1 optimization. As the results in the previous section
shows it is impossible to have a meaningful answer for arbitrary distributions of the sources. However,
if they are located at points or clusters of points that are sufficiently far apart, the results are useful, as
illustrated in Figure 4.1. In the left image we display the result of the optimization for a discretizations of
the imaging region at the base resolution ~h? defined in Theorem 3.2. If the sources were on the grid, the
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Fig. 4.1. Effect of modeling error due to sources off-grid. From left to right: Image discretized at base resolution, at 1/2
base resolution and 1/4 base resolution.

reconstruction would have been perfect. Here the sources are off-grid, and the reconstruction is poor due
to the modeling error. The result is better in the other two plots because the modeling error is reduced by
taking a smaller mesh size. While in general a discretization at 1/4 ~h? does not guarantee a good recovery,
here the result is good because the sources are far apart, and thus have little interaction. The analysis in
this section formalizes this observation. We point the reader to [20] for a different study of similar ideas, and
algorithms designed to take advantage of the weak interaction between the sources. Here we study directly
the optimization problems (2.7) and (2.9) and consider in addition clusters of sources.

We begin in section 4.1 with the statement of results for well separated sources and then consider clusters
of sources in section 4.2. The proofs are in section 4.3.

4.1. Statement of results for well separated sources. Let us modify the notation slightly, and
call g~y the normalized vector of Green’s functions taking us from the array to the point ~y in the imaging
region. When ~y is a point ~zj on the grid, then g~y is the same as gj defined before, and we have the simpler
notation gj ≡ g~zj . We quantify the interaction between two sources located at ~y and ~y′ in the imaging

region W by the value of
∣∣∣ 〈g~y,g~y′〉 ∣∣∣. Explicitly, in terms of the semi-metric D : W ×W → [0, 1],

D(~y, ~y′) = 1−
∣∣∣ 〈g~y,g~y′〉 ∣∣∣, ∀ ~y, ~y′ ∈W, (4.1)

that defines the open ball

Br(~y) =
{
~y′ ∈ R3 s.t. D(~y, ~y′) < r

}
, (4.2)

we say that points ~y′ outside Br(~y) have a weaker interaction with ~y than the points in the ball,∣∣∣ 〈g~y,g~y′〉 ∣∣∣ ≤ 1− r, ∀ ~y′ /∈ Br(~y). (4.3)

In these definitions it does not matter if we have single or multiple frequency measurements∗. In both cases

we know from the previous section that
∣∣∣ 〈g~y,g~y′〉 ∣∣∣ is a function of ~y − ~y′ which peaks at the origin, and is

monotonically decreasing in its vicinity. This means that there exists a small enough r̄ such that if r < r̄
and ~y′ ∈ Br(~y), ~y and ~y′ are close in Euclidian distance.

Suppose that we have s sources in the imaging region W , supported at points in the set Y = {~yj , j =

1, . . . s}, and discretize W on a grid with N points ~zj and mesh size ~h that is as small as needed to mitigate
the modeling error. We define the interaction coefficient of the set Y by

I(Y) = max
q=1,...,N

∑
~yj∈Y\{N (~zq)}

∣∣∣ 〈g~yj ,gq〉 ∣∣∣, (4.4)

∗The theory applies to both single frequency and multiple frequency measurements, but the numerical simulations are for
a single frequency.
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where N (~zq) is the closest point to ~zq in Y, with respect to semi-metric D . Here it is possible to make
I(Y) independent of the mesh by replacing the maximum with supremum over the imaging window which
is an open subset of R3. Note that I(Y) is similar to the cumulative mutual coherence µ(G, s), except that
the set Y is fixed and the points in it may not be on the grid. Note also that I(Y) is well defined even when
there are multiple points in Y that are closest to ~zq. In such cases we let N (~zq) be any one of these points
without affecting the value of I(Y).

The next two theorems describe the support of the `1 minimizer. Theorem 4.1 and its corollary are for
formulation (2.7) of the optimization problem, which assumes an exact model. Theorem 4.3 is for formulation
(2.9) which accounts for noise and modeling error.

Theorem 4.1. Suppose that the unknown sources are supported on the fine grid at points ~zj enumerated
by the set S of cardinality s, and are represented by the s-sparse vector ρ ∈ CN , satisfying Gρ = d. The
sources are assumed sufficiently far apart so that for some r ∈ (0, 1) the balls Br(~zj) are disjoint. Let ρ? be
the solution of the optimization problem (2.7) and decompose it as

ρ? = ρ
(i)
? + ρ

(o)
? , (4.5)

where suppρ
(i)
? ⊂

⋃
j∈S
Br(~zj), and ρ

(o)
? is supported in the complement of this union. Then,

‖ρ(o)
? ‖1 ≤

2I(Y)

r
‖ρ?‖1. (4.6)

This theorem says that when the interaction coefficient I(Y) is smaller than r/2, the support of the
optimal ρ? is concentrated in the vicinity of the sources. The next corollary quantifies the error of the
reconstruction.

Corollary 4.2. Under the same assumptions as in Theorem 4.1, the error of the reconstruction is
quantified by

‖ρ− ρ̄?‖1 ≤
2I(Y)

r
‖ρ‖1, (4.7)

where ρ̄? is the effective source vector in CN with j−th component given by

ρ̄?j =


∑
q∈Sj

ρ
(i)
?q 〈gj ,gq〉 , for j ∈ S,

0, for j /∈ S,
(4.8)

where ρ
(i)
?q denotes the q−th component of ρ

(i)
? and Sj is the set† of indexes of the grid points supported in

Br(~zj).
Note that ρ̄? is an s-sparse vector of the same support S as ρ, but with entries given by the “weighted”

sum of the components of ρ
(i)
? supported in the vicinity of each source. When the radius r is small, the

complex weights 〈gj ,gq〉 are close to one, and ρ̄?j is approximately the sum of the components of ρ
(i)
?

supported in Sj . Furthermore, (4.7) implies that when 2I(Y)
r is sufficiently small such that the right hand

side of (4.7) is less than minj∈S{|ρj |} , ρ? has a non-zero component in the r-neighborhood of every source
location.

