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We determine bands and gaps in graphene subjected to the magnetic field of Abrikosov lattice of
vortices in the underlying superconducting film. The spectrum features one non-dispersive magnetic
miniband at zero energy, separated by the largest gaps in the miniband spectrum from a pair of
minibands resembling slightly broadened first Landau level in graphene, suggesting the persistence
of ν = ±2 and ±6 quantum Hall effect states. Also, we identify occasional merging point of magnetic
minibands with a Dirac-type dispersion at the miniband edges.
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Studies of superlattices in two-dimensional (2D) elec-
tron systems have, recently, been boosted by the devel-
opment of van der Waals heterostructures of graphene
with hexagonal boron nitride (hBN). In such systems
the superlattice effects, observed in STM spectra [1–3],
magneto-transport chracteristics [4–6] and quantum ca-
pacitance [7], are produced by a periodic moire pattern,
with the period a determined by slight incommensurabil-
ity and misalignment between graphene and hBN crys-
tals [1, 8, 9] and reflect the formation of superlattice
minibands for graphene’s Dirac electrons [4, 7, 9]. To a
large extent, the possibility to observe the superlattice ef-
fects in graphene-hBN heterostructures owes to the high
mobility of electrons in such systems, where graphene is
encapsulated between hBN sheets both protecting from
contamination and permitting to vary electrons’ density
over a broad range using electrostatic gates. When sub-
jected to a strong external magnetic field, the superlat-
tice leads to the formation of a ’Hofstadter butterfly’, a
sparse spectrum of minibands [10–12] formed at magnetic
field values corresponding to the magnetic flux, Φ = p

qφ0

(through the area S =
√

3a2/2 of the superlattice unit
cell) commensurate with the flux quantum, φ0 = h/e.

Here, we consider a magnetic superlattice [13–18] that
can be realised in a ballistic hBN-graphene-hBN stack by
placing it over a high-Hc2 superconductor film (e.g., Nb,
W, or MoRe alloy). In such a system, where no alignment
control of graphene and hBN lattices is required, long-
range periodic structure is caused by the Abrikosov lat-
tice of vortices [19, 20] formed in a superconductor sub-
jected to an external magnetic field H < Hc2, sketched
in the inset in Fig. 1. In contrast to the earlier theories
developed for spatially alternating magnetic fields with a
zero average [21–26], the Abrikosov lattice produces mag-

netic induction with spatial average, B = φ0/(
√

3a2),
linked to the magnetic lattice period, a. As each vor-
tex carries the flux h/2e, the vortex lattice realises the
simplest fundamental fraction, p

q = 1
2 , in the Brown-Zak

commensurability condition for magnetic field flux in a
2D periodic system [10, 11].

Figure 1 shows the hierarchy of bands and gaps in
the corresponding spectrum of Dirac electrons calculated

FIG. 1: Spectrum of Dirac electrons in graphene in a magnetic
field of Abrikosov vortex lattice, with one degenerate band
at E = 0. Energy is scaled as v

√
2~eB ≡ 2

31/4
v
√
π/a, and

magnetic field as 4πλ2B/φ0. Inset: 2nd and 3rd minibands
dispersion over the folded magnetic Brillouin minizone near
their touching condition.

in this work and plotted as a function of 4πλ2B/φ0.
The latter parameter characterises the the ratio between

the lattice period a =
√
φ0/
√

3B and the penetration

depth λ in a superconductor. The spectrum in Fig.1
features one degenerate magnetic miniband which pre-
cisely coinsides with the zero-energy m = 0 Landau level
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(LL) peculiar for Dirac electrons, and two other low-
energy bands which resemble slightly broadened m = ±1
LLs. At the same time, the higher-energy minibands
(traceable at 4πλ2B/φ0 ≥ 1 to LLs with |m| ≥ 1 at

E = m
|m|v

√
2|m|~eB, m ∈ Z) are strongly broadened,

and they overlap on the energy scale when a� λ, form-
ing Dirac-type features at conjoint miniband edges.

