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THE DERIVED CATEGORY OF A GRADED

GORENSTEIN RING

JESSE BURKE AND GREG STEVENSON

Abstract. We give an exposition and generalization of Orlov’s theorem on
graded Gorenstein rings. We show the theorem holds for non-negatively graded
rings which are Gorenstein in an appropriate sense and whose degree zero
component is an arbitrary non-commutative right noetherian ring of finite
global dimension. A short treatment of some foundations for local cohomology
and Grothendieck duality at this level of generality is given in order to prove
the theorem. As an application we give an equivalence of the derived category
of a commutative complete intersection with the homotopy category of graded
matrix factorizations over a related ring.

1. Introduction

Let A be a graded Gorenstein ring. In [17] Orlov related the bounded derived
category of coherent sheaves on ProjA and the singularity category of graded A-
modules via fully faithful functors; the exact relation depends on the a-invariant
of A. This is a striking theorem that has found applications in physics, algebraic
geometry and representation theory. To give an idea of the scope of the theorem:
in the limiting case that A has finite global dimension (so the singularity category
is trivial), it recovers (and generalizes to non-commutative rings) Beilinson’s result
[5] that the derived category of ProjA is generated by a finite sequence of twists of
the structure sheaf.

There has been much work related to this theorem. The idea of Orlov’s construc-
tion perhaps first appears in Van Den Bergh’s paper on non-commutative crepant
resolutions [24] where he described functors similar to those considered by Orlov,
in the case of torus invariants. After Orlov’s paper appeared, the idea was further
explored by the physicists Herbst, Hori and Page in [12]. In turn these ideas were
the inspiration for two papers on the derived category of GIT quotients [3, 11].
Segal and then Shipman gave geometric proofs of Orlov’s theorem for commutative
hypersurfaces in [20] and [21]. Related results are [4] and [13]. The theorem has
been used in similar ways in [2, 14]. Finally, it has been used in representation
theory; especially in the study of weighted projective lines, see e.g. [15].

Orlov assumed that A0 a field. In this paper, which we consider largely expos-
itory, we generalize his result to show that the same relation holds when A0 is a
non-commutative noetherian ring of finite global dimension. This has an immediate
application to commutative complete intersection rings and we expect there to be
further applications, for instance to (higher) preprojective algebras. The structure
of our proof is very close to Orlov’s original arguments. We give many details and
we hope that these details may help the reader (even one only interested in algebras
defined over a field) to better understand Orlov’s work.
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The main tool in the proof is a semiorthogonal decomposition; this separates a
triangulated category into an admissible subcategory and its orthogonal. Derived
global sections gives an embedding of Db(ProjA) into D

b(gr≥iA) as an admissible
subcategory. When A0 is a field, Orlov showed that there is an embedding of the
singularity category D

b
sg(grA) into D

b(gr≥iA). The existence of such an embedding
is rather remarkable and constitutes perhaps the key insight required to prove the
theorem. Orlov then used Grothendieck duality in a very clever way to compare the
orthogonals of Db(ProjA) and D

b
sg(grA) inside of Db(gr≥iA). For example when

A is Calabi-Yau, the orthogonals coincide and so there is an equivalence between
D

b(ProjA) and D
b
sg(grA).

The arguments we present here follow those of Orlov. The main addition is
the observation that, when A0 has finite global dimension, one can construct par-
ticularly nice resolutions of complexes of graded modules with bounded finitely
generated cohomology. This allows us to prove Orlov’s embedding D

b
sg(grA) →

D
b(gr≥iA) is valid in this more general setting. We also need to develop some foun-

dations concerning local cohomology and Grothendieck duality over non-commutative
rings to prove analogues of the other steps of Orlov’s proof. These foundations do
not seem to be contained in the literature in the form and generality that we need,
although the arguments we give here are relatively straightforward generalizations
of arguments by Artin and Zhang [1].

Let us give a quick summary of the paper. The second section contains some
categorical background, especially on semiorthogonal decompositions. The third
section is devoted to the derived category of graded modules over a graded ring,
and some standard semiorthogonal decompositions that appear there. This section
contains the key observation, Lemma 3.10, needed to prove the embedding of the
singularity category works for the rings we work with. The fourth section deals with
local cohomology and the semiorthogonal decomposition it gives, while the fifth
deals with the embedding of the singularity category, Grothendieck duality, and
the semiorthogonal decomposition these give. The sixth section contains the proof
of the main result as well as a sufficient condition for a Gorenstein ring to satisfy
Artin and Zhang’s condition χ, which is necessary for the proof. Finally, in the last
section, we apply the main theorem to give a description of the bounded derived
category of a complete intersection ring in terms of graded matrix factorizations.

Acknowledgements. Ragnar-Olaf Buchweitz gave two beautiful lectures on Orlov’s
theorem at Bielefeld University in July 2011 that inspired this and from which
we learned a lot. The existence of the crucial left adjoint to the projection onto
the singularity category over general bases of finite global dimension is implicitly
contained in Ragnar’s exposition of Orlov’s work. We thank Mark Walker for
several helpful conversations on the contents of the paper.

2. Background

We recall here some standard results on semiorthogonal decompositions of tri-
angulated categories which we will need. Throughout this section T denotes a
triangulated category.

Definition 2.1. For D a triangulated subcategory of T , define D⊥ to be the full
subcategory with objects those X ∈ T such that HomT (D,X) = 0 for all objects D
of D. Similarly, ⊥D has objects those X with HomT (X,D) = 0 for all D in D. Both
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D⊥ and ⊥D are thick subcategories of T i.e., they are triangulated subcategories
which are closed under taking direct summands.

Definition 2.2. A triangulated subcategory D of T is left admissible in T if the
inclusion functor i : D → T has a left adjoint; D is right admissible if i has a right
adjoint.

The following criterion for admissibility can be found as [6, Lemma 3.1].

Lemma 2.3. Let D be a triangulated subcategory of T .

(1) The category D is left admissible if and only if for every X in T there is a
triangle:

EX → X → DX → ΣEX

with DX in D and EX in ⊥D.
(2) The category D is right admissible if and only if for every X in T there is

a triangle:

DX → X → EX → ΣDX

with DX in D and EX in D⊥.

Corollary 2.4. A subcategory D of T is left admissible if and only if ⊥D is right

admissible. In this case
(
⊥D

)⊥
= D.

Definition 2.5. A semiorthogonal decomposition of T is a pair of subcategories A
and B such that A is left admissible and B = ⊥A (equivalently, B is right admissible
and A = B⊥). We write this as

T = (A,B) .

The following useful lemma essentially follows from Lemma 2.3 in a straightfor-
ward way.

Lemma 2.6. There is a semiorthogonal decomposition T = (A,B) if and only if
B ⊆ ⊥A and for every X in T there is a triangle

BX → X → AX →

with BX ∈ B and AX ∈ A. We will call such a triangle the localization triangle
for X.

Orlov generalized the definition of semiorthogonal decomposition in [17] to:

Definition 2.7. A sequence of full triangulated subcategories (D1, . . . ,Dn) of T is
a semiorthogonal decomposition if for each i = 1, . . . , n − 1, the thick subcategory
generated by D1, . . . ,Di, which we denote 〈D1, . . . ,Di〉, is left admissible and

⊥ 〈D1, . . . ,Di〉 = 〈Di+1, . . . ,Dn〉.

We can (and will) construct semi-orthogonal decompositions inductively:

Lemma 2.8. Let T = (A,B), A = (D1, . . . ,Di), and B = (Di+1, . . . ,Dn) be
semiorthogonal decompositions. Then

T = (D1, . . . ,Dn)

is a semiorthogonal decomposition.
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3. The bounded derived category of graded modules

We now provide some preliminary results on derived categories of graded mod-
ules. We begin by exhibiting some semiorthogonal decompositions of the bounded
derived category which we will need in the sequel (and which are relatively straight-
forward generalisations of those in Orlov’s work). We also prove the main technical
results concerning graded projectives and graded projective resolutions which we
will need for our extension of Orlov’s result.