The statements of Theorem 4.1 and Corollary 4.2 are already illustrated in the right plot of Figure 4.1.
Additional examples are in Figure 4.2, where we show numerical reconstructions for two sources (left plot)
and five sources (right plot). We display the balls Br(~yj) in green, and the entries in ρ? with stars of size
proportional to their magnitude. In the left plot (see also the zoom in Figure 4.3) the sources have weak

interaction I(Y) = 0.086, and for r = 0.009 we have ‖ρ(o)
? ‖1/‖ρ?‖1 = 2.4% and ‖ρ − ρ̄?‖1/‖ρ‖1 = 18%.

†Note that the set Sj depends on r, but for simplicity we suppress the dependence in the notation.
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Fig. 4.2. Reconstructions of two sources (left) and five sources (right). The support of ρ? is indicated with a star of size
proportional to its magnitude. The balls Br(~yj) are drawn in green. The radius is 0.009 in the left plot and 0.11 in the right
plot. The axes are range and cross-range in units of base resolution h?3 and h?.

Fig. 4.3. Zoom of the image displayed in the left plot of Figure 4.2 around one of the sources shown with a blue square.

For r = 0.005 the error drops to 1.14%, however ‖ρ(o)
? ‖1/‖ρ?‖1 grows to 19%. That is to say, roughly 80%

of the amplitude of the reconstruction ρ? is accumulated very close near the sources. In the right plot the

interaction coefficient is larger I(Y) = 1.43, but the reconstruction is still good, ‖ρ(o)
? ‖1/‖ρ?‖1 = 0.5% and

‖ρ− ρ̄?‖1/‖ρ‖1 = 10% for r = 0.11.

Note that in both simulations the support of the reconstruction is much better than predicted by Theorem
4.1, which gives a pessimistic bound for r > 2I(Y). A sharper estimate may be obtained under the additional
assumption that all the entries in ρ are positive, by taking advantage of cancellations of the oscillatory terms
in the sums analyzed in the proof of the theorem in section 4.3.1. However, this is difficult to do without
making strong assumptions on the geometric distribution of the sources in the imaging region.

The next theorem considers the more general case of an inexact model, due to noisy data and sources
off the grid, and uses the `1 penalty formulation (2.9). The result is stronger than in Theorem 3.2, as it
states that the minimizer ρ? is exactly supported in the vicinity of the sources, for large enough penalty
parameter γ. This is somewhat expected, as increasing γ in (2.9) means putting more emphasis on having
a smaller `1 norm i.e., a sparser solution. What is interesting is that the support of this sparse solution is
guaranteed to be near that of the unknown sources. However, increasing γ comes at the cost of a larger
residual ‖Gρ? − d‖2, and there is no guarantee that the error of recovery of ρ is small, as in Corollary 4.2.

Theorem 4.3. Consider s sources supported in the set Y = {~yj , j = 1, . . . , s}, with interaction
coefficient I(Y) < 1/2, so that we can find an r ∈ (0, 1) satisfying r > 2I(Y). Then, for sufficiently large
penalty parameter γ, that depends on the noise and modeling error, the minimizer ρ? of (2.9) is supported
in
⋃s
j=1 Br(~yj).
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Fig. 4.4. Numerical simulation for two clusters of sources. The support of ρ? is indicated with a star of size proportional
to its magnitude. The balls Br of radius r = 0.017 are drawn in green. The axes are range and cross-range in units of base
resolution h?3 and h?.

4.2. Statement of results for clusters of sources. Here we give the generalization of Theorem 4.1
to clusters of sources. We assume for simplicity, as in Theorem 4.1, that the sources are on the grid. The
result extends to sources off the grid by modifying the proof of Theorem 4.3.

Let us define the effective support Sε ⊂ S of ρ ∈ CN , for some ε ∈ (0, 1), so that

Y = {~y1, . . . , ~ys} = {~zj , j ∈ S} ⊂
⋃
q∈Sε

Bε(~zq), (4.9)

where

Bε(~zq) ∩ Bε(~zl) = ∅ ∀ l, q ∈ Sε, l 6= q.

More explicitly, we cover the set Y of locations of the sources with disjoint balls of radius ε, centered at
points in Sε. The set Sε is the support of the effective source vector ρ̄, with entries defined similarly to (4.8)

ρ̄j =


∑

q∈S∩Bε(~zj)

ρq 〈gq,gj〉 , for j ∈ Sε,

0, otherwise,

(4.10)

Obviously ρ̄ depends on ε, but we suppress the dependence in the notation. When ε � 1, meaning that
the sources are tightly clustered around the points in Sε, the effective source is approximately the sum of
the entries of ρ supported in the cluster. When ε is larger the complex weights in (4.10) can be far from
one and oscillatory, so there may be a lot of cancellations in the sum in (4.10). Cancellations (destructive
interference of sources) can arise for tight clusters as well, when the entries in ρ in a cluster have opposite
signs.

The result stated in the next theorem says that if the clusters are far apart and there is little destructive
interference of the sources in the cluster, the support of the optimizer ρ? of (2.7) is concentrated near the
sources.