Distribution of magnetic field of Abrikosov’s lattice
(for isotropic superconductors, the vortex lattice is
hexagonal) is given by [19, 20] :

H(r) =
∑
Ri

Hv(r−Ri), Hv(r) =
1

2π

φ0
2λ2

K0(
r

λ
),

where Ri picks location of each individual vortex with
the field profile given by the modified Bessel function
of imaginary argument, with K0(x � 1) ≈ ln 1

x and

K0(x � 1) ≈
√

π
2xe
−x. For convenience, we use Fourier

representation for the periodic field of vortex lattice [20]
and the corresponding vector potential,

H(r) = B

1 +
∑

gn1n2

1

1 + λ2g2n1n2

e−ign1n2
·r

 ,

A = Ā− ~
e

√
3

8π

∑
n1n2

l̂z ×∇e−ign1n2
·r

ω2
n1n2

(1 + α-2ω2
n1n2

)
, (1)

(∇× Ā)z = B ≡ h/e√
3a2

, α ≡
√

3a

4πλ
,

and a non-orthogonal coordinate system adjusted to the
hexagonal symmetry of the vortex superlattice,

gn1n2
= gẑ × (n1x̂1 + n2x̂2),

ωn1n2
=
√
n21 + n22 + n1n2, g = 4π/(

√
3a)

x̂1 =
1

2
x̂+

√
3

2
ŷ, x̂2 = −1

2
x̂+

√
3

2
ŷ,

The spectrum of electrons in K and K’ valleys of
graphene is determined by the Hamiltonian

H = vσ · (p− eĀ)

+ ~vσ ·
√

3

8π

∑
n1n2

l̂z ×∇e−ign1n2 ·r

ω2
n1n2

(1 + α-2ω2
n1n2

)
, (2)

where Ā = hx1(−x̂1 + 2x̂2)/(3a2e), x1 = x + 1√
3
y,

x2 = −x + 1√
3
y, and v ≈ 106cm/s is Dirac velocity in

graphene. This Hamiltonian acts in the space of two-
component wave functions describing electrons’ ampli-
tudes on A and B sublattices of the honeycomb lattice of
carbons, with the basis choice [Ψ(A),Ψ(B)] in valley K
and [Ψ(B),−Ψ(A)] in valley K’: this choice provides us
with the same form of the Hamiltonian in both valleys.

To find the magnetic miniband spectrum correspond-
ing to Hamiltonian (2), we use [12] the basis of Bloch
states (with s = −N/2, · · · ,N/2, and t = 0, 1),

|mt (k)〉 =
1√
N

∑
s

e−i2sk1aψ
k2+

√
3

4 g(2s+t)
m ,

k1 =
1

2
kx +

√
3

2
ky, k2 = −1

2
kx +

√
3

2
ky, (3)

built of LL states ψm, Em = m
|m|

~v
a

√
π√
3
|m|, (m ∈ Z) of

Dirac electrons in a homogeneous magnetic field B [27]:

ψk20 =
eik2x2

√
L

(
ϕ0

0

)
, ψk2m 6=0 =

eik2x2

√
2L

(
ϕ|m|

m
|m|e

iπ3 ϕ|m|−1

)
;

ϕn=Cn

(
2π√
3a2

)1/4

e
− 1

2 z
2
k2

(1+ i√
3
)Hn(zk2), (4)

Cn =

√
3√

π2(n+1)n!
, zk2 =

31/4√
2π

(
π

a
x1 + k2a).

Here, Hm are Hermite polynomials, and the sign of m
identifies the conduction (m > 0) and valence (m < 0)
band states.

The states in the basis set |mt (k)〉 transform according
to the irreducible representations of the symmetry group
M2

6 of the vortex lattice field, which includes C6 rotations

and magnetic translations G = {Θ̂X = eiπn
′
1x2/aT̂X ,X =

n′1ax̂1+n′2ax̂2} ⊂ M2
6. In contrast to usual translations,

magnetic translations do not commute with each other,
Θa1

Θa2
= −Θa2

Θa1
, however, the group M2

6 contains
an abelian subgroup,

G′ = {Θ̂R = eiπn
′
1x2/aT̂R,R = 2n′1ax̂1 + 2n′2ax̂2},

which is formed by translations on a superlattice with
isotropically doubled period and a unit cell area 4S. Be-
cause of this, it is possible to classify the states on ma-
gentic superlattice using the wave vector q taken over

the folded Brillouin zone (BZ) with the area
√
3
8 g

2, four
times smaller than the BZ area of the gometrical vortex
lattice. Each of these folded states is two-fold degenerate
[10, 12], which is prescribed by the anti-commutation,
Θa1

