arXiv:1507.00904v1 [gr-gc] 1 Jul 2015

Gravitational Dust Collapse in f(R)
Gravity

M. Farasat Shamir* Zahid Ahmad ®Tand Zahid Raza(!)

(DDepartment of Sciences & Humanities,
National University of Computer & Emerging Sciences,
Lahore Campus, Pakistan.
(2)Department of Mathematics, COMSATS,
Institute of Information Technology, University Road,
Abbottabad, Pakistan.

Abstract

This paper is devoted to investigate gravitational collapse of dust
in metric f(R) gravity. We take FRW metric for the interior region
while the Schwarzchild spacetime is considered for the exterior region
of a star. The junction conditions have been derived to match interior
and exterior spacetimes. The assumption of constant scalar curvature
is used to find a solution of field equations. Gravitational mass is
found by using the junction conditions. It is concluded that the con-
stant curvature term f(Ry) plays the role of the cosmological constant
involved in the field equations of general relativity.
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1 Introduction

The most interesting topic in the gravitational physics today is the expansion
of our universe. The support to this argument comes from different sources
such as Supernovae la (SNIa) experiments [I], cosmic microwave background
fluctuations [2] and X-ray experiments [3]. All these observations indicate
that our universe is expanding with an accelerated rate. The phenomenon of
dark matter and dark energy is another topic of discussion [4]. Einstein gave
the concept of dark energy in 1917 by introducing a small positive cosmo-
logical constant in the field equations. But later on, he rejected it. However,
it is now believed that the cosmological constant may be a suitable candi-
date for dark energy. Higher dimensional theories [5] such as M-theory or
string theory may also be helpful to explain this cosmic expansion. Another
justification comes from modification of general theory (GR) involving some
inverse curvature terms [6]. However, modified gravity with inverse curvature
terms seems to be unstable and may not pass solar system tests [7]. This dis-
crepancy can be addressed by including higher derivative terms. Moreover,
the viability can be achieved by considering squared curvature terms [§]. Tt
has been suggested that the current expansion may be justified if we add
some suitable powers of curvature in the usual Einstein-Hilbert action [9].
Thus it seems interesting to study the universe in the context of alternative
or modified theories of gravity.

Among various modification, f(R) gravity is a possible candidate which
gives a natural gravitational alternative to dark energy [I0]. This theory may
provide an easy unification of early time inflation and late time acceleration.
The cosmic acceleration can be explained by introducing the term 1/R at
small curvatures. It was Buchdahl [I1] who introduced f(R) gravity using
non-linear Lagrangians. The f(R) theory of gravity seems most suitable due
to its cosmologically important f(R) models. These models consist of higher
order curvature terms as functions of Ricci scalar R. Some viable f(R) grav-
ity models [9] have been suggested which show the unification of late-time
acceleration and early-time inflation. It is now expected that dark matter
problem can be addressed using viable f(R) models. In recent years, many
authors have shown keen interest to investigate this theory in different con-
text [12]-[I7]. Some detailed reviews are available to better understand the
theory [18]. Multamdki and Vilja [19] investigated static spherically symmet-
ric vacuum solutions in f(R) theory. They established that the field equations
in f(R) gravity gave the Schwarzschild de Sitter solution. Exact spherically



symmetric interior solutions in metric f(R) gravity have been studied by
Shojai and Shojai [20]. Hollenstein and Lobo [21] analyzed static spherically
symmetric solutions in f(R) gravity coupled to non-linear electrodynamics.
f(R) gravity at one-loop level in de Sitter universe has been investigated
by Cognola et al. [22]. Cylindrical symmetry has also been widely used to
investigate f(R) gravity in different contexts [23]. Recently developed f(7')
gravity is another alternative theory which is the generalization of teleparal-
lel gravity. This theory also seems interesting as it may explain the cosmic
acceleration without involving the dark energy. A considerable amount of
work has been done in this theory so far [24].