Theorem 4.4. Suppose that the unknown sources are supported on the grid at points enumerated by
the set S, and that there is an ε ∈ (0, 1) for which we can define the effective support Sε. Let ρ? be the

`1 minimizer of (2.7) and decompose it as ρ = ρ
(i)
? + ρ

(o)
? , where ρ

(i)
? is supported in the disjoint union⋃

j∈Sε Br(~zj), for r satisfying ε < r < 1, and ρ
(o)
? is supported in the complement of this union. We have

‖ρ(o)
? ‖1 ≤

2I(Yε)
r
‖ρ?‖1 +

‖ρ‖1 − ‖ρ̄‖1
r

, (4.11)

where Yε = {~zj , j ∈ Sε} is assumed to satisfy I(Yε) < 1.

The assumption I(Yε) < 1 is used in the proof, but for the estimate (4.11) to be useful we need
I(Yε) < r/2 < 1/2. This is because by definition (4.10) of ρ̄ we have ‖ρ̄‖1 ≤ ‖ρ‖1 and the bound is larger
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than ‖ρ?‖1 for I(Yε) > r/2. As before, the estimate in the theorem is pessimistic. The numerical results
are better, as illustrated by the simulation in Figure 4.4. There are five sources with amplitude equal to
one, and locations indicated in the plot with blue squares. One source is isolated and the other four form a
cluster, so Sε has cardinality two. The interaction coefficient of the set Y is large, I(Y) = 3.02, because of
the cluster, but I(Yε) = 0.096. The balls shown with green in the figure are for r = 0.017, and the entries

in ρ? are indicated with stars of size proportional to the magnitude. The error is ‖ρ(o)
? ‖1/‖ρ?‖1 = 0.54%.

The restriction of ρ? to the ball containing the cluster has l1 norm 2.3. The restriction to the other ball has
norm 0.96, which is close to the amplitude of the isolated source.

4.3. Proofs. We begin in section 4.3.1 with the proofs of Theorem 4.1 and its Corollary 4.2. Theorem
4.4 for clusters of sources is proved in section 4.3.2. The proofs of Theorems 4.1 and 4.4 are similar but the
proof of Theorem 4.3 for `1 penalty reconstructions is more involved. We present it in section 4.3.3.

4.3.1. `1 optimal reconstructions of well separated sources. Theorem 4.1 and its corollary as-
sume an exact model, with well separated sources on the grid, at points indexed by S. Recall that Sq is
the set that enumerates the grid points supported in Br(~zq), for q ∈ S. The balls Br(~zq) are disjoint by

assumption, so each nonzero entry in ρ
(i)
? is contained in exactly one ball and

suppρ
(i)
? =

⋃
q∈S

Sq.

By definition of ρ? we have Gρ = Gρ? or more explicitly,∑
q∈S

ρqgq =
∑
q∈S

∑
j∈Sq

ρ
(i)
?j gj +

∑
j∈S c

ρ
(o)
?j gj , (4.12)

where we denote the support of ρ
(o)
? by S c = {1, . . . , N}\

⋃
j∈S

Sj . The proof of the theorem and its corollary

amounts to estimating the inner products of the left and right sides of equation (4.12) with a carefully chosen
vector u, as shown next.

Proof of Theorem 4.1: Let us define the vector

u =
∑
q∈S

sign(ρq)gq, (4.13)

where “sign” denotes the complex sign function, and take the inner product of u with the left and right
hand side in (4.12). We obtain

TL :=
∣∣∣∑
q∈S

ρq 〈gq,u〉
∣∣∣ =

∣∣∣∑
q∈S

∑
j∈Sq

ρ
(i)
?j 〈gj ,u〉+

∑
j∈S c

ρ
(o)
?j 〈gj ,u〉

∣∣∣ =: TR, (4.14)

where obviously the left hand side TL equals the right hand side TR. We distinguish them here so we can
bound them separately below and above.

For TL we have

TL =
∣∣∣∑
q∈S

[
ρq sign(ρq) + ρq

∑
j∈S,j 6=q

sign(ρj) 〈gq,gj〉
∣∣∣

=
∣∣∣∑
q∈S

[
|ρq|+ ρq

∑
j∈S,j 6=q

sign(ρj) 〈gq,gj〉
∣∣∣

≥
∑
q∈S
|ρq| −

∑
q∈S
|ρq|

∑
j∈S,j 6=q

|〈gq,gj〉| ,

where we used the definition of the sign function and the triangle inequality. Since∑
j∈S,j 6=q

|〈gq,gj〉| ≤ max
q∈S

∑
j∈S,j 6=q

|〈gq,gj〉| ≤ max
q=1,...,N

∑
j∈S,j 6=q

|〈gq,gj〉| = I(Y),
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and ρ is supported on S, we get

TL ≥ ‖ρ‖1
[
1− I(Y)

]
. (4.15)

For TR we have by definition (4.13) of u that

TR =
∣∣∣∑
q∈S

∑
j∈Sq

ρ
(i)
?j

[
sign(ρq) 〈gj ,gq〉+

∑
l∈S,l 6=q

sign(ρl) 〈gj ,gl〉
]

+
∑
j∈S c

∑
l∈S

ρ
(o)
?j sign(ρl) 〈gj ,gl〉

∣∣∣
and using the triangle inequality

TR ≤
∑
q∈S

∑
j∈Sq

|ρ(i)
?j | |〈gj ,gq〉|+

∑
q∈S

∑
j∈Sq

|ρ(i)
?j |

∑
l∈S,l 6=q

|〈gj ,gl〉|+
∑
j∈S c

|ρ(o)
?j |
∑
l∈S

| 〈gj ,gl〉 |. (4.16)

In the first term in (4.16) we have

1− r < | 〈gj ,gq〉 | ≤ 1,

because j ∈ Sq. In the second term ∑
l∈S,l 6=q

|〈gj ,gl〉| ≤ I(Y),

by definition (4.4) of the interaction coefficient and the fact that ~zq is the closest source point to ~zj . To
bound the third term in (4.16), recall that N (~zj) is the closest source point to ~zj , for j ∈ S c. Its distance
from ~zj satisfies D(~zj ,N (~zj)) ≥ d, by definition of S c, and therefore

|
〈
gj ,gN (~zj)

〉
| ≤ 1− r.

