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Loops on spheres having a compact-free
Inner mapping group
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Abstract

We prove that any topological loop homeomorphic to a sphere
or to a real projective space and having a compact-free Lie group
as the inner mapping group is homeomorphic to the circle. More-
over, we classify the differentiable 1-dimensional compact loops
explicitly using the theory of Fourier series.
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Introduction

The only known proper topological compact connected loops such
that the groups G topologically generated by their left translations are
locally compact and the stabilizers H of their identities in G have no
non-trivial compact subgroups are homeomorphic to the 1-sphere. In []],
[9], [7], [10] it is shown that the differentiable 1-dimensional loops can be
classified by pairs of real functions which satisfy a differential inequality
containing these functions and their first derivatives. A main goal of this
paper is to determine the functions satisfying this inequality explicitly in
terms of Fourier series.

If L is a topological loop homeomorphic to a sphere or to a real
projective space and having a Lie group G as the group topologically
generated by the left translations such that the stabilizer of the identity
of L is a compact-free Lie subgroup of GG, then L is the 1-sphere and G
is isomorphic to a finite covering of the group PSLs(R) (cf. Theorem 4).

To decide which sections o : G/H — G, where G is a Lie group and
H is a (closed) subgroup of G containing no normal subgroup # 1 of G
correspond to loops we use systematically a theorem of R. Baer (cf. [3]
and [8], Proposition 1.6, p. 18). This statement says that o corresponds
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to a loop if and only if the image o(G/H) is also the image for any section
G/H* — G, where H = a 'Ha and a € G. As one of the applications
of this we derive in a different way the differential inequality in [§], p.
218, in which the necessary and sufficient conditions for the existence of
1-dimensional differentiable loops are hidden.

Basic facts in loop theory

A set L with a binary operation (z,y) — z*vy : L x L — L and an
element e € L such that e xx = xxe = x for all x € L is called a loop
if for any given a,b € L the equations a xy = b and x x a = b have
unique solutions which we denote by y = a\b and z = b/a. Every left
translation A\, : y — a*xy : L — L, a € L is a bijection of L and the
set A = {\,, a € L} generates a group G such that A forms a system of
representatives for the left cosets {vH, x € G}, where H is the stabilizer
of e € L in G. Moreover, the elements of A act on G/H = {zH, = € G}
such that for any given cosets aHH and bH there exists precisely one left
translation A, with A\,aH = bH.

Conversely, let G be a group, H be a subgroup containing no normal
subgroup # 1 of G and let 0 : G/H — G be asection witho(H) =1€ G
such that the set o(G/H) of representatives for the left cosets of H in
G generates G and acts sharply transitively on the space G/H (cf. [8],
p. 18). Such a section we call a sharply transitive section. Then the
multiplication defined by xH *yH = o(zH)yH on the factor space G/H
or by z xy = o(zyH) on o(G/H) yields a loop L(c). The group G is
isomorphic to the group generated by the left translations of L(o).

We call the group generated by the mappings A, , = )\;;Ax)\y L —
L, for all x,y € L, the inner mapping group of the loop L (cf. [8],
Definition 1.30, p. 33). According to Lemma 1.31 in [§], p. 33, this
group coincides with the stabilizer H of the identity of L in the group
generated by the left translations of L.

A locally compact loop L is almost topological if it is a locally compact
space and the multiplication % : L x L — L is continuous. Moreover, if the
maps (a,b) — b/a and (a,b) — a\b are continuous then L is a topological
loop. An (almost) topological loop L is connected if and only if the group
topologically generated by the left translations is connected. We call the
loop L strongly almost topological if the group topologically generated
by its left translations is locally compact and the corresponding sharply
transitive section o : G/H — G, where H is the stabilizer of e € L in G,
is continuous.

If a loop L is a connected differentiable manifold such that the mul-
tiplication % : L x L — L is continuously differentiable, then L is an
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almost C!-differentiable loop (cf. Definition 1.24 in [§], p. 31). More-
over, if the mappings (a,b) — b/a and (a,b) — a\b are also continu-
ously differentiable, then the loop L is a C!-differentiable loop. If an
almost C!-differentiable loop has a Lie group G as the group topologi-
cally generated by its left translations, then the sharply transitive section
o : G/H — G is C'-differentiable. Conversely, any continuous, respec-
tively C!-differentiable sharply transitive section o : G/H — G yields an
almost topological, respectively an almost C!-differentiable loop.

It is known that for any (almost) topological loop L homeomorphic
to a connected topological manifold there exists a universal covering loop
L such that the covering mapping p : L — L is an epimorphism. The
inverse image p~!(e) = Ker(p) of the identity element e of L is a central
discrete subgroup Z of L and it is naturally isomorphic to the fundamen-
tal group of L. If Z’ is a subgroup of Z, then the factor loop L/Z' is a
covering loop of L and any covering loop of L is isomorphic to a factor
loop L/Z' with a suitable subgroup Z' (see [5]).