Gravitational collapse is an interesting and important issue in GR. It is
involved in the structure formation of the universe causing the existence of
galaxies, stars and planets. The singularity theorem suggests that the occur-
rence of spacetime singularity is a general feature of any cosmological model
under some reasonable conditions. So the solutions with singularities can
be produced by the gravitational collapse of non-singular and asymptotically
flat initial data [25]. The classification of spacetime singularities is based on
two facts whether they can be observed or not. If a spacetime singularity
is locally observable then it is termed as naked. A black hole is a space-
time singularity which can not be observed. Penrose [26] proposed a cosmic
censorship conjecture that the singularities appearing in the gravitational col-
lapse are always covered by an event horizon. Formation of compact stellar
objects like neutron stars and white dwartf is the result of gravitational col-
lapse. Spherical symmetry has been extensively used to study gravitational
collapse. Dust gravitational collapse was first explored by Oppenheimer and
Snyder [27]. Markovic and Shapiro [28] extended their work by consider-
ing positive cosmological constant. Many researchers [29] have investigated
gravitational collapse by considering interior and exterior regions.

In the recent years, many authors have shown keen interest to explore
gravitational collapse in alternative theories of gravity [30]-[34]. It has been
shown that farther one goes from GR, there is a greater chance of having a
naked singularity [30]. Ghosh and Maharaj [35] obtained a condition for the
occurrence of a naked singularity in the collapse of null dust in higher dimen-
sional f(R) gravity. Openheimer-Snyder collapse in Brans-Dicke theory has
been discussed by Scheel [36]. In a recent paper [37], Rudra and Debnath
discussed gravitational collapse in Vaidya spacetime for Galileon theory of
gravity. Sharif and Abbas [38] studied the dynamics of shearfree dissipative
gravitational collapse in f(G) gravity. Spherically symmetric perfect fluid
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gravitational collapse has been discussed in metric f(R) gravity by Sharif
and Kausar [39]. Cembranos et al. [40] analyzed a general f(R) model with
uniformly collapsing cloud of self-gravitating dust particles.

In this paper, we are focussed to discuss the gravitational collapse with
dust case in f(R) gravity. We take Friedmann-Robertson-Walker (FRW)
spacetime in the interior region and Schwarzschild metric in the exterior
region. The paper is organized as follows: Section 2 is used to give general
formalism about junction conditions between interior and exterior regions.
We introduce field equations in f(R) gravity and solve them using FRW
metric for dust case in section 3. In Section 4, we find the apparent horizons
and discuss the role of constant curvature term. Finally, we summarize the
results in the last section.

2 General Formalism

In this section, we give junction conditions at the surface of a collapsing dust
sphere. For this purpose, a 4D spherically symmetric spacetime is divided by
a time-like 3D hypersurface X into two regions namely interior and exterior
regions. Interior and exterior regions are denoted by V'~ and V' respectively.
Interior region represented by FRW spacetime is given by

ds* = dt* — a®(t)dr® — a®(t)b*(r)[d6* + Sin*0d¢?], (1)
where a(t) is cosmic scale factor and
sinr, when k=1,
b(r) = T, when k=0,
sinh r, when k=-1.

For exterior region V', we consider the Schwarzschild spacetime

2M 1
dsi = (1 - —5-)dT* — —5

dR?* — R*[d6* + Sin*0d¢?], (2)
R R

where M is an arbitrary constant. Using Israel junction conditions, we con-
sider that first and second fundamental forms for interior and exterior space-
times are same. These conditions are given as:

1. The continuity of first fundamental form over > provides

(ds?)s = (ds?)s = (ds”)s, (3)
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2. The continuity of second fundamental form over ¥ yields

K] = K — K

R

(4,7 =0,2,3), (4)
where the extrinsic curvature tensor Kj; is defined as

%], , Ozt Ozt
Kz:;::_nirt<a€za:;] _'_F,uz/ 85::: 06:;':)7 (07/~L7V:0717273>‘ (5)