Moreover, ∑
l∈S,~zl 6=N (~zj)

| 〈gj ,gl〉 | ≤ I(Y),

so in the third sum in (4.16) we have∑
l∈S

| 〈gj ,gl〉 | ≤ ‖ρ(o)
? ‖1

[
1− r + I(Y)

]
, ∀ j ∈ S c.

Thus, the bound on TR becomes

TR ≤ ‖ρ(i)
? ‖1

[
1 + I(Y)

]
+ ‖ρ(o)

? ‖1
[
1− r + I(Y)

]
. (4.17)

To complete the proof use that ‖ρ?‖1 = ‖ρ(i)
? ‖1 +‖ρ(o)

? ‖1 in (4.17) and obtain from equations (4.14) and
(4.15) that

‖ρ?‖1
[
1− I(Y)

]
≤ ‖ρ‖1

[
1− I(Y)

]
≤ ‖ρ?‖1

[
1 + I(Y)

]
− r‖ρ(o)

? ‖1.

The first inequality is because ρ? is the `1 minimizer in (2.7). Statement (4.6) follows from this equation. �
Proof of Corollary 4.2: We start with equation (4.12) and take inner product with vector

u =
∑
q∈S

σqgq, σq = sign(ρq − ρ̄?q). (4.18)

We obtain

TL :=
∣∣∣∑
q∈S

ρq 〈gq,u〉 −
∑
q∈S

∑
j∈Sq

ρ
(i)
?j 〈gj ,u〉

∣∣∣ =
∣∣∣ ∑
j∈S c

ρ
(o)
?j 〈gj ,u〉

∣∣∣ =: TR, (4.19)
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and proceed as in the previous proof by bounding both sides of this equation.
For TL we have

TL =
∣∣∣∑
q∈S

σq(ρq − ρ̄?q) +
∑
q∈S

ρq
∑

j∈S,j 6=q

σj 〈gq,gj〉 −
∑
q∈S

∑
j∈Sq

ρ
(i)
?j

∑
l∈S,l 6=q

σl 〈gj ,gl〉
∣∣∣,

where we used definition (4.8) of the components of ρ̄?. We bound it as

TL ≥
∑
q∈S
|ρq − ρ̄?q| −

∑
q∈S
|ρq|

∑
j∈S,j 6=q

| 〈gq,gj〉 | −
∑
q∈S

∑
j∈Sq

|ρ(i)
?j |

∑
l∈S,l 6=q

| 〈gj ,gl〉 |

≥ ‖ρ− ρ̄?‖1 −
(
‖ρ‖1 + ‖ρ(i)

? ‖1
)
I(Y), (4.20)

using the triangle inequality and the definition of σq and I(Y).
For TR we have by definition (4.18) of u and the triangle inequality that

TR ≤
∑
j∈S c

|ρ(o)
?j | |

〈
gj ,gN (~zj)

〉
|+

∑
j∈S c

|ρ(o)
?j |

∑
q∈S,~zq 6=N (~zj)

| 〈gj ,gq〉 |.

The right hand side in this equation can be bounded as in the proof of Theorem 4.1, and the result is

TR ≤ ‖ρ(o)
? ‖1

[
1− r + I(Y1)

]
. (4.21)

Now equations (4.19)-(4.21) give

‖ρ− ρ̄?‖1 ≤
(
‖ρ‖1 + ‖ρ(i)

? ‖1
)
I(Y) + ‖ρ(o)

? ‖1
[
1− r + I(Y1)

]
=
(
‖ρ‖1 + ‖ρ?‖1

)
I(Y) + ‖ρ(o)

? ‖1(1− r)

≤
(
‖ρ‖1 + ‖ρ?‖1

)
I(Y) + ‖ρ?‖1

2(1− r)I(Y)

r
,

with the last inequality due to Theorem 4.1. Corollary 4.2 follows from this inequality and ‖ρ?‖1 ≤ ‖ρ‖1. �

4.3.2. `1 optimal reconstructions of clusters of sources. The proof of Theorem 4.4 is a slight
modification of that in section 4.3.1. We begin by defining the index map Jε : S → Sε that takes any j ∈ S
to Jε(j), the index of the point in Sε at the center of the ball containing ~zj i.e., ~zj ∈ Bε(~zJε(j)). Obviously,
the restriction of Jε on S ∩ Sε is the identity map.