If I is a covering loop of L, then Lemma 1.34 in [§], p. 33, clarifies the
relation between the group topologically generated by the left transla-
tions of L’ and the group topologically generated by the left translations
of L:

Let L be a topological loop homeomorphic to a connected topological
manifold. Let the group G topologically generated by the left translations
Xa, a € L, of L be a Lie group. Let L be the universal covering of L and
Z C L be the fundamental group of L. Then the group G topologically
generated by the left translations Ao, u € L, of L is the covering group
of G such that the kernel of the covering mapping ¢ : G—GisZ* =
{)\z,z € Z} and Z* is isomorphic to Z. If we identify L and L with
the homogeneous spaces G/H and G/H, where H or H is the stabilizer
of the identity of L in G or of L in G, respectively, then cp(H) H,
HnNZ*={1}, and H is isomorphic to H.

Compact topological loops on the 3-dimensional sphere

Proposition 1. There is no almost topological proper loop L homeomor-
phic to the 3-sphere S3 or to the 3-dimensional real projective space Ps
such that the group G topologically generated by the left translations of L
is isomorphic to the group SLs(C) or to the group PSLo(C), respectively.

Proof. We assume that there is an almost topological loop L homeo-
morphic to S3 such that the group topologically generated by its left



translations is isomorphic to G = SLy(C). Then there exists a contin-
uous sharply transitive section o : SLy(C)/H — SLy(C), where H is
a connected compact-free 3-dimensional subgroup of SLy(C). Accord-
ing to [2], pp. 273-278, there is a one-parameter family of connected
compact-free 3-dimensional subgroups H,, r € R of SLy(C) such that
H,, is conjugate to H,, precisely if r; = ry. Hence we may assume that
the stabilizer H has one of the folowing shapes

A= {( exp[(m(')— 1)al exp[(lb— iy ) aeR,beE C}, reR,

(cf. Theorem 1.11 in [§], p. 21). For each r € R the section o, : G/H, —
G corresponding to a loop L, is given by

(3 2)mm (3 (D )

where z,y € C, T +yy = 1 such that f(z,y): S* - R, g(z,y): S* = C
are continuous functions with f(1,0) = 0 = ¢(1,0). Since o, is a sharply
transitive action for each r € R the image o0,(G/H,) forms a system
of representatives for all cosets *H), v € (G. This means for all given
c,d € C?, cc+ dd = 1 each coset

(o) (i e)m i)

where u,v € C, uu+vv = 1, contains precisely one element of o,.(G/H,.).
This is the case if and only if for all given ¢, d,u,v € C with uu + vv =
1 = c¢ + dd there exists a unique triple (z,y,q) € C?* with zz + yy = 1
and a real number m such that the following matrix equation holds:

( ac—vd —ud—ve ) ( z oy ) ( exp|(ri — 1) f(z,y)] g9(x,y) )

ve+ad  uc—vd —§ 0 exp[(1 —ri) f(z,y)]

_ ( exp[(riof 1)m] exp[(lfiri)m] ) ( ;i *i ) . (1)

The (1,1)- and (2,1)-entry of the matrix equation (1) give the following
system A of equations:

[(wx +vy)e+ (uy — vz)d] exp|(ri — 1) f(z,y)] = exp|(ri — 1)m]c+qd (2)

(02 — ug)c + (ux + vy)d] exp[(ri — 1) f(x,y)] = exp[(1 — ri)m]d. (3)

If we take ¢ and d as independent variables the system A yields the
following system B of equations:

(wz + vy) explirf (x, y)] exp[—f(x,y)] = exp(irm) exp(—m) ~ (4)
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(ug — vz) exp[(ri — 1) f(z,y)ld = dq ()
(az + vg) explir f (x, y)] exp[—f(z,y)] = exp(m) exp(—irm).  (6)

Since equation (5) must be satisfied for all d € C we obtain ¢ = 0. From
equation (4) it follows

uzx + vy = exp(irm) exp(—m) exp[—ir f (z, y) exp[f(z, y)].  (7)
Putting (7) into (6) one obtains
exp(irm) exp(—m) = exp(m) exp(—irm) (8)

which is equivalent to

exp[2(ir — 1)m] = 1. (9)

The equation (9) is satisfied if and only if m = 0. Hence the matrix
equation (1) reduces to the matrix equation

( —g g > ( el —Ol)f(x,y)] eXp[(lg—(gi“’g}(w,y)] > - ( —g

and therefore the matrix

_( exp[(ri—1)f(z,y)] g(x,y)
M= ( 0 exp[(1 —ri) f(z,y)] )

is an element of SU,(C). This is the case if and only if f(z,y) = 0 =
g(z,y) for all (x,y) € C* with 27 + yy = 1. Since for each r € R the
loop L, is isomorphic to the loop L.(o,), hence to the group SU,(C),
there is no connected almost topological proper loop L homeomorphic to
S3 such that the group topologically generated by its left translations is
isomorphic to the group SLy(C).