Θa2
= −Θa2

Θa1
, of the operators of elementary

translations. By analysing characters of the magnetic
translation group M2

6, one can find that the latter fea-
tures six different 2-dimensional irreducible representa-
tions related to the states with the wave vector q = 0 in
the centre of magnetic BZ. In practice, these six types of
irredicible representations can be constructed using lin-

ear combinations of Bloch functions |±(6M+N)
t (k)〉 with

different M ≥ 0 but fixed N = 0, 1, 2, 3, 4, 5.
Using the basis of Bloch functions in Eq. (3), Hamil-

tonian Eq. (2), can be represented in the form of the
Heisenberg matrix,
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〈mt (k)|H|m̃t̃ (k̃)〉 =
~v
a

√
4π√

3
δt,t̃δk,k̃

 m

|m|
√
|m|δm,m̃ +

∑
n1n2

e−i2n1k1a√
(1 + δm0)(1 + δm̃0)

µ
k2+

√
3

4 gt,k2+
√

3
4 g(n1+t)

m,m̃,n1,n2

ω2
n1n2

(1 + ω2
n1n2

α-2)

 , (5)

µκ,κ̃m,m̃,n1,n2
=

m

|m|
(n1e

iπ/3 + n2)V|m|−1,|m̃|(n2, κ, κ̃)− m̃

|m̃|
(n1e

−iπ/3 + n2)V|m|,|m̃|−1(n2, κ, κ̃)

VN,Ñ (n2, κ, κ̃) =
1√
6
CNCÑ

∫ ∞
−∞

dx1
a

HN (zκ)HÑ (zκ̃)e
− 1

2 z
2
κ(1− i√

3
)
e
− 1

2 z
2
κ̃(1+

i√
3
)
ei

√
3

2 n2x1g

where zκ = 31/4√
2π

(πax1 + κa).

In Figure 1, we show bands (shaded) and gaps (white
intervals) in the spectrum obtained by numerical diago-
nalisation of Heisenberg matrix (5). In this calculation
we used 80 LLs to guaratee the convergence of the en-
ergies in the lowest 20 bands on the conduction and va-
lence band sides, and we included all points gn1n2

in the

reciprocal space such that |gn1n2
| ≤ 64π/(

√
3a). The

calculated energies are scaled with v
√

2~eB ≡
√
4π

31/4
~v/a

(energy of |m| = 1 LL an homogeneous field B), and they
are shown for various values of 4πλ2B/φ0, parameter
we use to characterise magnetic field distribution across
the unit cell. The band diagram in Fig. 1 is electron-
hole symmetric, and the hierarchy of bands and gaps in
this spectrum is universal, as it can be applied to Dirac
electrons in the field of a vortex lattice in a film of any
isotropic type-II superconductor. To mention, due to the
large demagnetisation factor of a film, vortices enter the
film at the field much lower than the nominal first critical
field of a bulk superconductor, hence, justify the regime
of 4πλ2B/φ0 � 1. We have set the upper side of the
interval of 4πλ2B/φ0 ≤ 2 shown in Fig. 1 at the lowest
possible limit for the second critical field Hc2, knowing
that at higher values of 4πλ2B/φ0 the minibands would

converge further towards the LL spectrum in a homoge-
nous magnetic field.

The spectrum in Fig. 1 features a dispersionless zero-
energy band that exactly coincides with m = 0 LL in
graphene, both by its energy, large gaps separating it
from the rest of the spectrum, and capacity to accom-
modate electrons. Also, the first magnetic minibands,
both on conduction and valence band side, are only
slightly narrowed and follow almost exactly the energy
of m = ±1 LL. All the other magnetic minibands pro-
gressively broaden upon the increase of parameter α,
and some touch at certain values of α. Such band de-
generacies occur due to occasional non-avoided crossings
of q = 0 energy levels at the mini-BZ centre (γ-point).
These occasional crossings are allowed by symmetry, be-
cause the energy levels εγm at the mini-BZ centre belong
to one of six different irreducible representations, so that
the closest levels do not necessarily ’repel’ each other on
the energy axis.