Here ' and x9 correspond to the coordinates on ¥ and V* respectively.
The christoffel symbols T'j, are calculated using the interior and exterior
spacetimes and n* are the components of outward unit normal to ¥ in the
coordinates x%. Using interior and exterior spacetimes, the equations of
hypersurface > are written as

h_(r,t)=r—rg =0, (6)

he(R,T) = R— Rx(T) =0, (7)

where 7y, is an arbitrary constant. Using these equations, interior and exterior
metrics given in Eq.(T) and(2) take the form

(ds*)g = dt? — a®(t)b?(rs)[d6* + Sin*0de?), (8)

2M 1 (dRs\?
(ds?)s = |1 - — ——— B\ a2 — R} |d6* + Sin*0de*|.  (9)
Here we assume 1 — 24 %(%)2 > 0 so that T remains time-like

Ry (1—@)
coordinate. Using junction condition (3]), we get

Ry = a(t)b(rs), (10)
oM 1 (dRg\*]% .
= _%<dT)]dT_dt. (11)

Now using Eqgs. (@) and (), the outward unit normals to the interior and
exterior spacetimes are given by

n; = (0,a(t),0,0), (12)
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n+ = (_R27T70a0)> (13)

o
while the components of extrinsic curvature K j turn out to be

Ky =0, Ky =csc?0Kz; = (abb)s, (14)

. .. 3MR)T M(R-2M)T?
Kf = |RT - TR — 15
00 * R(R —2M) R3 - (15)
Ky = cs®0K$; = (T(R — 2M))s. (16)

Here dot and prime denote differentiation with respect to t and r respectively.
By applying continuity condition on extrinsic curvatures, we obtain

Koo =0, Kj =Ky (17)

Now using Eqgs. (I4HI7) along with (I0) and (III), the junction conditions
take the form

(18)

. 2213 12
(b/)E _ O, M= <&b+ aa®b abb )
b

2

It is mentioned here that equations (I0), (II)) and (I8) forms necessary and
sufficient conditions to match the interior and exterior regions smoothly.

3 f(R) Gravity and Field Equations

The metric tensor has a key role in GR. One of the main features of GR
is the dependence of Levi-Civita connection on the metric tensor. However,
the connection does not remain the Levi-Civita connection if we allow the
torsion in the theory. Consequently the dependence of connection on metric
tensor vanishes. This is the main idea behind different approaches of f(R)
theories of gravity.

We get metric version of f(R) gravity if the connection is the Levi-Civita
connection. In this approach, the variation of action is done with respect to
the metric tensor only. The action for f(R) gravity is

Sy = [ VEIHR) + L)', 19)

where f(R) is a general function of the Ricci scalar and L, is the mat-
ter Lagrangian. It would be worthwhile to mention here that the standard
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Einstein-Hilbert action can be achieved when f(R) = R. Varying this action
with respect to the metric tensor yields the modified field equations

F(R) Ry — 5 f(R)gu — ViV, F(R) + guOF (R) = 6T (20)

Here F(R) = df(R)/dR, r is the coupling constant, T} is the standard
energy-momentum tensor and

O=V~V, (21)
with V,, is the covariant derivative. We can write the field equations in an
alternative form which is familiar with GR field equations

1 -
Gy = R = 59w R =T}, + T (22)

p?

where T = Ty, /F(R) and the energy-momentum tensor for gravitational
fluid is

15, = s [y (1) = REE)) + PR (g = o) |- 23)

It can be seen from Eq.(23)) that energy-momentum tensor for gravitational
fluid T}, contributes matter part from geometric origin. This approach is
interesting as it may provide all the matter components required to investi-
gate the dark universe. Thus it is hoped that f(R) theory of gravity may
give fruitful results to understand the phenomenon of expansion of universe.
When we contract Eq.(20), it follows that

F(R)R —2f(R) + 30F(R) = xT™, (24)

where T™ is the trace of energy-momentum tensor. Here we are interested in
pressureless gravitational collapse. For dust, the energy-momentum tensor
is given as