The universal covering of an almost topological proper loop L home-
omorphic to the real projective space P5 is an almost topological proper
loop L homeomorphic to Ss. If the group topologically generated by the
left translations of L is isomorphic to PSLy(C) then the group topolog-
ically generated by the left translations of L is isomorphic to SLy(C).
Since no proper loop L exists the Proposition is proved. O
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Proposition 2. There is no almost topological proper loop L homeomor-
phic to the 3-dimensional real projective space Ps or to the 3-sphere Sz
such that the group G topologically generated by the left translations of
L is isomorphic to the group SL3(R) or to the universal covering group

SL3(R), respectively.




Proof. First we assume that there exists an almost topological loop L
homeomorphic to P3 such that the group topologically generated by its
left translations is isomorphic to G = SL3(R). Then there is a contin-
uous sharply transitive section o : SL3(R)/H — SL3(R), where H is a
connected compact-free 5-dimensional subgroup of SL3(R). According
to Theorem 2.7, p. 187, in [4] and to Theorem 1.11, p. 21, in [8] we may
assume that
k v
H = b l ;a>0,0>0kl,veR ). (10)
0 (ab)™

o O 2

Using Euler angles every element of SO3(R) can be represented by the
following matrix

cost sint 0 1 0 0 cosu sinu 0
g(t,u,z):= | —sint cost 0 0 cosz sinz —sinu cosu 0 | =
0 0 1 0 —sinz cosz 0 0 1

cost cosu —sint cosz sinu cost sinu +sint cosz cosu  sint sinz
—sint cosu —cost cosz sinu —sint sinu + cost cosz cosu cost sinz |,
sinz sinu —sinz cosu coS z

where t,u € [0,27] and z € [0, 7].
The section o : SL3(R)/H — SL3(R) is given by

fl(tvuaz) fg(t,’u,Z) fg(t,’ll,,Z)
g(t,u,z)H — g(t, u, 2) 0 fa(t,u,z) fs(t,u, 2) ;o (11)
0 0 fritu ) fi (tu, 2)

where t,u € [0,27], z € [0,7] and f;(t,u, 2) : [0,27] x [0,27] x [0, 7] —
R are continuous functions such that for ¢ € {1,4} the functions f;
are positive with f;(0,0,0) = 1 and for j = {2,3,5} the functions
fi(t,u, z) satisfy that f;(0,0,0) = 0. As o is sharply transitive the im-
age 0(SL3(R)/H) forms a system of representatives for all cosets zH?°,
0 € SL3(R). Since the elements x and 0 can be chosen in the group
SO3(R) we may take = as the matrix

—sing cosr —cosq sinr cosp —sing sinr 4 cosq cosr cosp cosq sinp

cosq cosrT —sing sinr cosp cosq sinr 4 sing cosr cosp  sing sinp
sinp sinr —sinp cosr cosp

and § as the matrix

—sina cosff —cosa sinf8 cosy —sina sinf 4 cosa cosfB cosy cosa sinvy

cosa cosf —sina sinf cos~y cosa sin 8 +sina cosf cosy  sina sinvy
b
sin~y sin g —sin~y cosf cos 7y

where ¢, r, a, § € [0,27] and p,~ € [0, 7]. The image o(SL3(R)/H) forms
for all given 0 € SO3(R) and = € SO3(R) a system of representatives for
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the cosets zH? if and only if there exists unique angles ¢,u € [0, 27] and
z € [0, 7] and unique positive real numbers a,b as well as unique real
numbers k, [, v such that the following equation holds

Sxtg(t,u, 2)f = hd, (12)
where the matrices 9, x have the form as above,

filt,u, z)  fo(t,u, 2) f3(t,u, 2)

f 0 fa(t,u, 2) f5(t,u, 2)

0 0 frttu, 2) fH (¢, 2)
and
a k v
h=1| 0 b l
00 (ab)_1

Comparing the first column of the left and the right side of the equation
(12) we obtain the following three equations:

fi(t,u, z){[(cos @ cos B —sina sin 3 cosvy)(cosr cosq — sinr sing cosp)+
(cosa sin B +sina cos 3 cosy)(sinr cosq + cosr sing cosp)+
sinasinysinpsing|(cost cosu —sint sinu cos z)—

