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Helicons are transverse electromagnetic waves propagating in three-dimensional (3D) electron
systems subject to a static magnetic field. In this work we present a theory of helicons propagating
through a 3D Weyl semimetal. Our approach relies on the evaluation of the optical conductivity
tensor from semiclassical Boltzmann transport theory, with the inclusion of certain Berry curvature
corrections that have been neglected in the earlier literature (such as the one due to the orbital
magnetic moment). We demonstrate that the axion term characterizing the electromagnetic response
of Weyl semimetals dramatically alters the helicon dispersion with respect to that in non-topological
metals. We also discuss axion-related anomalies that appear in the plasmon dispersion relation.

Introduction.—After lightning strikes, very low-
frequency transverse electromagnetic waves called
“whistlers”1 propagate in the ionosphere, from one
hemisphere to the other, along the Earth’s magnetic
field lines. Interestingly, whistlers have a solid-state
analog, which is usually called “helicons”2–6. These
transverse electromagnetic waves propagate in three-
dimensional (3D) uncompensated metals subject to
a uniform static magnetic field B = Bẑ. Helicons
ultimately stem from the existence of the cyclotron
resonance6, a single-particle excitation of the 3D
electron system occuring at the cyclotron frequency
ωc = eB/(mc), where m (−e) is the electron mass
(charge) and c is the speed of light in vacuum. In ordi-
nary metals, helicons propagating along the magnetic
field direction with a wave vector q = qẑ have the
following free-particle-like dispersion relation6,

Ωh(q) =
~q2

2mh
� ωc , (1)

where mh = ~ω2
p/(2ωcc

2) ∝ 1/B is the helicon effective

mass and ω2
p = 4πnee

2/m the usual 3D plasmon fre-

quency7,8. Helicons are relatively useless as a probe of
many-body effects in the metallic medium but are inter-
esting since they can hybridize with sound waves or dis-
play interesting damping behaviors when the magnetic
field direction is tilted from their propagation direction6.

In this work we demonstrate that the helicon disper-
sion in Weyl semimetals (WSMs)9–13 is greatly altered
with respect to the textbook result (1). In particular,
we show that helicon propagation in WSMs carries pre-
cious information on the space- (b) and time-like (b0)
components of the axion angle. We also highlight axion
anomalies in the plasmon sector, which, to the best of
our knowledge, have not yet been noticed.
Maxwell equations in WSMs.—WSMs are recently dis-
covered14–19 3D topological metals displaying an in-
triguing electromagnetic response and Fermi-arc surface
states. For the sake of simplicity, we here consider the
Hamiltonian of a WSM with two nodes only10:

H = ~vDτzσ · (−i∇+ τzb) + ~τzb0 . (2)

Here, vD is the Dirac-Weyl velocity, τz describes the node
degree of freedom with chirality ±1, and the 3D vector of
Pauli matrices σ = (σx, σy, σz)T describes conduction-
and valence-band degrees of freedom. The two Weyl
nodes are located at ±b and shifted by 2~b0 in energy.
Our results below can be easily generalized to the case of
more than two Weyl nodes. Furthermore, in the present
work we study helicons (and plasmons) in bulk Weyl
semimetals, while the interplay between finite-thickness
effects in a slab geometry (such as Fermi arcs) and elec-
tromagnetic wave propagation will be the scope of future
works.

It has been demonstrated20 that the terms propor-
tional to b0 and b = (bx, by, bz)

T in Eq. (2) can be gauged
away. After this transformation, the Hamiltonian reduces
to H = −i~vDτzσ · ∇. Because of the chiral anomaly21,
however, the aforementioned gauge transformation gen-
erates an additional term in the Lagrangian Lem that
describes the coupling between light and 3D WSMs20:

Lem =
1

8π
(E2 −B2)− ρφ+ J ·A+ Lθ , (3)

where

Lθ = − α

4π2
θ(r, t)E ·B . (4)

Here, α = e2/(~c) ' 1/137 is the usual QED fine-
structure constant and θ(r, t) ≡ 2(b · r − b0t) is the so-
called axion angle. The additional axion term Lθ changes
two of the four Maxwell equations, i.e.22

∇ ·E = 4π
(
ρ+

α

2π2
b ·B

)
(5)

and

− 1

c

∂E

∂t
+∇×B =

4π

c

(
J − α

2π2
cb×E +

α

2π2
b0B

)
.