Th, = puyy, (25)

where p is the matter density and the four velocity vector u, satisfies the

equation u, = §°,. Using this equation along with field equations (20), we

get three independent differential equations for the interior spacetime
3a 1 f aF]

——[Fap+——3— ,

2
a F 2 a (6>



VI | B SPLL

a+2(a> 2a2b_F 2+2 a T 27)
i _a oY [ N N 7
4+ 2 - — (2 — = | - L 42— + F|. 28
a+ (a) a?b (ab) +a262 F{ 2 * a * } (28)

The solution of these highly non-linear differential equations does not seem
to be possible straightforwardly. However, we can try to find a solution
using the assumption of constant scalar curvature, i.e. R = Ry. Using this
assumption, left side of Eq.(24]) becomes constant which leads to a constant
energy density, say p = po. Thus the field equations (26128]) take the form

3a 1 f(Ro)
= 2
a a v’ f(Ro)
24922 9 — 30
a i (a) a®b 2F(Ry)’ (30)
a a v’ v 1 f(Ro)
Todyeo (2 S . 1
a * (a) a?b (ab) a?h? 2F(Ry) (31)
Manipulating these equations, we obtain
a a 1—b? 1
9= B Ry)l. 32
o g = g e+ () (32)
Integrating first equation from (I8]), it follows that
V=X, (33)

where X in an arbitrary integration function of r. Thus Eq.(32]) takes the

form ' _ .
a, o —
P4 o = s [+ )| (34)

Integrating this equation with respect to ¢, we get

a = E + m L [l-@po + f(Ro)}, (35)

b2 ab3  6F(Ry)
where m = m(r) is an arbitrary function and is related to the mass of the

collapsing system
3 b3

m(r) = 220

SF R (36)



Using gravitational units, i.e. x = 8w, the mass of the collapsing system
takes the form A 33
TP
m(r) = ———. 37
It is mentioned here that mass of the system must be positive because neg-
ative mass is not acceptable physically. Using Eq.(33) and second junction

condition in Eq.(I8]), we get

a*b*[8mpo + f(Ro)]
12F (Ry)

M=m-— (38)

Now we calculate the total energy M (r,t) at a time ¢ for the interior hyper-
surface of radius r using the mass function [41]

M(r,t) = %b[l + g™ (ab) . (ab),). (39)

Using Eq.(35), the mass function turns out to be

M(r,t) = m(r) — = b [igig(;oj;(}%)]

: (40)

where m(r) denotes the energy due to constant matter density in Eq. (B37).
Now we find the solution with X () = 1 using Eq.(33]). In this case the closed
form solution turns out to be

= ——12mF(R0) %sin %ar
where
ol 1) = \/ - T ) -1, (12)

Here we assume 8mpy + f(Ry) < 0 to have a realistic solution and t4(r) is
an arbitary function of r. It is clear that ¢t = t, is the time formation of
singularity for a perticular shell at some distance r. In the limiting case
when f(Ry) — —8mpo, the above solution takes the form

Im 3
Ii b= |—(t; —t)?| , 43
f(Ro)l—rﬂ&Tﬁoa l 2 ( ) } ( )

which correspond to the well known Tolman-Bondi solution [42].
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4 Apparent Horizons

We obtain the apparent horizon when the boundary of two trapped spheres
is formed. In this section, we find such boundary of two trapped spheres
whose outward normals are null. For the interior spacetime (), this is given
as

g" (ab) u(ab) , = a*b — b* = 0. (44)
Using Eq.(B8) in this equation, we get
1
——[8 Ry))]a’b® + 6ab — 12m = 0. 45
F(R())[ 7Tp0+f( 0))]& + ba m ( )

The solutions of this equation for ab yield the apparent horizons. For f(Ry)) =
—8mpy, it becomes the Schwarzschild horizon, i.e., ab = 2m. When m = 0,
it yields a de-Sitter horizon, i.e.