[—(cosa cosff —sina sin 8 cos7y)(cosr sing + sinr cosq cosp)+

(cosa sin B+ sina cos 3 cosy)(—sinr sing + cosr cosq cosp)+

sin asiny sin pcos ¢|(sint cosu + cost sinwu cos z)+

[(cosa cos B —sina sinf cos<y)sinr sinp—

(cosa sin B+ sina cos 3 cosy)cosrsinp +sina siny cosp|sinz sinu} =
a(cosa cos B —sina sinf3 cosy) — k(sina cos 8+ cosa sinff cosy)+
vsin~y sin g,

fi(t,u, z){[—(sin cos B+ cosa sin B cosy)(cosr cosq—sinr sing cosp)—
(—sina sin 8 4 cosa cos B cosy)(sinr cosq+ cosr sing cosp)+

cos asinysinp sing|(cost cosu —sint sinu cosz)—

[(sin cos 8+ cosa sin B cosy)(cosr sing + sinr cosq cosp)+

(—sina sin 8+ cosa cos B cosy)(—sinr sing + cosr cosq cosp)+
cosasinysinpcosql(sint cosu + cost sinu cosz)+

[—(sina cos B+cosa sinf cosy)sinr sinp— (cosa cosf cosy—sina sin 3)
cosrsinp + cosa siny cosp|sinz sinu} =

—b(sin cos S+ cosa sin 3 cosy) + [sin~y sin 3,

fi1(t,u, 2){[(cos T cosq —sinr sing cosp)sin~y sin f—

(sinr cosq+ cosr sing cosp)siny cos 3 + cosysin psin ¢]

(cost cosu —sint sinwu cosz) + [(cosT sing+ sinr cosq cosp)siny sin S+
(—sinr sing + cosr cosq cosp)sin~y cos 3 + cosysinp cos |
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(sint cosu+ cost sinu cosz)+

[(siny sinf sinr sinp +sin~y cos 8 cosr sinp) + cosycosp|sinz sinu} =
(ab)~Lsin~y sin 8.

If we take
tion turns

0 =

(ab)™' =

siny sin 8 and cos~y as independent variables the third equa-
to the following equations
fi(t,u, z)[sinp sing(cost cosu — sint sinu cosz) —
sinp cosq(sint cosu + cost sinu cosz) + cosp sinz sinu] (13)
{[(cosT cosq —sinrT sing cosp)(cost cosu —sint sinwu cosz) +
(cosr sing + sinr cosq cosp)(sint cosu + cost sinwu cosz) +
sinr sinp sinz sinu] —
cos 3
sin 3

(—sinr sing 4 cosr cosq cosp)(sint cosu + cost sinu cosz) —

[(sinr cosq+ cosT sing cosp)(cost cosu —sint sinwu cosz) —

cosr sinp sinz sinul}fi(t,u, 2). (14)

If we take cosa sinf3 cos~y, sin 3 sin~y as independent variables from
the second equation it follows

| =

cos o
sin 3

sinp cosq(sint cosu —+ cost sinu cosz) 4+ cosp sinz sinu] (15)

fi1(t,u, z)[sinp sing(cost cosu —sint sinu cosz) —

{[-(cosT cosq —sinr sing cosp)(cost cosu —sint sinu cosz) —
(cosT sing + sinr cosq cosp)(sint cosu + cost sinu cosz) —
sinr sinp sinz sinu] —

cos f3
sin 3

(—sinr sing + cosr cosq cosp)(sint cosu + cost sinu cosz) —

[(sinr cosq+ cosr sing cosp)(cost cosu —sint sinwu cosz) —

cost sinp sinz sinul}fi(t, u, z). (16)

If we choose sina sin 8 cos7y, sin 8 siny as independent variables the
first equation yields

(%

COs «x

sin o

sin av . . . .
= = Bfl(t,u,z)[smp sing(cost cosu —sint sinwu cosz) —
sin

sinp cosq(sint cosu + cost sinu cosz) 4+ cosp sinz sinu] (17)

= {[(cosr cosq—sinr sing cosp)(cost cosu — sint sinu cosz) —

(cosr sing +sinr cosq cosp)(sint cosu + cost sinwu cosz) +
sinr sinp sinz sinu] —

cos f3
sin 3

(—sinr sing+ cosr cosq cosp)(sint cosu + cost sinu cosz) —

[(sinr cosq+ cosr sing cosp)(cost cosu —sint sinwu cos z) —

cosr sinp sinz sinul}fi(t, u, z). (18)



Since fi(t,u, z) > 0 from equation (13) it follows that

0 = sinp sing(cost cosu —sint sinu cos z) +

sinp cosq(sint cosu + cost sinu cosz)+ cosp sinz sinu. (19)

Using this it follows from (15) that [ = 0 holds and from equation (17)
that v = 0. Since the equation (14) must be satisfied for all 5 € [0, 27]
we have

(ab)™* = [(cosT cosq—sinr sing cosp)(cost cosu —sint sinu cosz) +
(cosr sing + sinr cosq cosp)(sint cosu + cost sinu cosz) +
sinr sinp sinz sinu]fi(t, u, z) (20)
0 = [(sinr cosq+ cosr sing cosp)(cost cosu —sint sinu cosz) —
(—sinr sing+ cosr cosq cosp)(sint cosu + cost sinu cosz) —

cosT sinp sinz sinwul. (21)