In this section A =
⊕

i≥0 Ai is a positively graded noetherian ring with A0 a
ring of finite global dimension. All modules will be right modules unless otherwise
stated. We denote by grA the abelian category of finitely generated graded A-
modules and degree zero homogeneous maps. If M =

⊕
Mi is a graded A-module,

then M(1) is the graded A-module with M(1)i =Mi+1.
We denote by gr≥iA the full subcategory of grA consisting of objects M such

that Mj = 0 for all j < i. This is an abelian subcategory of grA and there is an
adjoint pair of functors

gr≥iA
inc //

grA
(−)≥i

oo

where M≥i =
⊕

j≥iMj is right adjoint to the inclusion.

We denote by D
b(−) the bounded derived category of an abelian category. Both

functors of the above adjoint pair are exact and so induce functors

D
b(gr≥iA)

inc //
D

b(grA)
(−)≥i

oo

which also form an adjoint pair. The functor induced by inclusion is fully faithful
and the essential image is the full subcategory of Db(grA) consisting of objects
M such that Hj(M) ∈ gr≥iA for all j ∈ Z. We denote this subcategory also by

D
b(gr≥iA); it is a right admissible subcategory.

Definition 3.1. Define S<i to be the thick subcategory generated by the objects
A0(e), for all e > −i and S≥i to be the thick subcategory generated by A0(e), for
all e ≤ −i.

Lemma 3.2. An object M of Db(grA) is in S<i if and only if M≥i ≃ 0.

Proof. The full subcategory with objects those M satisfying M≥i ≃ 0 is thick by
virtue of being the kernel of an exact functor. Since A0(e)≥i = 0 for all e > −i, we
see that S<i is contained in this thick subcategory. Thus if M is in S<i we must
have M≥i ≃ 0.

For the converse, we first assumeM is a module, i.e. concentrated in homological
degree 0, and that there is an integer e < i with Mj = 0 for all j 6= e. Since Me is
a finitely generated A0-module and A0 has finite global dimension, Me has a finite
projective resolution over A0. Over A this says that Me is in the thick subcategory
generated by A0(−e), which is contained in S<i.

Now supposeM is a non-zero finitely generated graded A-module withM≥i ≃ 0.
As M is finitely generated there is an integer j with M≥j =M and we may as well
choose a maximal such j, which is necessarily less than i. Consider the triangle

M≥j+1 →M →Mj →
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By the previous argument Mj is in S<i and arguing inductively on the number of
degrees in which M is non-zero we see that M≥j+1 is in S<i, and hence M is in
S<i.

For an arbitrary non-zero object M ∈ D
b(grA), with M≥i ≃ 0 the result follows

from induction on the number of non-vanishing cohomology modules, using the
triangle

M<n →M → Hn(M)[−n] →

where n = max{j |Hj(M) 6= 0} and M<n is the truncation with respect to the
standard t-structure. �

Remark 3.3. It follows from the definition that S≥i is contained in D
b(gr≥iA).

We will show in Lemma 4.17 that S≥i is the full subcategory of Db(gr≥iA) whose
objects have torsion cohomology.

Lemma 3.4. There is a semiorthogonal decomposition

D
b(grA) =

(
S<i,D

b(gr≥iA)
)
.

The localization triangle for M ∈ D
b(grA) is given by the canonical maps

M≥i →M →M/M≥i → .

Proof. Let M be in S<i and N be in D
b(gr≥iA). Then we have that

HomDb(grA)(N,M) ∼= HomDb(gr≥i A)(N,M≥i) = 0

by right adjointness of (−)≥i and since M≥i ≃ 0. Thus D
b(gr≥iA) ⊆

⊥S<i. If M

is any object in D
b(grA) we have the triangle

M≥i →M →M/M≥i →

with M≥i in D
b(gr≥iA) and M/M≥i in S<i. Thus we may apply Lemma 2.6. �

Definition 3.5. Define P<i to be the thick subcategory generated by the objects
A(e) for all e > −i and P≥i to the thick category generated by A(e) for all e ≤ −i.

Remark 3.6. It follows from the definition that P≥i is contained in D
b(gr≥iA). In

fact, P≥i is the full subcategory of Db(gr≥iA) whose objects are perfect complexes
of A-modules.

Lemma 3.7. There is a semiorthogonal decomposition

D
b(grA) = (Db(gr≥iA),P<i).

Before proving this lemma, we need two results on graded projective A-modules
and graded projective resolutions over A.

Lemma 3.8. Let P be a finitely generated graded projective A-module. Then there
is an isomorphism, for some integers n,m1, . . . ,mn,

P ∼=

n⊕

i=1

Pi ⊗A0
A(mi)

where the Pi are projective right A0-modules.
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Proof. Let P be a non-zero finitely generated graded projectiveA-module. Consider
the graded projective A0-module P = P ⊗A A0 which is non-zero by the graded
Nakayama lemma. We obtain a graded projective A-module P ⊗A0

A fitting into a
commutative diagram

P ⊗A0
A

��{{✇
✇

✇

✇

✇

P // P // 0

where the vertical morphism is the canonical one and the dashed arrow exists by
projectivity of P ⊗A0

A. By construction the morphism P ⊗A0
A→ P is surjective

so it splits. But

P ⊗A0
A⊗A A0

∼= P = P ⊗A A0

and so by another application of the graded Nakayama lemma we see P ∼= P ⊗A0
A

is induced up from a graded projective A0-module proving the lemma. �

Definition 3.9. For every graded projective A-module Q, we define summands
Q≺i and Q<i with Q≺i in P<i and Q<i in P≥i via the unique up to isomorphism
split exact sequence of graded projective modules

0 → Q≺i → Q→ Q<i → 0

which exists by the previous lemma.

The next lemma is a key technical observation concerning the structure of reso-
lutions over A.

Lemma 3.10. Every object M in D
b(grA) is quasi-isomorphic to a complex of

finitely generated graded projective A-modules

P = · · · → P j → P j+1 → · · ·

such that P j = 0 for all j ≫ 0 and for any i ∈ Z there exists a ki with P
−k in P≥i

for all k ≥ ki.

Proof. It is sufficient to prove the result for graded A-modules as the condition is
closed under suspensions and taking cones, and every object of Db(grA) can be
written as an iterated extension of suspensions of modules using the standard t-
structure. Let us introduce notation local to this proof. Given a finitely generated
A-module M define the integer

min(M) = min{i ∈ Z |Mi 6= 0}.

Let M be a finitely generated graded A-module and set

M =M ⊗A A0 =M/A≥1M,

which we consider as a graded A0-module. We may assume M has infinite projec-
tive dimension as the result is trivial in the finite projective dimension case. We
will construct a projective resolution of the desired form. If M is zero then, by
Nakayama, so is M and thus we may suppose M 6= 0. We choose an epimorphism
from a graded projective A0-module P 0 → M by writing M ∼= ⊕n

i=1Mi(ai), tak-

ing epimorphisms P 0
i (ai) → Mi(ai) where the P 0

i are projective A0-modules and
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setting P 0 = ⊕n
i=1P

0
i (ai) with the obvious morphism to M . This gives rise to an

exact sequence of graded A-modules

0 → Z0 → P 0 →M → 0,

where P 0 = P 0 ⊗A0
A, with the property that

min(Z0) ≥ min(P 0) = min(M).

We have assumed A0 has finite global dimension, say d. Proceeding as above we
may find projectives P i for i = 1, . . . , d− 1 and exact sequences

0 → Zi → P i → Zi−1 → 0

with min(Zi) ≥ min(P i) = min(Zi−1). Thus, restriction to the graded components
in degree j = min(M) gives an exact sequence

0 → Zd−1
j → P d−1

j → · · · → P 0
j →Mj → 0

of A0-modules with the P i
j projective. As A0 has global dimension d we see Zd−1

j

must be projective. Hence Zd−1 can be written as Zd−1
j ⊕ X with X living in

degrees strictly greater than j. As before we can pick an epimorphism Q→ X from
a graded projective A0-module Q which lives in the same degrees as X . Setting
P d = (Zd−1

j ⊕Q)⊗A0
A we get a short exact sequence

0 → Zd → P d → Zd−1 → 0

with min(Zd) > min(M); thus our recipe guarantees projectives with generators
in degrees less than or equal to min(M) cannot occur beyond the dth step of the
resolution. We can now repeat this procedure starting at Zd to obtain a resolution
satisfying the desired properties. �

Remark 3.11. It is easy to construct examples showing this lemma is no longer true
if A0 does not have finite global dimension. Indeed, let A = k[x, y]/(x2, y2), with
|x| = 0 and |y| = 1. The resolution of A/(x) is

. . .→ A
x
−→ A

x
−→ A→ 0

which does not satisfy the conclusion of the previous lemma.