Using the definition of ρ? and its decomposition in ρ
(i)
? and ρ

(o)
? we obtain the equivalent of equation

(4.12) ∑
q∈S

ρqgq =
∑
q∈Sε

∑
j∈Sq

ρ
(i)
?j gj +

∑
j∈S c

ε

ρ
(o)
?j gj , (4.22)

where S c
ε = {1, . . . , N} \

⋃
q∈Sε

Sq. We take the inner product of both sides of this equation with vector

u =
∑
q∈Sε

σqgq, σq = sign(ρ̄q), (4.23)

and get

TL :=
∣∣∣∑
q∈S

ρq 〈gq,u〉
∣∣∣ =

∣∣∣ ∑
q∈Sε

∑
j∈Sq

ρ
(i)
?j 〈gj ,u〉+

∑
j∈S c

ε

ρ
(o)
?j 〈gj ,u〉

∣∣∣ =: TR, (4.24)

where TL and TR denote the left and right hand side of the equation, as before.
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For TL we have

TL =
∣∣∣ ∑
q∈Sε

σq
∑

j∈S∩Bε(~zq)

ρj 〈gj ,gq〉+
∑
q∈Sε

σq
∑

j∈S,~zj /∈Bε(~zq)

ρj 〈gj ,gq〉
∣∣∣

=
∣∣∣ ∑
q∈Sε

|ρ̄q|+
∑
q∈Sε

σq
∑

j∈S,~zj /∈Bε(~zq)

ρj 〈gj ,gq〉
∣∣∣

≥
∑
q∈Sε

|ρ̄q| −
∑
j∈S
|ρj |

∑
q∈Sε,q 6=Jε(j)

| 〈gj ,gq〉 |

≥
∑
q∈Sε

|ρ̄q| −
∑
j∈S
|ρj |I(Yε).

The equality in the second row is by definition (4.10) of the effective source vector ρ̄ and definition (4.22)
of σq. The bound in the third row is by the triangle inequality and in the last row by definition of I(Yε).
Thus, the left hand side of (4.24) satisfies

TL ≥ ‖ρ̄‖1 − ‖ρ‖1I(Yε). (4.25)

For the right hand side TR we have from the definition of u and the triangle inequality

TR =
∣∣∣ ∑
q∈Sε

∑
j∈Sq

ρ
(i)
?j

[
σq 〈gj ,gq〉+

∑
l∈Sε,l 6=q

σl 〈gj ,gl〉
]

+
∑
j∈S c

ε

ρ
(o)
?j

∑
l∈Sε

σl 〈gj ,gl〉
∣∣∣

≤
∑
q∈Sε

∑
j∈Sq

|ρ(i)
?j |
[
| 〈gj ,gq〉 |+

∑
l∈Sε,l 6=q

| 〈gj ,gq〉 |
]

+
∑
j∈S c

ε

|ρ(o)
?j |

∑
l∈Sε

| 〈gj ,gl〉 |.

In the first term we can only say that | 〈gj ,gq〉 | ≤ 1, because the points indexed by Sq are all clustered
around ~zq. The sum in the second term is bounded by the interaction coefficient of the set Yε, and for the
last term we have∑

j∈S c
ε

|ρ(o)
?j |

∑
l∈Sε

| 〈gj ,gl〉 | =
∑
j∈S c

ε

|ρ(o)
?j |
[
|
〈
gj ,gJε(j)

〉
|+

∑
l∈Sε,l 6=Jε(j)

| 〈gj ,gl〉 |
]

≤
∑
j∈S c

ε

|ρ(o)
?j |
[
1− r + I(Yε)

]
.

The upper bound on TR becomes

TR ≤ ‖ρ(i)
? ‖1

[
1 + I(Yε)

]
+ ‖ρ(o)

? ‖1
[
1− r + I(Yε)

]
= ‖ρ?‖1

[
1 + I(Yε)

]
− r‖ρ(o)

? ‖1,

and substituting it in (4.24) and using (4.25), we get after some rearrangement

‖ρ̄‖1 − ‖ρ‖1 + |ρ‖1
[
1− I(Yε)

]
≤ ‖ρ?‖1

[
1 + I(Yε)

]
− r‖ρ(o)

? ‖1. (4.26)

The statement of Theorem 4.4 follows from this, the assumption that I(Yε) ≤ 1 and ‖ρ?‖1 ≤ ‖ρ‖1. �

4.3.3. `1 penalty reconstructions of well separated sources. Before giving the proof of Theorem
4.3, let us introduce some notation. The sources are at points in Y = {~yq, q = 1, . . . , s} which may be
off-grid, and we let S be the set of indexes of the grid points in the r−vicinity of the sources, so that

~zj ∈
s⋃
q=1

Br(~yq), ∀ j ∈ S . (4.27)

The complement of the set S is S c = {1, . . . , N} \ S . For any vector u ∈ CN , we denote by uS its
restriction to the set S . This is a vector of length |S | < N . We also let GS be the M × |S | matrix with
|S | columns gj , for j ∈ S , and denote by PS the orthogonal projection on the range of GS . It is given by

PS = GS G†S , (4.28)
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where † denotes the pseudo-inverse.
The proof of Theorem 4.3 is based on the next two lemmas. The first uses results in convex analysis,

specifically the sub-gradient of a convex function, defined in [28]. We need here the sub-gradient of the `1
norm function evaluated at u ∈ CN , which is shown in [32] to be any vector in the set

∂‖u‖1 = {ξ ∈ CN s.t. ξi = sign(ui) if ui 6= 0 and |ξi| ≤ 1 if ui = 0}. (4.29)

The second lemma estimates the Lagrange multiplier γ needed to prove the theorem.
Lemma 4.5. Let ρ? minimize the augmented Lagrangian L (ρ) defined in (2.9), over vectors supported

in S , with ρ?S its restriction to S . Then, there exists a sub-gradient vector ξ ∈ ∂‖ρ?S ‖1 such that

GH
S
GS

(
ρ?S − G†S d

)
+ γξ = 0, (4.30)

where the index H denotes the Hermitian adjoint of GS , a matrix in C|S |×N . Moreover, if we let S ⊂ S be
the set of s grid points that are nearest the locations ~yj of the s sources, we get

GH
S
GS

(
ρ?S − G†S d

)
+ γξS = 0. (4.31)

Proof: For any ρ supported in S we have ‖ρ‖1 = ‖ρS ‖1, and using Pythagora’s theorem

‖Gρ− d‖22 = ‖GS ρS − PS d‖22 + ‖d− PS d‖22.