Using equation (21) and comparing the equations (20) and (16) we obtain
that (ab)™! = b. With equation (21) the equation (18) turns to

cos a L L
a+ k— = [(cosr cosq —sinr sing cosp)(cost cosu —sint sinu cosz) —
sin a

(cosr sing + sinr cosq cosp)(sint cosu + cost sinu cosz) +

sinr sinp sinz sinu|fi (¢, u, 2). (22)

Since the equation (22) must be satisfied for all @ € [0,27] we obtain
k = 0. Using this, the equations (22) and (20) yield (ab)™' = a. Since
1 = ab(ab)™! = a? it follows that @ = 1 and hence the matrix h is the
identity. But then the matrix equation (12) turns to the matrix equation

g(t,u, 2)f =x.
As z and g(t,u, z) are elements of SO3(R) one has f = xg~(t,u,z2) €
SO3(R). But then f is the identity, which means that

fl(tauaz) =1= f4(taua 2)7 f2(t7u7 2) = f3(tau’ 2) = f5(t,u,z) = 0,
for all t,u € [0,27] and z € [0, 7]. Since the loop L is isomorphic to the
loop L(o) and L(c) = SO3(R) there is no connected almost topological
proper loop L homeomorphic to Ps such that the group topologically
generated by its left translations is isomorphic to SLsz(R).

Now we assume that there is an almost topological loop L homeo-
morphic to S5 such that the group G topologically generated/\b/y its left
translations is isomorphic to the universal covering group SLs(R). Then
the stabilizer H of the identity of L may be chosen as the group (10).
Then there exists a local section ¢ : U/H — G, where U is a suit-
able neighbourhood of H in G/H which has the shape (11) with suffi-
ciently small t,u € [0, 27], z € [0, 7] and continuous functions f;(t, u, z) :
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[0,27] x [0,27] x [0,7] — R satisfying the same conditions as there.
The image o(U/H) is a local section for the space of the left cosets
{xH’; x € G,0 € G} precisely if for all suitable matrices = := g(q,7,p)
with sufficiently small (¢,7,p) € [0,27] x [0,27] x [0, 7] there exist a
unique element ¢(t,u,z) € Spinsz(R) with sufficiently small (¢,u,z) €
[0,27] x [0,27] x [0, 7] and unique positive real numbers a,b as well as
unique real numbers k,[,v such that the matrix equation (12) holds.
Then we see as in the case of the group SLs(R) that for small x and
g(t,u,z) the matrix f is the identity. Therefore any subloop T' of L
which is homeomorphic to & is locally commutative. Then according
to [§], Corollary 18.19, p. 248, each subloop T is isomorphic to a 1-
dimensional torus group. It follows that the restriction of the matrix f
to T is the identity. Since L is covered by such 1-dimensional tori the
matrix f is the identity for all elements of S&5. Hence there is no proper
loop L homeomorphic to &3 such that the group G topologically gener-
ated by its left translations is isomorphic to the universal covering group

—_——

SLs(R). 0

Compact loops with compact-free inner mapping groups

Proposition 3. Let L be an almost topological loop homeomorphic to a
compact connected Lie group K. Then the group G topologically generated
by the left translations of L cannot be isomorphic to a split extension of
a solvable group R homeomorphic to R™ (n > 1) by the group K.

Proof. Denote by H the stabilizer of the identity of L in G. If G has the
structure as in the assertion then the elements of GG can be represented by
the pairs (k,r) with k € K and r € R. Since L is homeomorphic to K the
loop L is isomorphic to the loop L(o) given by a sharply transitive section
o : G/H — @G the image of which is the set & = {(k, f(k)); k € K},
where f is a continuous function from K into R with f(1) =1 € R.
The multiplication of (L(o),*) on & is given by (z, f(z)) * (v, f(y)) =
o((xy, £(2)f(y)) ).

Let T be a 1-dimensional torus of K. Then the set {(¢, f(t)); t € T}
topologically generates a compact subloop T of L(o) such that the group
topologically generated by its left translations has the shape TU with
T NU =1, where U is a normal solvable subgroup of TU homeomorphic
to R™ for some n > 1. The multiplication # in the subloop T is given by

(@, f(x) * (y, f(y)) = o((zy, f(2)f(y))H) = (zy, f(xy)),

where z,y € T. Hence T is a subloop homeomorphic to a 1-sphere which
has a solvable Lie group S as the group topologically generated by the
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left translations. It follows that T is a 1-dimensional torus group since
otherwise the group S would be not solvable (cf. [8], Proposition 18.2, p.
235). As f : T — U is a homomorphism and U is homeomorphic to R it
follows that the restriction of f to T is the constant function f(T) = 1.
Since the exponential map of a compact group is surjective any element
of K is contained in a one-parameter subgroup of K. It follows f(K) =1
and L is the group K which is a contradiction. O

Theorem 4. Let L be an almost topological proper loop homeomorphic
to a sphere or to a real projective space. If the group G topologically
generated by the left translations of L is a Lie group and the stabilizer
H of the identity of L in G 1s a compact-free subgroup of G, then L is
homeomorphic to the 1-sphere and G is a finite covering of the group
PSLy(R).