Proof of 3.7. Given an object M in D
b(grA), let P

≃
−→M be a quasi-isomorphism

where P is a complex of projectives as in the previous lemma. Apply the decom-
position 3.9 degree-wise to P to get a triangle

P≺i → P → P<i →

where P≺i is the subcomplex of P consisting of all projective summands generated
in degrees less than i and P<i is the quotient complex consisting of all projective
summands generated in degree at least i. Since P−k is in P≥i for all k ≫ 0, we
see that P≺i is bounded, and hence in P<i. Note that P<i has bounded finitely
generated cohomology by the triangle, and so must be in D

b(gr≥iA).
Now observe that there are no non-zero maps from objects in P<i to any module

M in gr≥iA. Thus gr≥iA is contained in P<i
⊥ and hence so is Db(gr≥iA) since it

is generated by gr≥iA and P<i
⊥ is thick. Thus P<i ⊆

⊥
D

b(gr≥iA). We can now
apply Lemma 2.6. �
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Remark 3.12. Let M be an object of Db(grA) and P a projective resolution of
M satisfying the conditions of Lemma 3.10. The proof shows that the localization
triangle for M is given by

P≺i → P ≃M → P<i → .

Remark 3.13. Although we have chosen to work throughout with the grading group
Z, the results are valid more generally. One can replace Z by any totally ordered
abelian group and work with graded rings concentrated in degrees greater than or
equal to the identity.

This will also be the case for the majority of the results that follow. However,
there are instances in which one does need additional hypotheses. For example
in Lemma 6.5 (and the main theorem 6.4) one must assume the order admits
successors.

4. Non-commutative Proj and local cohomology

For a graded non-commutative ring A, Artin and Zhang in [1] defined the cat-
egory of quasi-coherent sheaves on the non-commutative projective scheme ProjA
as the category of graded modules modulo the full subcategory of torsion mod-
ules (here and throughout torsion means torsion with respect to the two-sided
ideal A≥1). In this section we recall some of their definitions and results, in par-
ticular concerning local cohomology functors. When A is Gorenstein, these give
a semiorthogonal decomposition of Db(gr≥iA) that is a key step in the proof of
Orlov’s theorem.

We assume A =
⊕

i≥0Ai is a positively graded right noetherian ring. We con-
sider GrA, the abelian category of graded right A-modules. This contains grA, the
category of finitely generated graded A-modules, as a full abelian subcategory.

Definition 4.1. Let M be a graded A-module. An element m ∈M is torsion if

m · (A≥n) = 0

for some n ≥ 1. Denote by τ(M) the submodule of M consisting of all torsion
elements. The module M is torsion if τ(M) = M and torsion-free if τ(M) = 0.
Denote by TorsA the full subcategory of GrA consisting of torsion modules and
set torsA = TorsA ∩ grA.

The subcategory TorsA (respectively, torsA) satisfies the property that for a
short exact sequence

0 → X ′ → X → X ′′ → 0

in GrA (grA), we have X in TorsA (torsA) if and only if X ′ and X ′′ are in TorsA
(torsA) i.e., they are Serre subcategories. Moreover, TorsA is closed under colimits.
Thus we can form the quotient categories

QcohX = GrA/TorsA and cohX = grA/ torsA,

see e.g. [19, §4.3] for the construction. The relevant features here are that:

(1) the categories QcohX and cohX have the same objects as GrA and grA,
respectively;

(2) the categories QcohX and cohX are abelian and there are canonical exact
functors GrA→ QcohX and grA→ cohX ;
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(3) a map f in GrA is an isomorphism in QcohX if and only if ker f and
coker f are in TorsA; in particular the image of every object in TorsA is
isomorphic to zero in QcohX . The analogous statement holds for grA.

For an object M in GrA, we denote by M̃ the image of M in QcohX . For future
reference, we note that as TorsA is closed under the grading shifts, the shifts induce
automorphisms of QcohX and cohX which we also denote by (−)(i).

Remark 4.2. The notation QcohX and cohX reflects that these categories should
be thought of as sheaves of modules on the noncommutative projective scheme
X = ProjA. If A is commutative and generated in degree 1, then by a famous result
of Serre, the category QcohX (respectively cohX) is equivalent to the category of
quasi-coherent (respectively coherent) sheaves on the scheme X = ProjA. If A is
generated in higher degrees, then cohX is equivalent to the category of coherent
sheaves on the Deligne-Mumford stack ProjA.

Definition 4.3. For M,N in GrA, denote by HomGrA(M,N) the graded abelian
group

HomGrA(M,N) =
⊕

i∈Z

HomGrA(M(−i), N) ∼=
⊕

i∈Z

HomGrA(M,N(i)).

If M is an A-A-bimodule, e.g. M = A, then HomGrA(M,N) is a graded right
A-module and so is in GrA.

For any integer p ≥ 0, we have a short exact sequence of A-bimodules:

0 → A≥p → A→ A/A≥p → 0.

Applying HomGrA(−,−), we have an exact sequence of endofunctors on GrA:

0 → HomGrA(A/A≥p,−) → HomGrA(A,−) → HomGrA(A≥p,−).

We may take the colimit of these sequences as p→ ∞ to get another exact sequence
of functors; the sequence remains exact as both the abelian structure and colimits
for endofunctors are inherited value-wise from GrA and GrA has exact filtered
colimits. Note that for any M in GrA we have isomorphisms in GrA:

colim
p→∞

HomGrA(A/A≥p,M) ∼= τ(M) and HomGrA(A,M) ∼=M.

This gives a functorial exact sequence

(4.4) 0 → τ(M) → M → colim
p→∞

HomGrA(A≥p,M).

Proposition 4.5. The inclusion of TorsA into GrA and the corresponding quotient
functor have right adjoints τ(−) and Γ∗, respectively:

TorsA
inc //

GrA
(̃−) //

τ(−)
oo QcohX

Γ∗

oo

where for M in GrA, τ(M) is the torsion submodule of M and

Γ∗(M̃) = colim
p→∞

HomGrA(A≥p,M).

The functor Γ∗ and the inclusion of TorsA are fully faithful so the corresponding
counit and unit respectively are isomorphisms. The remaining counit and unit are
given by (4.4).
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Proof. It is easy to see that τ(−) is a right adjoint to the inclusion of TorsA →
GrA and it follows from abstract nonsense, see [19, §4.4], that there exists a
right adjoint Γ∗ : QcohX → GrA. We give here a direct proof that the func-
tor colim

p→∞
HomGrA(A≥p,−) induces a right adjoint, and that the unit is given by

(4.4).
We first prove two claims:

Claim 1: If M is in TorsA, then colim
p→∞

HomGrA(A≥p,M) = 0.

Proof of claim: To see this, let φ be an element of HomGrA(A≥p,M), for some
p ≥ 0. As A is right noetherian, A≥p is finitely generated as a right ideal by
some x1, . . . , xk. We can find m ≥ 0 so that φ(xi) · A≥m = 0 for all i, using
that M is torsion. Since φ(xi · A≥m) = φ(xi) · A≥m = 0 and, picking m larger if
necessary, A≥m+p = (x1, . . . , xk)A≥m, we have that φ|A≥m+p

= 0 and so φ = 0 in
colim
p→∞

HomGrA(A≥p,M).