Therefore L (ρ) = LS (ρS ) + 1
2‖d− PS d‖22, with LS defined on vectors of length |S |,

LS (x) =
1

2
‖GS x− PS d‖22 + γ‖x‖1, ∀x ∈ C|S |. (4.32)

We conclude that ρ?S is the minimizer of LS . Then, results in convex analysis [28, 32] imply that 0 must
be an element of the sub-gradient of LS . Equivalently, there exists a vector ξ ∈ ∂‖ρ?S ‖1 satisfying (4.30),
where we use the expression of the projection PS . Equation (4.31) is just the restriction of equation (4.30)
to the rows indexed by S. �

Lemma 4.6. Let ρ? be the minimizer of L (ρ) over vectors supported in S . If γ satisfies

√
2r‖ρ?S − G†S d‖1 + ‖GH

Sc (PS d− d)‖∞ < γ
[
1− max

j∈S c

∣∣∣ 〈ξS ,G†Sgj〉 ∣∣∣], (4.33)

with ξ as in Lemma 4.5, ρ? is the global minimizer of L (ρ) over CN .
Proof: To prove the lemma we show that any perturbation of ρ? by a vector that is not supported in

S leads to an increase of the objective function L . This implies that ρ? is a local minimizer of L in CN .
That ρ? is the global minimizer follows from the convexity of L .

Consider an arbitrary vector v ∈ CN and decompose it as

v = u + w, supp u ⊂ S , supp w ⊂ S c. (4.34)

For small and positive ε we have from definition (2.9) and the disjoint support of u and w that

L (ρ? + εv)−L (ρ? + εu) = ε
[
real

(
〈Gρ? − d,Gw〉

)
+ γ‖w‖1

]
+ ε2

[1

2
‖Gw‖22 + real

(
〈Gu,Gw〉

)]
, (4.35)

with the first term dominating the second for ε� 1. We write it in terms of the components wj of w as

〈Gρ? − d,Gw〉 =
∑
j∈S c

〈GS ρ?S − d,gj〉wi =
∑
j∈S c

〈GS ρ?S − PS d,gj〉wj −
∑
j∈S c

〈d− PS d,gj〉wj , (4.36)

where we used that ρ? is supported in S . We estimate next the two sums in the right hand side.
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For the terms in the first sum we have

〈GS ρ?S − PS d,gj〉 = 〈GS ρ?S − PS d,PSgj〉+ 〈GS ρ?S − PS d, (I − PS )gj〉 , (4.37)

where PS = GSG†S is the orthogonal projection on the range of the full rank ‡ matrix GS , with pseudo-inverse

G†
S

=
(
GH
S
GS
)−1

GH
S
. (4.38)

Substituting the expression of PS and PS in (4.37) we get

〈GS ρ?S − PS d,gj〉 =
〈
GH
S
GS

(
ρ?S − G†S d

)
,G†
S
gj
〉

+
〈
GS

(
ρ?S − G†S d

)
, (I − PS )gj

〉
= −γ

〈
ξS ,G†Sgj

〉
+ 〈GS α, (I − PS )gj〉 , (4.39)

with the second inequality following from Lemma 4.5, and notation α = ρ?S −G†S d. Let us write explicitly
the second term in (4.39)

〈GS α, (I − PS )gj〉 =
∑
l∈S

〈gl, (I − PS )gj〉αl, for j ∈ S c. (4.40)

Since l ∈ S , we have by definition (4.27) that there exists q ∈ S such that ~zl ∈ Br(~yq), and we can

decompose gl in two parts: g
‖
l which is along gq and g⊥l which is orthogonal to it,

gl = g
‖
l + g⊥l , g

‖
l = 〈gq,gl〉gq, g⊥l = gl − g

‖
l .

Clearly g
‖
l is in the range of GS , so it is orthogonal to (I − PS )gj , and the terms in equation (4.40) satisfy∣∣ 〈gl, (I − PS )gj〉

∣∣ =
∣∣ 〈g⊥l , (I − PS )gj

〉 ∣∣ ≤ ‖g⊥l ‖2‖(I − PS )gj‖2 ≤ ‖g⊥l ‖2. (4.41)

Moreover, by Pythagora’s theorem

‖g⊥l ‖22 = 1− ‖g‖l ‖
2
2 = 1−

∣∣ 〈gq,gl〉 ∣∣2 < 1− (1− r)2 = 2r − r2 < 2r, (4.42)

where the first inequality follows ~zl ∈ Br(~yq) i.e., D(~zl,~zq) = 1 −
∣∣ 〈gq,gl〉 ∣∣ < r. Gathering the results

(4.39)-(4.42) and using the triangle inequality we get the following bound on the first sum in (4.36)∣∣ ∑
j∈Sc
〈GS ρ?S − PS d,gj〉wj

∣∣ ≤ [γ max
j∈S c

∣∣ 〈ξS ,G†Sgj〉 ∣∣+
√

2r‖ρ?S − G†S d‖1
]
‖w‖1. (4.43)