Proof. If dim L = 1 then according to Brouwer’s theorem (cf. [11], 96.30,
p. 639) the transitive group G on S is a finite covering of PSLy(R).

Now let dim L > 1. Since the universal covering of the n-dimensional
real projective space is the n-sphere S, we may assume that L is home-
omorphic to §,,, n > 2. Since L is a multiplication with identity e on S,
one has n € {3,7} (cf. [1]).

Any maximal compact subgroup K of G acts transitively on L (cf.
[11], 96.19, p. 636). As HN K = {1} the group K operates sharply tran-
sitively on L. Since there is no compact group acting sharply transitively
on the 7-sphere (cf. [I1], 96.21, p. 637), the loop L is homeomorphic to
the 3-sphere. The only compact group homeomorphic to the 3-sphere is
the unitary group SUy(C). If the group G were not simple, then G would
be a semidirect product of the at most 3-dimensional solvable radical R
with the group SU,(C) (cf. [4], p. 187 and Theorem 2.1, p. 180). But ac-
cording to Proposition 3 such a group cannot be the group topologically
generated by the left translations of L. Hence G is a non-compact Lie
group the Lie algebra of which is simple. But then G is isomorphic either
to the group SLs(C) or to the universal covering of the group SL3(R). It
follows from Proposition 1 and 2 that no of these groups can be the group
topologically generated by the left translations of an almost topological
proper loop L. O

The classification of 1-dimensional compact connected C!-loops

If L is a connected strongly almost topological 1-dimensional compact
loop, then L is homeomorphic to the 1-sphere and the group topologically
generated by its left translations is a finite covering of the group P.SLy(R)
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(cf. Proposition 18.2 in [§], p. 235). We want to classify explicitly all 1-
dimensional C!-differentiable compact connected loops which have either
the group PSLy(R) or SLy(R) as the group topologically generated by
the left translations.

First we classify the 1-dimensional compact connected loops having
G = SLy(R) as the group topologically generated by their left trans-
lations. Since the stabilizer H is compact free and may be chosen as
the group of upper triangular matrices (see Theorem 1.11, in [§], p. 21)
this is equivalent to the classification of all loops L(o) belonging to the
sharply transitive C!-differentiable sections

cost sint a b
o (—sint cost){(o a—l),a>0,bER}—)
cost sint f&) g .
( —sint cost ) < 0 f1) with t € R. (23)
Definition 1. Let F be the set of series

ay + Z(ak coskt + by sinkt), t € R,

k=1
such that
> ar + k?bk
1—qg= g e
a/O e 1 + k’Q 9

= kay — by . ar + kb
a0>;71k+k2k Slnkt—ﬁcoskt for all t € 10,2n],

k*—1

209 > > (af + bi)m-

k=1

Lemma 5. The set F consists of Fourier series of continuous functions.

Proof. Since . a2 + b3 < %ao it follows from [14], p. 4, that any series
=2

in F convergeg uniformly to a continuous function f and hence it is the
Fourier series of f (cf. [I4], Theorem 6.3, p. 12). O

Let o be a sharply transitive section of the shape (23). Then f(t), g(t)
are periodic continuously differentiable functions R — R, such that f(¢)
is strictly positive with f(2k7) = 1 and g(2kmw) = 0 for all k£ € Z.

12



As o is sharply transitive the image o(G/H) forms a system of rep-
resentatives for the cosets xH” for all p € G (cf. [3]). All conju-
gate groups H” can be already obtained if p is an element of K =

{( C(.)St sint ) ,t € R}. Since K"H" = KH" for any x € K the
—sint cost

group K forms a system of representatives for the left cosets xH".
We want to determine the left coset z(t) H" containing the element

o= (o ) (8 20

B cos 3 sinf3 B cos n(t) sin n(t)
where # = < —sinf cosf3 ) and x(t) = ( —sin n(t) cos n(t)
The element o(t) lies in the left coset z(t)H* if and only if @(t)" ' €

2(t)" "H = xz(t)H. Hence we have to solve the following matrix equa-

tion
cost sint f(t)
—sint cost " 0 a
cos n(t) sin n(t) a b

( —sin n(t) cos n(t) 0 a! (24)
for suitable a > 0,0 € R. Comparing both sides of the matrix equation
(24) we have

f(t) cos B(sint cos f — costsin ) — g(t) sin f(sint cos f — cost sin 5)+
f(t)"'sin B(sintsin 8 + cost cos §) = sinn(t)a

and

f(t) cos B(costcos B+ sintsin 5) — g(t) sin f(cost cos f + sint sin )+
f(t)"tsin B(costsin 8 — sintcos 3) = cosn(t)a.