Claim 2: There are no non-zero morphisms from torsion modules to modules in the
image of colim

p→∞
HomGrA(A≥p,−).

Proof of claim: Let T be in TorsA and let g : T → colim
p→∞

HomGrA(A≥p, N) be a

map. For x ∈ T , let φ ∈ HomGrA(A≥p, N) be a representative of g(x), for some p.
Pick m such that x · A≥m = 0. We have that g(x) · A≥m = g(x · A≥m) = 0, and
that φ ·A≥m represents g(x) ·A≥m. However, picking a largerm if necessary, we see
φ ·A≥m is the image of φ under the map HomGrA(A≥p, N) → HomGrA(A≥m+p, N)
and so φ = 0 in colim

p→∞
HomGrA(A/A≥p, N), i.e. g(x) = 0.

To see that colim
p→∞

HomGrA(A≥p,−) induces a functor Γ∗ : QcohX → GrA it

is enough to show that colim
p→∞

HomGrA(A/A≥p,−) takes morphisms f with ker f

and coker f in TorsA to invertible morphisms. This follows from Claims 1 and 2,
and two applications of the snake lemma. To show that Γ∗ is right adjoint to the

quotient and (4.4) is the unit, it is enough to show that any map f : M → Γ∗(Ñ)

factors through M → Γ∗(M̃). Note that by construction, we may extend (4.4) to
an exact sequence

(4.6) 0 → colim
p→∞

HomGrA(A/A≥p,M) →M →

colim
p→∞

HomGrA(A≥p,M) → colim
p→∞

Ext1GrA(A/A≥p,M) → 0.

Since HomGrA(A/A≥p,−) · A≥p = 0, subobjects and quotients of torsion modules
are torsion, and the colimit of torsion modules is torsion, we see that the last term

colim
p→∞

Ext1GrA(A/A≥p,M) is in TorsA. To see that the map f : M → Γ∗(Ñ) =

colim
p→∞

HomGrA(A≥p, N) factors throughM → colim
p→∞

HomGrA(A≥p,M), by [19, 4.1],

it is enough to show that there are no non-zero morphisms from torsion modules
to modules in the image of Γ∗, which was shown in Claim 2.

We now show Γ∗ is fully faithful. Let ηM : M → Γ∗M̃ be the unit of the
adjunction, which is the center arrow of (4.6). Since the outer two terms of that

sequence are torsion, it follows that η̃M is an isomorphism. Let ǫ
M̃

:
(̃
Γ∗M̃

)
→ M̃
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be the counit of the adjunction. By definition, the composition

M̃
η̃M
−−→

(̃
Γ∗M̃

)
ǫ
M̃−−→ M̃

is the identity. Thus ǫ
M̃

is an isomorphism and so Γ∗ is fully faithful. �

Remark 4.7. As the notation suggests, if A is a commutative ring generated in

degree 1, then Γ∗(−̃) is isomorphic to
⊕

i∈Z
Γ(ProjA, (̃−)(i)) as they are both

right adjoint to sheafification GrA→ QcohX .

It is clear from the definition that the functor τ(−) takes grA to torsA. However,
Γ∗ does not necessarily take objects of cohX to grA:

Example 4.8. Let A = k[x] with k a field, graded by |x| = 1. The A-module struc-
ture on colim

p→∞
Ext1GrA(A/A≥p, A) is easily computed: it has a k-basis e1, . . . , en, . . .

with |ei| = −i and xei = ei−1. In particular it is not finitely generated over A and

so from (4.6) we see that Γ∗(Ã) is not either.

In the example above, (Γ∗(Ã))≥i is finitely generated (in fact of finite length)
for any i ∈ Z. Artin and Zhang gave a criterion for A-modules that is equivalent to
this fact being true. It is often easy to check. For instance, it holds for all modules
over commutative rings.

Definition 4.9 (Artin, Zhang). An objectM in grA satisfies χj(M) if there exists

an integer n0 such that ExtkGrA(A/A≥n,M)≥i is a finitely generated A-module for
all i ∈ Z, k ≤ j and all n ≥ n0. The ring satisfies condition χj if χj(M) holds for
all M ∈ grA.

If M satisfies χ1(M), then [1, 3.8.3] shows that colim
p→∞

Ext1GrA(A/A≥p,M)≥i is a

finitely generated A-module for all i ∈ Z. Thus by (4.6), we see that Γ≥i(M̃) :=

(Γ∗(M̃))≥i is finitely generated.

Remark 4.10. As [1, 3.1.4] shows, if A is commutative, then every module M

satisfies χj(M). Indeed, we can compute the A-module ExtjgrA(A/A≥p,M) using a

graded free resolution of A/A≥p, which we can assume to be finite in each degree.
If A is not commutative then we must use the bimodule structure on A/A≥p to

compute the A-module structure on ExtjgrA(A/A≥p,M), i.e. in this case we must

look at the derived functor of HomgrA(A/A≥p,−) (rather than deriving in the first
variable) and so we cannot necessarily use a free resolution of A/A≥p to compute

the A-module structure of ExtjgrA(A/A≥p,M). In [22], an example is given of a

non-commutative graded noetherian domain A such that χj(A) does not hold for
any j > 0.

Recall that gr≥iA is the full subcategory of grA with objects thoseM withM =
M≥i. We denote by Gr≥iA the analogous subcategory of GrA. Let Tors≥iA =
Gr≥iA ∩ TorsA and tors≥iA = gr≥iA ∩ torsA. The functor τ(−) restricted
to Gr≥iA (respectively, gr≥iA) is a right adjoint of the inclusion Tors≥iA →
Gr≥iA (respectively, tors≥iA → gr≥iA). Moreover, it is easy to check that the
composition of the functors Gr≥iA → GrA → QcohX induces an equivalence

Gr≥iA/Tors≥iA
∼=
−→ QcohX and Γ≥i = (Γ∗(−))≥i is a right adjoint to the quo-

tient map. There is also an equivalence gr≥iA/ tors≥iA
∼=
−→ cohX .
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Assume that A satisfies the condition χ1. Then, using the above, we have the
following diagram where the vertical arrows are inclusions and the horizontal arrows
form adjoint pairs with the left adjoint on top:

(4.11) Tors≥iA
inc //

Gr≥iA
(̃−) //

τ(−)
oo QcohX

Γ≥i

oo

tors≥iA

OO

inc //
gr≥iA

(̃−) //

OO

τ(−)
oo cohX

Γ≥i

oo

OO

For anyM in Gr≥iA, one counit and one unit are isomorphisms and the other two
are given by

(4.12) 0 → τ(M) →M ∼= HomGrA(A,M) → (colim
p→∞

HomGrA(A≥p,M))≥i

as in the case of GrA. Also note that Γ≥i is fully faithful, as it is the right adjoint
of a quotient functor.

We wish to extend this diagram to functors between the bounded derived cate-
gories of the above abelian categories. The existence of a corresponding localization
sequence involving the derived categories is standard but we provide some details.
We start with a simple lemma.

Lemma 4.13. Let M be an object of Gr≥iA and let M → I be an injective reso-
lution in GrA. Then M → I≥i is an injective resolution in Gr≥iA. In particular
Gr≥iA has enough injectives.

Proof. The functor (−)≥i is exact and M≥i = M , thus M → I≥i is a quasi-
isomorphism. So to complete the proof it is sufficient to show I≥i is a complex of
injectives.

Let J be an injective object in GrA. By adjunction there is an isomorphism of
functors HomGrA(inc(−), J) ∼= HomGr≥i A(−, J≥i). The former functor is exact as
J is injective and the inclusion is exact, and thus so is the latter showing J≥i is
injective in Gr≥iA.

Thus (−)≥i preserves injectives and so the quasi-isomorphism M → I≥i is an
injective resolution. �

The functors to the right in (4.11) are exact and those to the left are left exact
(since they are right adjoints). Since Gr≥iA has enough injectives by the above
lemma and QcohX has enough injectives by [1, 7.1] (in fact, by standard abstract
nonsense both of these categories are Grothendieck categories and so have enough
injectives), we may form Rτ(−) and RΓ≥i, the right derived functors of τ(−) and
Γ≥i, respectively. This gives two pairs of adjoint functors

(4.14) DTors≥i A(Gr≥iA)
inc //

D(Gr≥iA)
(̃−) //

Rτ(−)
oo D(QcohX)

RΓ≥i

oo

where DTors≥i A(Gr≥iA) is the full subcategory of D(Gr≥iA) consisting of com-
plexes with torsion cohomology.