For the second sum in (4.36) we have∣∣ ∑
j∈S c

〈d− PS d,gj〉wj
∣∣ ≤ max

l∈S c

∣∣ 〈d− PS d,gl〉
∣∣ ∑
j∈S c

|wj | = ‖GHSc (d− PS d)‖∞‖w‖1, (4.44)

and putting together the results (4.43)-(4.44) we obtain from (4.36) that∣∣ 〈Gρ? − d,Gw〉
∣∣ ≤ [γ max

j∈S c

∣∣ 〈ξS ,G†Sgj〉 ∣∣+
√

2r‖ρ?S − G†S d‖1 + ‖GH
Sc (d− PS d)‖∞

]
‖w‖1. (4.45)

This estimate and the triangle inequality give that the ε term in (4.35) is positive for γ satisfying

γ > γ max
j∈S c

∣∣ 〈ξS ,G†Sgj〉 ∣∣+
√

2r‖ρ?S − G†S d‖1 + ‖GH
Sc (d− PS d)‖∞,

‡That GS is full rank follows from the assumption I(Y) < 1/2. Matrix GS is not full rank because its columns are associated
to nearby points in the vicinity of the sources, as stated in (4.27).
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as assumed in the lemma. Then, the perturbation of ρ? by the arbitrary vector (4.34) increases the objective
function L and the lemma follows. �

To complete the proof of the theorem it remains to show that we can find a positive γ as in Lemma 4.6.
We begin with the estimate

max
j∈S c

∣∣ 〈ξS ,G†Sgj〉 ∣∣ = max
j∈S c

∣∣∣〈ξS , (GHS GS)−1GH
S

gj

〉∣∣∣
≤ max
j∈S c

∥∥ξS‖∞∥∥(GHS GS)−1

GH
S

gj
∥∥

1

≤ max
j∈S c

∥∥(GH
S
GS
)−1∥∥

1,1

∥∥GH
S

gj
∥∥

1
, (4.46)

where we used (4.38) and definition (4.29) of the sub-gradient of the `1 norm. Now since j ∈ S c, ~zj is
outside every ball of radius r centered at a source or, equivalently, | 〈gq,gj〉 | ≤ 1− r, for all q ∈ S. This and
the definition of I(Y) give∥∥GH

S
gj
∥∥

1
=
∑
q∈S

∣∣ 〈gq,gj〉 ∣∣ ≤ 1− r + I(Y), ∀ j ∈ S c. (4.47)

Moreover, for any vector u supported on S we have∥∥∥GHS GSu∥∥1
=
∑
q∈S

∣∣∑
j∈S
〈gq,gj〉uj

∣∣
=
∑
q∈S

∣∣uq +
∑

j∈S,j 6=q

〈gq,gj〉uj
∣∣

≥
∑
q∈S

∣∣uq|[1− ∑
j∈S,j 6=q

∣∣ 〈gq,gj〉 ∣∣]
≥
[
1− I(Y)

]
‖u‖1,

so the operator norm of the inverse of GH
S
GS , which exists because GS is full rank, satisfies∥∥∥(GHS GS)−1

∥∥∥
1,1
≤
[
1− I(Y)

]−1

. (4.48)

Putting together (4.46)-(4.48) we obtain that

max
j∈S c

∣∣ 〈ξS ,G†Sgj〉 ∣∣ ≤ 1− r + I(Y)

1− I(Y)
< 1, (4.49)

where the second inequality is by the assumption of the theorem that r > 2I(Y). This shows that the right
hand side in equation (4.33) in Lemma 4.6 is positive.

Finally, we show that the left hand side in equation (4.33) is bounded independent of γ. Clearly, the
term ‖GH

Sc (PS d− d)‖∞ does not depend on γ. It is due to the modeling error that is small when the grid
is fine enough and the additive noise, that may cause d to lie outside the range of GS i.e., d 6= PS d. To
bound the first term in (4.33) note that u = G†

S
d is the minimum `2 norm solution of GS u = d if it exists,

or otherwise the minimizer of the least squares misfit ‖GS u−d‖2. Then, since ρ?S minimizes LS , we have

LS (ρ?S ) =
1

2
‖GS ρ?S − d‖22 + γ‖ρ?S ‖1 ≤ LS (u) =

1

2
‖GS u− d‖22 + γ‖u‖1,

and using that ‖GS u− d‖2 ≤ ‖GS ρ?S − d‖2, we get ‖ρ?S ‖1 ≤ ‖u‖1. Consequently,

‖ρ?S − G†S d‖1 = ‖ρ?S − u‖1 ≤ ‖ρ?S ‖1 + ‖u‖1 = 2‖u1‖, (4.50)

independent of γ. We conclude that we can find γ > 0 as in Lemma 4.6, and therefore complete the proof
of the theorem. �
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5. Summary. We presented a resolution study of sensor array imaging of a sparse scene of point sources
or scatterers. The setup is in the paraxial regime, where the array aperture is small with respect to the
distance to the imaging region. The imaging is done with two sparsity promoting optimization methods:
`1 optimization (basis pursuit) and `1−penalty. The latter deals with noise and modeling errors. Our
resolution analysis takes into account the sparse support of the unknowns. In case that they lie on the
imaging grid, we obtained conditions on the grid size that guarantee their exact and unique recovery for
noiseless data. This is for both single frequency and broad-band regimes, and the results show the benefit
of having multiple frequency measurements. In case that the unknowns lie off-grid, we studied imaging on
fine grids that mitigate the modeling error. We showed that when the unknowns are located at sufficiently
far apart points in the scene, or they lie in well separated clusters, the results of imaging with sparsity
promoting optimization are useful. The support of the reconstruction is near that of the unknowns and its
locally averaged amplitudes approximates the true ones.

Acknowledgments. This work was partially supported by AFOSR Grant FA9550-15-1-0118. LB also
acknowledges support from the ONR Grant N00014-14-1-0077.