From this it follows

tan (t) _ (f(t) — g(t) tan B)(tant — tan §) + f_l(t) tan B(1 + tan ¢ tan 3)
" (f(t) — g(t) tan B)(1 + tant tan B) + f~1(t) tan B(tan 3 — tant)’

Since 8 can be chosen in the intervall 0 < 8 < 7 and § < 8 < 7 we may
replace the parameter tan 5 by any w € R.

A C!-differentiable loop L corresponding to o exists if and only if the
function t — 7, (t) is strictly increasing, i.e. if 1) (t) > 0 (cf. Proposition
18.3, p. 238, in [8]). The function a,(t) : t — tann,(t) : R - RU{xoco}
is strictly increasing if and only if 7/, (¢) > 0 since

1 /
o)

13
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A straightforward calculation shows that

Gani() = SO0+ g0 () + 00+ 1) +
w(=2f()]'(t) - 29() /(1)) + /(1) (25)

Hence the loop L(0) exists if and only if for all w € R the inequality

0 < wXg'O)f(t)+g@O)f )+ g (O (t) + 1)+
w(=2f(t)f'(t) = 29() f*(£)) + f*(2) (26)

holds. For w = 0 the expression (26) equals to f*(t) > 0. Therefore the
inequality (26) satisfies for all w € R if and only if one has

R + g () f (8) = g' () f*() = f2(t) <0 and  g'(0) > f*(0) (— 1)

27
for all t € R. Putting f(t) = f~'(¢t) and g(t) = —§(¢) these conditions
are equivalent to the conditions

PP+ @)+ OF ) = f*(t) <0 and §(0) <1 - f?(0) (28)

(cf. [8], Section 18, (C), p. 238).
Now we treat the differential inequality (28). The solution h(t) of the
linear differential equation

: OO
h'(t) 4+ h(t)= + — — f(t) =0 29
0+ T+ 20— 29
with the initial conditions h(0) = 0 and 2/(0) = 1 — f’2(0) is given by

= f(t)” / — f(t))dt.
0

Since §(0) = h(0) = 0 and §'(0) < A'(0) it follows from VI in [13] (p. 66)
that g(t) is a subfunction of the differential equation (29), i.e. that §(t)
satisfies the differential inequality (28). Moreover, according to Theorem
V in [13] (p. 65) one has §(t) < h(t) for all ¢ € (0,27). Since the
functions ¢(¢) and h(t) are continuous 0 = §(27) < h(2m). This yields
the following integral inequality

27

[0 - 0y = o (30

0
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We consider the real function R(t) defined by R(t) = f(t) — f(t). Since

£(0) = f(2r) = 1 and f(0) = f'(2r) we have R(0) = 1 — f'(0) =
1— f(2r) = R(2).
The linear differential equation
y'(t) —y(t)+ R(t) =0 with y(0) =1 (31)

has the solution
¢

y(t) =e'(1 — /R(u)e‘“du). (32)

This solution is unique (cf. [6], p. 2) and hence it is the function f(t).
2T

The condition f(2r) = 1 is satisfied if and only if [ R(uw)e du =1— 5.
0
Since R(t) has periode 27 its Fourier series is given by
ag + Z(ak cos kt + by sin kt), (33)
k=1
2 2 2
where ag = = [ R(t) dt, ap = = [ R(t) coskt dt, and b, = + [ R(t)sin kt dt.
0 0 0
Partial integration yields
t
k —kcoskt et —sinkt e
. —ug 4
/smkue du T (34)
0
/ 1+ ksinkt e kt e
+ksinkt e”* — coskt e~
ku e “du = . 35
/ cos ku e “du e (35)

0

Using (34) and (35), we obtain by partial integration

t o t
/R(u)e‘“ du = ag — age”" + Z[/ ay cos ku e~ "du + /b;C sin ku e "du] =
0 k=117 0

i e ak(L ksinkt et —coskt ) | bp(k — kcoskt et —sinkt e")
ap — ape Jr; 1152 + 1152 .

Now for the real coefficients ag, ay, by (k > 1) it follows

2 00
1-— 62% = bf R(u)e "du = (ag + 1;1 a';j,’jgk)@ — 62%)

15



Hence one has

> ap + k’bk
k=1

The function f (t) is positive if and only if
t
1> /R(u)e_“du for all ¢ € [0, 27]. (38)
0

Applying (34) and (35) again we see that the inequality (38) is equivalent
to

ap > Z ak - bk sin a;; 1 ngk cos kt]. (39)

Since f'(t)+ f(t) = 2¢!( fR e~“du) — R(t) the function f(t) satisfies
the integral inequality (30) if and only if

21 t

/ R(O[26t(1 — / R(u)e"du) — R(t))dt > 0. (40)
0 0
The left side of (40) can be written as

2 7R(t)etdt -2 7R(t)et(/t R(u)e “du)dt — 7R2(t)dt. (41)

Using partial integration and representing R(u) by a Fourier series (33)
we have

> QA — bk/{? o
/R(t)etdt = (ap + Z e )™ —1). (42)
9 k=1
From (36) it follows
2 t
/R(t)et /R(u) “Udu | dt
0 0
2m 2m 0o 2m b
ag + ROy ¢
aO/R(t)e dt—ao/R(t)dt+;/( o )R(t) di+
0 0 =19

16



1 kb
/( iLk—l—k2 ) t) sin kt dt—Z/(ak+ k) R(t) cos kt dt.