As different irredicible representations are built by
mixing parent LL states which are, at least, |δm| = 6
apart, such crossings can be identified by analysing only
the diagonal entries in the Heisenberg matrix (5),

εγm =
m

|m|

√
4π

31/4
~v
a

√
|m|

[
1− 1

2

∑
n1,n2

e−
1
2 tn1,n2

(1 + α−2ω2
n1n2

)
1F1(1− |m|, 2, tn1,n2

)

]
, tn1,n2

=
4πω2

n1n2√
3

,

where 1F1 is Kummer’s confluent hypergeometric func-
tion. Hence, we estimate that, within the interval α ≤ 2
such crossings whould appear at α2,3 = 0.98 for bands 2
and 3, at α6,7 = 0.90 for bands 6 and 7, and α14,15 = 1.03
for bands 14 and 15, and these values are close to the
band touching points found in the exact diagonalisation
of Eq. (5). At a finite q, such separation of the spectrum
into six independent groups is no more possible.

The separation vs mixing of the groups of levels can be
followed for the states at q � π/a near γ-point, where
off-diagonal matrix elements between the closest energy
states can evaluated analytically [28], leading to a 2x2

matrix,

Hm+1,m =

(
εγm+1 ṽτm(qx + iqy

m
|m| )

ṽτ∗m(qx − iqy m
|m| ) εγm

)
,

ṽm =
v

4

∑
n1n2

e−
1
2 tn1n2

1 + α-2ω2
n1n2

[L0
|m|+ m

2|m|−
1
2
(tn1n2

)

− tn1n2√
(|m|+ m

2|m| )
2 − 1/4

L2
|m|+ m

2|m|−
3
2
(tn1n2

)],

where τm = ei
π
6 (3− m

|m| ) and Lαn(x) are Laguerre polyno-
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mials (m 6= 0,±1). This matrix catches the Dirac-type
edges of touching bands at α = αm,m+1, confirmed by
the numerically calculated dispersions plotted over the
entire magnetic BZ in the inset in Fig. 1. Note that
velocity of all these ’second generation’ Dirac electrons
appears to be almost the same, ṽm,m+1 ≈ 0.75v, and,
due to the spin and valley degeneracy which has to be
factored additionally to the two-fold degeneracy of states
in magnetic minibands at φ = 1

2φ0, each of the calcu-
lated orbital states in the folded magnetic BZ is 8-fold
degenerate.

γ

��� ��� ��� ��� ��� ���

�

�
(�
)

μ

��� ��� ��� ��� ��� ���

�

FIG. 2: Distribution function P (s) of the normalised level
spacings in the miniband energies at γ and µ points of the
Broillouin minizone. Energy levels were taken from more than
30 states sampled (E = 0 and the 1st band excluded) for 10
values of 0.5 ≤ α ≤ 1.5, with a step of δα = 0.1.

The mixing vs separation of subsets of states in the
magnetic minibands can also be traced using the distri-
bution function P (s) of the normalised level spacings,

Fig. 2 for two given points in the Brillouin minizone. For
the µ-point, it shows strong ’level repulsion’ character-
istic for the unitary symmetry class of random matrix
theory [30]. For the γ-point, levels can appear close to
each other, as happens in other periodic systems [31–
34] where high lattice symmetry splits the spectrum into
subsets of states corresponding to different irreducible
representations of the lattice symmetry group which can
appear arbitrarily close to each other [35–39].

The features we found for the Dirac electrons in
hBN-encapsulated graphene placed over a hexagonal
Abrikosov vortex lattice suggest that the quantum Hall
effect at the filling factors ν = ±2 and, to some extent,
ν = ±6 would remain a robust feature in the transport
and capacitance measurements, whereas Shoubnikov -
de Haas oscillations at higher filling factors would be
strongly suppressed. This property of Dirac electrons in
graphene seems to be generic for a broad range of mag-
netic field distributions. To stress this point, in Fig. 3,
we show the calculated spetrum of Dirac electrons mov-
ing in the a square vortex lattice, which has all the same
characteristic features as the spectrum corresponding to
the hexagonal vortex lattice.
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