Since Γ≥i sends injectives to injectives and is fully faithful one checks easily that

RΓ≥i is also fully faithful. In particular, we have that (̃−) is a quotient functor. As

(̃−) at the level of the abelian categories is exact, the kernel of this functor at the
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level of derived categories consists of precisely those complexes whose cohomology

is annihilated by (̃−) i.e., it is exactly DTors≥i A(Gr≥iA). This proves the above
functors give a localization sequence of triangulated categories.

It follows that for every M ∈ D(Gr≥iA) there is a localization triangle

(4.15) Rτ(M) →M → RΓ≥i(M̃) → .

where the first map is the counit of the first adjunction of (4.14) and the second
map is the unit of the second adjunction of (4.14).

Remark. Note that when A is commutative, a triangle such as 4.15 can be explicitly
constructed using the Cech complex.

For the above adjoint pairs to restrict to the bounded derived categories of
complexes of finitely generated modules, we need to place two further restrictions
on A. Let RΓ∗ : D(QcohX) → D(GrA) be the right derived functor of the left
exact functor Γ∗.

Definition 4.16 (Artin-Zhang). The cohomological dimension of A is

cd(A) := sup{d |HdRΓ∗(Ã) 6= 0}.

By [1, 7.10], if cd(A) is finite, then RΓ∗(M̃) is a bounded complex for every M̃ ∈
QcohX and so restricts to a functor

RΓ∗ : Db(QcohX) → D
b(GrA).

Since Γ≥i is the composition of Γ∗ and the exact functor (−)≥i, we see that RΓ≥i =
(RΓ∗)≥i and so RΓ≥i restricts to a functor

RΓ≥i : D
b(QcohX) → D

b(Gr≥iA).

By the long exact sequence in homology induced by (4.15), we see that Rτ also
restricts to a functor between bounded derived categories.

Now we consider finiteness. We want to compute the cohomology of Rτ(M).
We view τ(−) = colim

p→∞
HomGrA(A/A≥p,−) as a functor from gr≥iA → tors≥iA.

For M in gr≥iA, let M → IM be an injective resolution in GrA. Then (IM )≥i is
an injective resolution in Gr≥iA. Thus we have

Rτ(M) = colim
p→∞

HomGrA(A/A≥p, (IM )≥i) = colim
p→∞

HomGrA(A/A≥p, IM )≥i

where the second equality follows from the commutativity of the square of inclusions

Tors≥iA //

��

Gr≥iA

��
TorsA // GrA

by taking right adjoints. This shows that

HkRτ(M) ∼= colim
p→∞

ExtkGrA(A/A≥p,M)≥i

for all k ≥ 0. By [1, 3.8.3], ifM satisfies χj(M), then colimp→∞ ExtkgrA(A/A≥p,M)≥i

is a finitely generated A-module for all k ≤ j and all p ∈ Z.
Assume now that A has finite cohomological dimension and satisfies χj for all

j ≥ 0. The above shows that Rτ(−) restricts to a functor

Rτ(−) : Db(gr≥iA) → D
b
tors≥i A

(gr≥iA).
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By the long exact sequence in cohomology coming from (4.15), we see that we also
have a functor

RΓ≥i : D
b(cohX) → D

b(gr≥iA).

This gives the following diagram of adjoint functors, where the top functors are the
left adjoints:

D
b
tors≥i A

(gr≥iA)
inc //

D
b(gr≥iA)

Rτ(−)
oo

(̃−) //
D

b(cohX)
RΓ≥i(−)

oo .

The functor RΓ≥i is fully faithful and its image is left admissible. Also, any object

in this image is contained in
(
D

b
tors≥i A

(gr≥iA)
)⊥

. Indeed, for M an object with

torsion cohomology and any N ∈ D
b(gr≥iA), we have that

HomDb(gr≥i A)(M,RΓ≥iÑ) ∼= HomDb(cohX)(M̃, Ñ) = 0

since M̃ ≃ 0. From this containment and the triangle (4.15), we may apply 2.6 to
see that there is a semiorthogonal decomposition

D
b(gr≥iA) =

(
RΓ≥iD

b(cohX),Db
tors≥i A

(gr≥iA)
)
.

Recall that S≥i is the thick subcategory generated by A0(e) for all e ≤ −i.

Lemma 4.17. There is an equality S≥i = D
b
tors≥i A

(gr≥iA).

Proof. It’s clear that A0(e) is in tors≥iA for all e ≤ −i, so S≥i is contained in
D

b
tors≥i A

(gr≥iA). Given M in D
b
tors≥i A

(gr≥iA), we have that H∗(M) is finitely

generated and torsion, thusM must have cohomology in only finitely many degrees.
Analogously to the proof of 3.2, this shows that M is in S≥i. �

The above shows the following:

Proposition 4.18. Let A be a positively graded right noetherian ring that satisfies
condition χ and has finite cohomological dimension. Then there is a semiorthogonal
decomposition

D
b(gr≥iA) =

(
RΓ≥iD

b(cohX),S≥i

)
.

The corresponding localization triangle is given by (4.15).

5. Singularity category of a Gorenstein ring

In this section we assume that A =
⊕

i≥0 Ai is a positively graded (two-sided)
noetherian ring with A0 of finite global dimension, but not necessarily commutative.

In the following, we denote by idAM the graded injective dimension of a graded
A-module M .

Definition 5.1. The ring A is (Artin-Schelter) Gorenstein if idAA <∞, idAop A <
∞ and

RHomgrA(A0, A) ∼= A0[n](a) for some n, a ∈ Z

in both D
b(grA) and D

b(grAop). The unique integer a is the a-invariant of A.
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Remark 5.2. In [16] a different definition of Artin-Schelter Gorenstein ring is given
under the restriction that A0 is a finite dimensional algebra over a fixed base field
k. Their definition differs from ours in two ways: Minamoto and Mori require the
shift occurring to match the injective dimension of A i.e., n = − idAA, and that
rather than RHomgrA(A0, A) ∼= A0[n](a) one asks for an isomorphism

RHomgrA(A0, A) ∼= Homk(A0, k)[n](a).

We note both definitions restrict to the classical one in the case A0 = k.
As an example, if R is a commutative regular ring of positive Krull dimension

and we set A = R[x]/(xn) with x in degree 1 then A is AS-Gorenstein in our sense
but not according to [16]. On the other hand the definition of Minamoto-Mori
covers certain (higher) preprojective algebras which are in general excluded by our
definition.

From this point forward we will use the term Gorenstein ring to refer to a ring
that is Gorenstein either in the sense of Definition 5.1 or [16]. Our results hold for
both definitions. We will work with the definition we give and, when necessary,
point out what changes in the arguments are necessary if one uses the definition
of Minamoto and Mori. In fact, the only place in which the arguments do not go
through verbatim are Lemmas 6.2 and 6.6 which require minor tweaking.

The most important feature of Gorenstein rings for us is the duality given below.
We will make a standard abuse of notation and not differentiate between the two
duality functors notationally.

Lemma 5.3. Assume that A is a Gorenstein ring. Then the functors

D = RHomgrA(−, A) : D
b(grA) → D

b(grAop)
op

D = RHomgrAop(−, A) : Db(grAop) → D
b(grA)

op

are quasi-inverse equivalences.

Proof. We first observe that D does indeed take D
b(grA) to D

b(grAop)op. Since
A has finite injective dimension as both a left and a right module over itself it is
clear that D preserves boundedness of cohomology. It is also clear that D sends
complexes with finitely generated cohomology groups to the same as we can resolve
any object of D

b(grA) by a complex of finitely generated projectives and A is
noetherian.