—6F'(Ry)
ab= | —=— 46
8mpo + f(Ro) (46)
The case 3m < %iii% leads to two horizons,
—8F(Ro) Y
ab). = | —————=—~cos — 47
(ab) 8mpo + f(Ro) 3 )
and
—8F(Ry) (0 .
blop = — | —————2— Z — - 4
(ab)pn Sto0+ F(Ro) {cos 3 V3 sin ik (48)

where the subscripts ¢ and bh represent cosmological and black hole horizons
respectively and

—2F(Ry)
CosY = —3my | ————=—~. 49
v 87po + f(Ro) 49)
If we take m = 0, the equations (47)) and (48) reduce to
—6F(Ry)
ab)e = | ——————=—, (ab)py, = 0. 50
(@) =\ g s (@b (50)
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It is mentioned here that the results can be generalized when m # 0 and
87po + f(Ro) # 0 [43].

For the case when 3m = 4/ 8_21?&, both horizons coincide, i.e.,
mpo+f(Ro)

“2F(Ry)

(ab)c = (ab)bh = 87Tp0—|——f(R0)

(51)

Thus the range of the cosmological horizon and the black hole horizon be-
comes

—2F(R0) a _6F(RO)
8mpo + f(Ro) — “ =\ 8mpo + f(Ro)

There does not exist any apparent horizon in the case 3m > ,/#%.

The formation time of the apparent horizon can be calculated using Egs.

(@1)) and (@) and is given by

=15 — —8F(F) sinh ™! %— n =
=t \/3(87Tp0+f(R0)) b [2m 1]’ b2 59

In the limiting case when f(Ry) — —8mpy, the result corresponds to Tolman-
Bondi solution

[N

4
tah = ts — gm (54)
From Eq.(53), it follows that
(ab)y, 2
= cosh
5y — Cosh an, (55)
where
—3(8mpo + f(Fo))
n 9 t = ts - t .
o1 \/ () — ) (56)

It is clear from Eq.(B3]) that both the black hole horizon and the cosmological
horizon form earlier than the singularity ¢ = t;. Now since Eq. (B3) yields
t; <ty and Eq. (52)) implies that (ab)p, < (ab).. This is an indication that
cosmological horizon forms earlier than the black hole horizon.
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5 Concluding Remarks

This paper is devoted to discuss gravitational collapse in f(R) gravity. For
this purpose, we consider the metric approach of this theory to study the field
equations. It is observed that the field equations (26))-(28) are complicated
and highly non-linear. Thus it seems difficult to solve them analytically
without any assumption. The assumption of constant curvature has been
used to find a solution.

We investigate the gravitational collapse of dust by considering FRW
spacetime as the interior region while for the exterior region we take Schwarzschild
metric. The junction conditions have been derived between interior and exte-
rior spacetimes. We get two physical apparent horizons namely cosmological
horizon and black hole horizon. It is found that formation time for black hole
horizon is more as compared to cosmological horizon. Moreover, both hori-
zons are formed earlier than singularity. This indicates that the singularity is
covered, i.e., black hole, which shows that f(R) gravity supports cosmic cen-
sorship conjecture. From dynamical equation (B]), the rate of gravitational

collapse is
m ab

a2 6F(Ry)
The acceleration should be negative for the collapsing process which is pos-
sible when

ab = [87p0 + f(Ro)]- (57)

6mE(Ro) ] 5 (58)

B 8mpo + f(Ro)

Thus Eq. (57) indicates that f(Ry) slows down the collapsing process when
f(Ro) 4+ 8mpy < 0. Further, the presence of f(Ry) causes two physical hori-
zons. One is the black hole horizon and the other is cosmological horizon.
It also influences the time difference between the formation of the apparent
horizon and singularity. It is concluded that f(Ry) affects the process of
collapse and hence it limits the size of the black hole. It would be worth-
while to mention hare that the term f(Ry) plays the same role as that of the
cosmological constant in GR field equations and our results agree with [44].

ab<[
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