Appendix A. Numerical setup. The simulations are for an aperture a = 25λ, range L = 1000λ. We
used different sizes of imaging grids such as WN = 10× 10× 20 or WN = 5× 64× 64, for a given mesh size
~h = (h, h, h3).

The `1 optimization is solved with the package [16]. For noisy data we solve (2.9) with γ chosen to
be close to the noise level. We find the results to be very similar to those obtained from the constrained
optimization

min
ρ∈CN

‖ρ‖1 s.t. ‖Gρ− d‖2 ≤ noise level.

Because the simulations give only an approximation ρ̃? of the minimizer ρ?, we threshold the results at 1%
of the maximum entry in absolute value. We say that ρ is recovered numerically if ‖ρ̃? − ρ‖∞/‖ρ‖∞ < 1%.

Appendix B. Derivation of the paraxial model. We have for ~x = (x, 0) in the array and ~z = (z, z3)
in the imaging region that

|~x− ~y| = L
[
1 +O

(D3

L

)
+O

( a2

L2

)]
(B.1)

so we can approximate the geometrical spreading factor in the Green’s function by

1

4π|~x− ~y|
≈ 1

4πL
. (B.2)

The phase is given by

k|~x− ~y| = kz3 +
k|x− z|2

2z3
+ E(~x, ~y), (B.3)

with remainder

E(~x, ~y) = −k|x− z|4

8z3
3

+O
(k|x− z|6

z5
3

)
.

The scaling assumptions (3.3) make most of the terms in E negligible, except for those that are independent
of ~z, which cancel in the product of the Green’s functions in the left hand side of equation (3.5). Thus we
write

E(~x, ~y) ≈ −k|x|
4

8L3
+O

(k|x|6
L5

)
. (B.4)

We also have

k|x− z|2

2z3
=
k|x|2

2z3
− kx · z

z3
+
k|z|2

2z3
,
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with the last term negligible by assumption (3.3). Simplifying further, we get

k|x− z|2

2z3
≈ k|x|2

2L
− k|x|2z3

2L2
− kx · z

L
+O

( a2

λL

D2
3

L2

)
+O

(aDD3

λL2

)
, (B.5)

with the remainder negligible by (3.3).
Now let ~x = ~xr and obtain from (B.2)-(B.5) that

Ĝ(ω, ~xr,~zj)Ĝ(ω, ~xr,~zq) ≈
eik(z3,j−z3,q)

(4πL)2
e−

ik|xr|2(z3,j−z3,q)
2L2 −

ikxr·(zj−zq)

L .

Equation (3.5) follows by summing over r. �

Appendix C. Derivation of the broad-band paraxial model. Using the parabolic scaling, we find
as in appendix B that

Ĝ(ωj , ~xr,~zq)Ĝ(ωj , ~xr,~zl) ≈
eikj(z3,q−z3,l)

(4πL)2
e−

ikj |xr|
2(z3,q−z3,l)
2L2 −

ikjxr·(zq−zl)

L , (C.1)

where kj = ωj/c. Moreover, the phase Φ in the right hand side of (C.1) is

Φ = kj(z3,q − z3,l)−
ko|xr|2(z3,q − z3,l)

2L2
− koxr · (zq − zl)

L
+O

(B
c

aD

L

)
+O

(B
c

a2D3

L2

)
,

with negligible remainder by assumption (3.15). Result (3.17) follows after substituting the approximation
of Φ in (C.1), multiplying with the Gaussian pulse, and summing over the frequencies and the receivers. We
also remove the phase ko(z3,q − z3,l) in equation (3.17). �

Appendix D. Proof of estimate 3.25. Simplifying notation as

ro =
β − η
2
√
η
>

α

2
√
η
> 0, r1 =

β + η

2
√
η

= r0 +
√
η,

and choosing a contour defined by the line segments at angle 0 and π/4 with the real axis, and the circular
arcs at radius r0 and r1, we obtain∫ r1

r0

dt eit
2

= −
∫ π/4

0

dθ
[
r1e
−r21 sin(2θ)+i[θ+r21 cos(2θ)] − r0e

−r20 sin(2θ)+i[θ+r20 cos(2θ)]
]

+
√
i

∫ r1

ro

dr e−r
2

. (D.1)

For the last term we have the estimate∫ r1

r0

dr e−r
2

=

∫ √η
0

ds e−(ro+s)2 ≤ e−r
2
0

∫ ∞
0

ds e−s
2

=

√
π

2
e−r

2
o , (D.2)

where we changed variables as r = ro + s. Moreover,∣∣∣∣∣
∫ π/4

0

dθ r0 e
−r20 sin(2θ)+i[θ+r20 cos(2θ)]

∣∣∣∣∣ ≤
∫ π/4

0

dθ roe
−4r2oθ/π =

π

4r0

(
1− e−r

2
o

)
, (D.3)

and similar for the other integral over θ, because sin(2θ) ≥ 4θ/π, for all θ ∈ (0, π/4). The estimate (3.25)
follows from (D.1)-(D.3) and the triangle inequality∣∣∣∣∫ r1

ro

dt eit
2

∣∣∣∣ ≤ √π2 e−r
2
o +

π

4r1

(
1− e−r

2
1

)
+

π

4r0

(
1− e−r

2
0

)
≤ π

2r0
+

√
π

2
e−r

2
0 <

(π + 1)
√
η

α
.

The second inequality is because r1 > r0, the third inequality is by the definition of r0 and the last inequality
is because e−x

2/4 < 2/(
√
πx) for any x > 0. �
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