These functors are adjoint so we can consider the unit of this adjunction

η : Id → D2

and we need to show it is an equivalence. But this is again clear: for a bounded
above complex of finitely generated projectives the map η is just componentwise
the natural map to the double dual and finitely generated projectives are reflexive.

�

Recall that P≥i is the thick subcategory of Db(grA) generated by those A(e)
with e ≤ −i and P<i is the thick subcategory generated by the A(e) with e > −i.

Lemma 5.4. If A is Gorenstein, there is a semiorthogonal decomposition

D
b(gr≥iA) =

(
P≥i, (

⊥P≥i) ∩ D
b(gr≥iA)

)
.

For M ∈ D
b(gr≥iA), the localization triangle is given by

D(G)≺i →M ∼= D(G) → D(G)<i →
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where the notation is as in Definition 3.9, and G→ D(M) is a projective resolution
of the dual of M as in Lemma 3.10.

Proof. Let M be an object of D
b(gr≥iA) and let G → D(M) be a projective

resolution as in Lemma 3.10, where D(M) = RHomgrA(M,A) is the image of M
under the duality functor. As in the proof of Lemma 3.7, there is a triangle

G≺−i+1 → G→ G<−i+1 →

where G≺−i+1 is an object of P<−i+1 and every component of G<−i+1 is generated
in degree at least −i + 1. If P = P0 ⊗A0

A(e) is any indecomposable graded
projective A-module, then D(P ) ∼= HomgrA(P,A)

∼= (P0)
∗⊗A0

A(−e), where (P0)
∗

is the A0-dual of P0. Thus D(G≺−i+1) = D(G)<i and D(G<−i+1) = D(G)≺i.
Applying D to the triangle above gives a triangle

D(G)≺i → D(G) → D(G)<i → .

Note that D(G)<i is in P≥i and that there are isomorphisms M
≃
−→ D(D(M))

≃
−→

D(G). We can now apply Lemma 2.6, once we show that D(G)≺i is in (⊥P≥i) ∩
D

b(gr≥iA). It follows from the long exact sequence in homology of the above
triangle that each of the homology groups of D(G)≺i is generated in degrees at
least i and thus D(G)≺i is in D

b(gr≥iA). That D(G)≺i is in ⊥(P≥i) follows from
the fact that HomgrA(A(e), A(f)) = 0 for e > f . �

Let us denote by Bi the subcategory (⊥P≥i) ∩ D
b(gr≥iA), which by the above

lemma is a right admissible subcategory of Db(gr≥iA). There is a description of Bi

using the well-known singularity category of A.

Definition 5.5. Let A be a graded ring.

(1) An object M in D
b(grA) is perfect if M is in the thick subcategory gener-

ated by A(e) for all e ∈ Z i.e., it is quasi-isomorphic to a bounded complex
of projectives. We denote the subcategory of perfect complexes by perf(A).
We see from the definitions that perf(A) = 〈P≥i,P<i〉.

(2) The singularity category of A is

D
b
sg(grA) := D

b(grA)/ perf(A).

Orlov showed that when A is a connected graded Gorenstein algebra over a field,
there is an embedding of Db

sg(grA) in D
b(grA) for every i ∈ Z, and the image is

equal to Bi. We now show this holds in the generality in which we are working.
First we recall a lemma whose proof is left to the reader.

Lemma 5.6. Let A be a left admissible subcategory in a triangulated category T
with iL : T → A the left adjoint to the inclusion i : A → T . Then iL induces an
equivalence

T /⊥A → A

with inverse equivalence the composition A → T → T /⊥A. The analogous state-
ment holds for right admissible subcategories.

Applying the above lemma to 3.7 shows that there is an equivalence

ψi : D
b(grA)/P<i

∼=
−→ D

b(gr≥iA).
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Remark 3.12 shows that ψi(M) = P<i, where P → M is a projective resolution as
in Lemma 3.10. If we apply Lemma 5.6 again to the semiorthogonal decomposition
D

b(gr≥iA) = (P≥i,Bi), we have an equivalence

φi : D
b(gr≥iA)/P≥i

∼=
−→ Bi

with φi(N) = D(Q)≺i, whereQ→ D(N) is a projective resolution as in Lemma 3.10.
Let us set bi = φi ◦ π ◦ ψi where π : D

b(gr≥iA) → D
b(gr≥iA)/P≥i is the quotient

functor. This gives an equivalence

(5.7) bi : D
b
sg(grA) = D

b(grA)/ 〈P<i,P≥i〉
∼=
−→ Bi

with bi(M) = D(Q)≺i, where Q→ D(P<i) and P → M are projective resolutions
as in Lemma 3.10. The inverse of the equivalence is given by the composition of
the inclusion and quotient Bi → D

b(grA) → D
b(grA)/ perf(A). Moreover, we have

that bi followed by the inclusion Bi → D
b(gr≥iA) is left adjoint to the quotient

functor Db(gr≥iA) = D
b(grA)/P<i → D

b(grA)/ 〈P<i,P≥i〉 = D
b
sg(grA).

To sum up, we have shown the following:

Proposition 5.8. If A is a graded Gorenstein ring, the quotient D
b(gr≥iA) →

D
b
sg(grA) has a fully faithful left adjoint

bi : D
b
sg(grA) → D

b(gr≥iA).

The image of bi is the subcategory Bi = (⊥P≥i) ∩ D
b(gr≥iA) and there is a

semiorthogonal decomposition:

D
b(gr≥iA) = (P≥i,Bi).

The localization triangle is described in 5.4.

6. Relating the bounded derived category of coherent sheaves and

the singularity category

In this section we prove the main theorem by comparing the semiorthogonal
decompositions constructed in the previous sections. We assume that A =

⊕
i≥0Ai

is a positively graded noetherian Gorenstein ring with A0 a ring of finite global
dimension, but not necessarily commutative.

Gorenstein rings often satisfy the two properties we need to apply 4.18.

Lemma 6.1. If A is a Gorenstein ring, then A has finite cohomological dimension.

Proof. We need to show

cd(A) = sup{d |HdRΓ∗(Ã) 6= 0} <∞.

Since A is Gorenstein we can choose a bounded injective resolution I for A as a
rightA-module. HenceRτ(A) = τ(I) has bounded cohomology and the localization
triangle

Rτ(A) → A→ RΓ∗(Ã) →

then implies RΓ∗(Ã) also has bounded cohomology. �

We have remarked earlier that any commutative ring satisfies condition χ. The
next lemma gives some noncommutative and not necessarily graded connected ex-
amples.
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Lemma 6.2. Let k be a commutative ring and A a flat Gorenstein k-algebra. Then
A satisfies condition χ.

Proof. As A is flat over k it follows that the enveloping algebra A ⊗k A
op is flat

over both A and Aop. Thus the restriction of scalars functors induced by the maps
A → A ⊗k A

op and Aop → A ⊗k A
op preserve injectives. Taking an injective

resolution I of A over A⊗k A
op thus gives a bimodule resolution of A which is an

injective resolution as both a complex of left and of right A-modules.
We may use such a resolution to computeD = RHomgrA(−, A) as HomgrA(−, I)

and obtain the correct Aop-module structure and similarly for the inverse duality
functor; this is just a consequence of the fact that I and A are quasi-isomorphic
as complexes of bimodules. Given a complex of injectives M ∈ D

b(grA) we now
compute, using the duality of Lemma 5.3, that there are quasi-isomorphisms of
right A0-modules

HomgrA(A0,M) ∼= RHomgrAop(HomgrA(M, I),HomgrA(A0, I))

∼= HomgrAop(P,HomgrA(A0, I))

∼= HomgrAop(P, νA0[n](a)),

where P is a projective resolution of HomgrA(M, I) over Aop and ν is a twist by
some, possibly non-trivial, automorphism which needs to be accounted for as we
view HomgrA(A0, I) as a bimodule rather than just a right module (see for example
[16, Lemma 2.9]). Now HomgrAop(P,Σn

νA0(a)) is a complex of finitely generated
A0-modules and so in particular has finitely generated cohomology over A0 and
hence over A. In particular, if M is an injective resolution of a right A module N
this shows ExtigrA(A0, N) is finitely generated over A for all i ∈ Z.