1+ k2
k=17

(43)

Substituting for R(t) its Fourier series and applying the relation (a) in
[12] (p. 10) we have

2

[ R(t)dt = 2may.
0

Futhermore, one has

kak—bk .
/( e ) R(t)sinkt dt =

;/ <%) lag + ;(al coslt 4 by sinlt)] sin kt dt =
—17 =

or
aoZ/ <H) sin kt dt—l—ZZ/ <%) a; cos It sin kt dt+
k=17 k=1 1=1
0o 0o 27 k b
ZZ/ Nk — Ok bysinlt sin kt dt.
1+ k2
k=1 1=1 Y

The relations (a), (b), (c), (d) in [12], p. 10, yield

oo 2w oo 27 [e'e]
> (“g5e) ROsinke e = 32 / (L) busin® bt dt = 32 (St

Analogously we obtain that

oo 2T o 2 .
3 [ (ettte) Rycoskt dr = 55 [ (M) becos? bt di = 3 (4
=10 =10 -

Using the equality (37) one has

2w t

/ R(t)e" / R(u)e ™ "du | dt =

0 0

00 . 00 ;9 2
[ao+zai+7]]zsk](e% - 1) —WZ i+ i — 27a?.

k=1



Substituting for R(t) its Fourier series we have

2 2 o 27
/RQ(t) dt = /ag dt + QGOZ/(% cos kt + by sinkt) dt—
0 0 k=179

o o 27

Z Z /(akal cos kt cos lt + aib; cos kt sin [t+

k=1 1=1

bra; sin kt cos It + byb; sin kt sin [t) dt.

Applying the relations (a), (b), (¢), (d) in [I2] (p. 10) we obtain
?R%t) dt = 2mad + W}i(ai +02).
0 =

Hence the integral inequality (30) holds if and only if

- k2 —1
2a9 2 Z(ai + b%)m-
k=1

Since the Fourier series of R(t) lies in the set F of series the Fourier series
of R converges uniformly to R (Lemma 5).
Summarizing our discussion we obtain the main part of the following

Theorem 6. Let L be a 1-dimensional connected C'-differentiable loop
such that the group topologically generated by its left translations is iso-
morphic to the group SLy(R). Then L is compact and belongs to a C*-
differentiable sharply transitive section o of the form

cost sint a b
g . (—slnt COSt){(O a[l);a>0,b€R}—)

( cost sint)<f(t) 9(t) ) with te R (45)

—sint cost 0 fH)

such that the inverse function f~! has the shape
t

1) =e'(1 - /R(u)e“ du) =

0
2 (kay — by,) sin kt + (ay, + kby) cos kt
ag + Z 1+ L2 ’ (46)
k=1
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where R(u) is a continuous function the Fourier series of which is con-
tained in the set F and converges uniformly to R, and g is a periodic
C!'-differentiable function with g(0) = g(27) = 0 such that

o) > 1) [ U 2<“}4_<u";'2<“))

Conversely, if R(u) is a continuous function the Fourier series of which
is contained in F, then the section o of the form (45) belongs to a loop
if fis defined by (46) and g is a C'-differentiable periodic function with
9(0) = g(2m) = 0 satisfying (47).

The isomorphism classes of loops defined by o are in one-to-one cor-
respondence to the 2-sets {(f(t), g(t)), (f(—=t), —g(—t))}.

Proof. The only part of the assertion which has to be discussed is the
isomorphism question. It follows from [7], Theorem 3, p. 3, that any
isomorphism class of the loops L contains precisely two pairs (fi, g1) and

(f2,92). If (f1,91) # (f2,92) and if (fi, g1) satisfy the inequality (27),
then we have

2(=t) + g2 (=) 2 (=) f3(—t) — go(=1) f3(=1) — f3(—t) <O.

since from fi(t) = fo(—t) and g1(t) = —go(—t) we have f{(t) = —f5(—t)
and g} (t) = gj(~t). .

Remark. A loop L belonging to a section o of shape (45) is a 2-covering
of a C!-differentiable loop L having the group PSLs(R) as the group
topologically generated by the left translations if and only if for the
functions f and g one has f(w) = 1 and g(7) = 0 (cf. [9], p. 5106).

Moreover, L is the factor loop I~// { ( 8 (e) ) je= il}. Any n-covering

of L is a non-split central extension L of the cyclic group of order n by
L. The loop L has the n-covering of PSLs(R) as the group topologically
generated by its left translations.

du for all t € (0,2m). (47)
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