It only remains to observe that A/A≥n has a filtration, as bimodules, by copies
of A0(j) for j ∈ Z and considering the corresponding long exact sequences shows
RHomgrA(A/A≥n,M) has finitely generated cohomology for all M ∈ D

b(grA).
Hence A satisfies condition χ.

�

Remark 6.3. In the above lemma if A is AS-Gorenstein in the sense of [16] then
one has to replace νA0(a) by Homk(νA0(a), k) but this does not alter the argument
as HomgrAop(P,Σn Homk(νA0(a), k)) is still a complex of finitely generated A0-
modules.

Theorem 6.4. Let A =
⊕

i≥0 Ai be a positively graded noetherian Gorenstein ring
with A0 of finite global dimension, but not necessarily commutative. We assume in
addition that A satisfies condition χ. Let a be the a-invariant of A defined in 5.1.

(1) If a > 0, then for any i ∈ Z there is a semiorthogonal decomposition

D
b(cohX) =

(
O(−i− a+ 1), . . . ,O(−i), B̃i

)
,

where O(j) is the image of A(j) in cohX and Bi is the image of Db
sg(grA)

under the fully faithful functor bi : Db
sg(grA) → D

b(gr≥iA) described in
(5.7).

(2) If a < 0, then for any i ∈ Z there is a semiorthogonal decomposition

D
b
sg(grA) =

(
pA0(−i), . . . , pA0(−i+ a+ 1), pRΓ≥i−aD

b(cohX)
)
,

where p : Db(gr≥iA) → D
b
sg(grA) is the canonical quotient.
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(3) If a = 0, then for any i ∈ Z the functors (̃−)bi : D
b
sg(grA) → D

b(cohX)

and pRΓ≥i : D
b(cohX) → D

b
sg(grA) are inverse equivalences.

Before beginning the proof, we need two lemmas. For the rest of the section
we rely heavily on notation introduced earlier: recall that S<i (respectively S≥i) is
the thick subcategory generated by the objects A0(e), for all e > −i (respectively
e ≤ −i) and P<i (respectively P≥i) is the thick subcategory generated by the
objects A(e) for all e > −i (respectively e ≤ −i).

Lemma 6.5. Let A be a graded ring.

(1) For any i ∈ Z, there is a semiorthogonal decomposition

P≥i = (P≥i+1, A(−i)) .

(2) For any i ∈ Z, there is a semiorthogonal decomposition

S<i+1 = (S<i, A0(−i)) .

Proof. It is clear that A(−i) ⊆ ⊥P≥i+1. We know that any object in P≥i is isomor-
phic in D

b(gr≥iA) to a bounded complex X of finitely generated graded projective
modules and so we may restrict ourselves to working with such complexes. As in
the proof of 3.7, using the structure of graded projectives given in 3.8 and the no-
tation of Definition 3.9, we see that there is a short exact sequence of complexes,
split in each degree

0 → X≺i+1 → X → X<i+1 → 0

where X≺i+1 is the subcomplex of X which is termwise the projective summands
generated in degree i and X<i+1 is the quotient complex which is termwise all those
projective summands generated in degree at least i+ 1. This gives a triangle

X≺i+1 → X → X<i+1 →

with X≺i+1 in the thick subcategory generated by A(−i) and X<i+1 in P≥i+1. By
Lemma 2.6 we have proved part 1.

We have that A0(−i) ∈
⊥S<i, since RHomgrA(A0(e), A0(f)) ≃ 0 for all e < f .

Indeed, we may find a graded free resolution of A0(e) that exists entirely in degrees
at least e. For any X ∈ S<i+1, we have the triangle

X≥i → X → X/X≥i →

as in Lemma 3.4. Since X≥i+1 = 0 we see X≥i has cohomology concentrated in
grading degree i and so is in the thick subcategory generated by A0(−i). On the
other hand X/X≥i is killed by (−)≥i so is in S<i by Lemma 3.2. Applying Lemma
2.6 now proves part 2. �

For the sake of clarity we introduce the following notation for the next lemma.
We denote by S<i(A) and S<i(A

op) the thick subcategories generated by the A0(e),
for all e > −i, in D

b(grA) and D
b(grAop) respectively. We use similar notation for

S≥i, P≥i, and P<i in order to indicate in which category we are working.

Lemma 6.6. Under the hypothesis of Theorem 6.4, we have S≥i
⊥ = ⊥P≥i+a as

subcategories of Db(gr≥iA).

Proof. As A is Gorenstein we have Grothendieck duality by Lemma 5.3. We note
that restricting the duality functor D = RHomgrA(−, A) to S≥i gives an equiva-
lence

D : S≥i(A)
∼=
−→ (S<−i−a+1(A

op))
op
.



20 JESSE BURKE AND GREG STEVENSON

Indeed, one can see this simply by computing D applied to the generators and
observing equivalences send thick subcategories to thick subcategories. Similarly
we can also restrict D to get an equivalence

D : P<−i−a+1(A)
∼=
−→ (P≥i+a(A

op))
op
.

By 3.4, 3.7, and the definition of a semi-orthogonal decomposition, we have in
D

b(grA)
⊥S<−i−a+1(A) = D

b(grA≥−i−a+1) = P<−i−a+1(A)
⊥.

We thus have

S≥i(A)
⊥

∼=
−→ ((S<−i−a+1(A

op))
op
)
⊥
=

(
⊥S<−i−a+1(A

op)
) op

=
(
P<−i−a+1(A

op)⊥
) op

=⊥((P<−i−a+1(A
op))

op
)

∼=
−→ ⊥P≥i+a(A),

i.e. the functor D2, which is isomorphic to the identity functor, takes S≥i(A)
⊥ to

⊥P≥i+a(A) and hence these categories are equal. �

Remark 6.7. If A is AS-Gorenstein in the sense of [16] then one needs a minor
additional argument to prove the above lemma. We need to check D(S≥i(A)),
the thick subcategory of Db(grAop)op generated by the D(A0(e)) for e ≤ −i, is
(S<−i−a+1(A

op)) op. By definition

RHomgrA(A0(e), A) ∼= Homk(A0, k)[−n](−e+ a)

and it is sufficient to check this object generates the same thick subcategory as
A0(−e + a) (of course we can ignore the degree shift). This follows essentially
immediately from the equivalence

Homk(−, k) : D
b(mod A0)

∼=
−→ D

b(mod Aop
0 )op

which sends the generator A0 to Homk(A0, k).

Proof of Theorem 6.4. Combining the decompositions of 3.4, 5.8 via 2.8 there is a
semiorthogonal decomposition

(6.8) D
b(grA) = (S<i,P≥i,Bi) .

Similarly, by 3.4, 4.18 and 2.8, there is a semiorthogonal decomposition

D
b(grA) =

(
S<i,RΓ≥iD

b(cohX),S≥i

)
.

Using Lemma 6.6, we see that ⊥P≥i+a = S≥i
⊥ =

(
S<i,RΓ≥iD

b(cohX)
)
, and thus

there is a semiorthogonal decomposition

(6.9) D
b(grA) =

(
P≥i+a,S<i,RΓ≥iD

b(cohX)
)
.

The rest of the proof boils down to comparing the decompositions (6.8) and
(6.9), depending on the sign of a.

Assume first that a ≥ 0. Then P≥i+a ⊆ D
b(gr≥iA) by definition, and D

b(gr≥iA) =
⊥S<i by 3.4. Hence the first two factors of (6.9) are mutually orthogonal and we
may swap them to get

(6.10) D
b(grA) =

(
S<i,P≥i+a,RΓ≥iD

b(cohX)
)
.

Comparing with (6.8) we see that

D
b(gr≥iA) = (P≥i,Bi) =

(
P≥i+a,RΓ≥iD

b(cohX)
)
.
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By 6.5 there is a decomposition

P≥i = (P≥i+a, A(−i− a+ 1), . . . , A(−i+ 1), A(−i)) .

It follows there is an equality in D
b(gr≥iA):

(A(−i− a+ 1), . . . , A(−i+ 1), A(−i),Bi) = RΓ≥iD
b(cohX).

Applying (̃−) to both sides gives the semiorthogonal decomposition

D
b(cohX) =

(
O(−i− a+ 1), . . . ,O(−i), B̃i

)
.

Assume now that a ≤ 0. In this case, P≥i ⊆ S<i
⊥, i.e. HomDb(grA)(S<i,P≥i) =

0. To see this, it is enough to check that HomDb(grA)(A0(e)[m], A(f)) = 0 for all
e > −i, f ≤ −i and all m ∈ Z. But we have that

HomDb(grA)(A0(e)[m], A(f)) ∼= HomDb(grA)(A0, A)(f − e)[−m]

=
(
H−mRHomgrA(A0, A)

)
f−e

.

By the definition of Gorenstein, this is nonzero if and only if−m = n and f−e = −a,
however f − e < 0 and −a ≥ 0. Thus we may switch the order of the first two
factors of (6.8) and we have a semi-orthogonal decomposition

(6.11) D
b(grA) = (P≥i,S<i,Bi).

We also have, substituting i− a for i in (6.9),

D
b(grA) = (P≥i,S<i−a,RΓ≥i−aD

b(cohX)).

This shows that (S<i,bD
b
sg(grA)) = (S<i−a,RΓ≥i−aD

b(cohX)). By 6.5 we have
S<i−a = (S<i, A0(−i), A0(−i− 1), . . . , A0(−i+ a+ 1)). Thus we have

Bi =
(
A0(−i), A0(−i− 1), . . . , A0(−i+ a+ 1),RΓ≥i−aD

b(cohX)
)

and applying the functor p : Db(gr≥iA) → D
b
sg(grA) gives the desired decomposi-

tion. �

7. Complete intersection rings and matrix factorizations

In this section we apply the main theorem to relate the derived category of a
commutative complete intersection ring to the homotopy category of graded matrix
factorizations over a “generic hypersurface.”

7.1. Graded matrix factorizations. Let S =
⊕

i≥0 Si be a commutative noe-
therian graded ring and let W ∈ Sd, for some d ≥ 1. A graded matrix factorization
of W is a pair of graded projective S-modules E1, E0 and morphisms in grS,

e1 : E1 → E0 e0 : E0 → E1(d)

such that e0e1 =W ·1E1
and e1(d)e0 =W ·1E0

. A morphism h between E = (E1
e1−→

E0
e0−→ E1(d)) and F = (F1

f1
−→ F0

f0
−→ F1(d)) is a pair of maps h1 : E1 → F1 and h0 :

E0 → F0 making the obvious diagrams commute. One defines a homotopy between
two such maps analogously to the case of a map of complexes. The category with
objects graded matrix factorizations of W and morphisms homotopy equivalence
classes of morphisms of matrix factorizations is called the homotopy category of
matrix factorizations and denoted [gr-mf(S,W )].

Now assume that S0 is a regular commutative ring and S is a polynomial ring
over S0. Set A = S/(W ) and consider the singularity category D

b
sg(grA) as defined
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in 5.5. The assignment that sends E = (E1
e1−→ E0

e0−→ E1(d)) to the image of
coker e1 in D

b
sg(grA) induces a functor

(7.1) coker : [gr-mf(S,W )] → D
b
sg(grA).

It follows from work of Eisenbud [10] and and Buchweitz [8], but seems to have
first been written down by Orlov in [17, §3] that this functor is an equivalence of
categories.

7.2. Generic hypersurface. Let R = Q/(f), where Q is a commutative regular
ring of finite Krull dimension, and f = f1, . . . , fc is a Q-regular sequence. Define
S = Q[T1, . . . , Tc] to be the graded polynomial ring over Q with |Ti| = 1. Let
W = f1T1 + . . .+ fcTc ∈ S1 and set A = S/(W ).

Let Y = ProjA and note that there is a diagram

(7.2) Pc−1
R = Proj (S ⊗Q R)

β //

π

��

Y // ProjS = Pc−1
Q

��
SpecR // SpecQ

where the vertical arrows are the canonical proper maps and each horizontal arrow
is a regular closed immersion and thus has finite Tor dimension. In particular the
map β : Pc−1

R → Y is a regular closed immersion of codimension c − 1. Orlov
used this setup in [18] to show that there is an equivalence between the singularity
categories of R and Y . This equivalence was used in [9] and [23].

Lemma 7.3. The functor β∗π
∗ : Db(R) → D

b(cohY ) is fully faithful and has a
right adjoint. Thus the image R is a right admissible subcategory of D

b(cohY )
equivalent to D

b(R). Moreover, the right orthogonal of R is

(β∗π
∗
D

b(R))⊥ = 〈OY (−c+ 2), . . . ,OY (−1),OY 〉.

Proof. Orlov shows in [18, 2.2] that the functor β∗π
∗ : D

b(R) → D
b(cohY ) is

fully faithful and has a right adjoint (the existence of a right adjoint to β∗ is one
formulation of Grothendieck duality in this context). He also shows in [18, 2.10]
that the left orthogonal of the image is 〈OY (1), . . . ,OY (c− 1)〉; a slight reworking
of this argument shows the right orthogonal is as claimed. �

7.3. The equivalence. We continue to assume that R is a complete intersection
of the form Q/(f), where Q is a commutative regular ring of finite Krull dimension,
and f = f1, . . . , fc is a Q-regular sequence. Recall that A = Q[T1, . . . , Tc]/(f1T1 +
. . . + fcTc) = S/(W ). We wish to apply Theorem 6.4 to this ring. We first must
show A is Gorenstein. This holds by “graded local duality” as in [7, §3.4].

Lemma 7.4. There is an isomorphism in D
b(grA),

RHomgrA(A0, A) ∼= A0[−n](c− 1),

where n = dimA. In particular A is a Gorenstein ring with a-invariant c− 1.

We now have:

Theorem 7.5. There is an equivalence

Ψ : Db(R)
∼=
−→ [gr-mf(S,W )]
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given by Ψ = q (RΓ≥0)β∗π
∗, where q is the composition D

b(grA≥0)
p
−→ D

b
sg(grA)

∼=
−→

[gr-mf(S,W )].

Proof. By Theorem 6.4 applied to A with i = 0, we know that D
b(cohY ) has a

semiorthogonal decomposition
(
OY (−c+ 2), . . . ,OY , B̃i

)
where Bi is the image of

D
b
sg(grA) under the fully faithful functor bi : D

b
sg(grA) → D

b(gr≥iA) described in

(5.7). Thus B̃i

⊥
= (OY (−c+ 2), . . . ,OY ), which by Lemma 7.3 is also equal to R⊥,

where R is the image of Db(R) under β∗π
∗. Thus R = B̃i and applying qRΓ≥0 to

both sides we have an equivalence

D
b(R)

qRΓ≥0β∗π
∗

−−−−−−−−→ D
b
sg(grA).

Finally, the equivalence (7.1) finishes the proof. �

In [9], it was shown that there is an equivalence

D
b
sg(R)

∼= [MF (Pc−1
Q ,O(1),W )],

where [MF (Pc−1
Q ,O(1),W )] is the homotopy category of matrix factorizations of

locally free sheaves on Pc−1
Q . This category has objects pairs of locally free sheaves

(E1, E0) on Pc−1
Q and maps e1 : E1 → E0 and e0 : E0 → E1(1) such that composition

is multiplication by W . Morphisms are defined analogously as in the affine case
above, however there is a further localization at objects that are locally contractible.

There is an obvious functor (̃−) : [gr-mf(S,W )] → [MF (Pc−1
Q ,O(1),W )]. This

equivalence fits into the following commutative diagram, where the left hand arrow
is the natural projection onto the singularity category.

D
b(R)

∼=
//

��

[gr-mf(S,W )]

(̃−)

��
D

b
sg(R) ∼=

// [MF (Pc−1
Q ,O(1),W )].
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