(6)
Faraday’s law, ∇ × E = −c−1∂B/∂t, and the equation
stating the absence of free magnetic poles, ∇·B = 0, are
unchanged.
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Eliminating B, we obtain the following modified wave
equation in a WSM:

− 1

c2
∂2E

∂t2
−∇× (∇×E) =

4π

c2
∂J

∂t

− 2α

πc
b× ∂E

∂t
− 2α

πc
b0∇×E . (7)

As usual, we now need an expression that relates the
current J to the electric field E, which we proceed to
derive by utilizing a semiclassical approach.
Semiclassical Boltzmann transport theory in WSMs.—In
the linear response regime6–8, the Fourier components
J(q, ω) of the induced current density are linearly de-
pendent on the total electric field (i.e. the sum of the ex-
ternal field and the Hartree contribution), i.e. Jm(q, ω) =∑
n σ̃mn(q, ω)En(q, ω), where σ̃mn(q, ω) is the optical

conductivity tensor and the indices m,n run over the
Cartesian coordinates x, y, and z. We will work in
the local approximation6, which is justified in the limit
q � R−1

c , where Rc = vD/ωc is the cyclotron radius, with
ωc = eB/(mcc) the cyclotron frequency, mc = εF/v

2
D

the WSM cyclotron mass, and εF the Fermi energy. We
therefore have σ̃mn(q, ω) ≈ σ̃mn(0, ω) ≡ δmnσb(ω) +
σmn(ω), where σb(ω) = −i(εb − 1)ω/(4π) is the bound-
charge contribution, while σmn(ω) represents the free-
charge contribution23. The latter quantity can be cal-
culated by utilizing a semiclassical Boltzmann transport
approach, which is justified when ω, ωc � εF/~. Also,
we focus on the collisionless ωτ � 1 regime, where
τ = min(τintra, τinter) is the shortest between intra-node
τintra (e.g. due momentum-non-conserving collisions) and
inter-node τinter scattering times.

Our interest in this work in on doped Weyl semimetals
(kBT � εF, where T is temperature). The situation
for kBT � εF (neutral Weyl semimetals) is much more
complicated as one needs to include finite temperature
effects (thermally excited carriers) and disorder.

For a given chirality g = ± of a single Weyl node, the
semiclassical Boltzmann equation (SBE) reads as follow-
ing24,25:

∂fg
∂t

+ ṗg · ∇pfg + ṙg · ∇rfg = 0 . (8)

Here, fg is the electron distribution function. In the pres-
ence of a static magnetic field B and a time varying elec-
tric field E, the semiclassical equations of motion are26

ṙ = vg(p)− ṗ×Ωg(p) (9)

and

ṗ = − e
~
E − e

~c
ṙ ×B . (10)

The first term on the right-hand-side of Eq. (9) is vg(p) =
~−1∇pεg(p), defined in terms of an effective band dis-
persion εg(p). In topological metals such as WSMs,
this quantity acquires a term due to the intrinsic or-
bital moment26, i.e. εg(p) = ε0(p) −mg(p) · B, where
ε0(p) = ~vDp with p = |p| is the ordinary conduc-
tion band energy while mg(p) is the orbital moment26,
i.e. mg(p) = γeε0(p)Ωg(p)/(~c). Here, γ is a dimen-
sionless control parameter and Ωg(p) = −gp/(2p3) is

the WSM Berry curvature26. The parameter γ takes two
values: γ = 1 is what one should use, while γ = 0 is
what one should use to artificially discard the impact of
the orbital magnetic moment.

Using Eqs. (9)-(10) and carrying out straightforward
algebraic manipulations we find:

ṙ = ṙB + ṙE , (11)

where

ṙB ≡ D−1
g (p)

[
vg(p) +

e

~c
Ωg(p) · vg(p)B

]
, (12)

and

ṙE ≡ D−1
g (p)

e

~
E ×Ωg(p) . (13)

Here, Dg(p) ≡ [1 + eΩg ·B/(~c)] and the group velocity
vg(p) is given by

vg(p) = vDp̂

[
1 + γ

2e

~c
Ωg(p) ·B

]
−γ evD

~c
Ωg(p)B , (14)

with p̂ = p/p and Ωg(p) = |Ωg(p)|. Similarly, we find:
ṗ = ṗB + ṗE with ṗB ≡ −D−1

g (p)evg(p) × B/c and

ṗE ≡ −D−1
g (p) [eE + e(E ·B)Ωg(p)/(~c)].

Let us start by setting E = 0 while keeping B = Bẑ
finite. In this case, the SBE (8) is solved by

f (0)g (p) ≡ 1

exp

[
εg(p)− εF

kBT

]
+ 1

, (15)

when in the collision integral Ig we take feq = f
(0)
g (p).

We now want to solve the SBE up to first order in the am-
plitude of a homogeneous time-dependent electric field,
E = Ẽ(ω)e−iωt. To this end, it is useful27 to exploit
the symmetry of system by using cylindrical coordinates:
p ≡ (

√
p2 − p2z cos(ϕ),

√
p2 − p2z sin(ϕ), pz)

T. We seek a
solution of the SBE of the form

fg(p, t) = f (0)g (p) + δfg(p, t) , (16)

where δfg(p, t) is linear in Ẽ and is parametrized as fol-
lowing:

δfg(p, t) = −∂f
(0)
g

∂εg

(
X−e

iϕ +X+e
−iϕ +X0

)
e−iωt ,

(17)
with X±,0 = X±,0(p, pz). The linearization of the SBE
(8) is greatly simplified by the observation that pz and p

are constants of the motion in the limit Ẽ → 0.
Inserting (16)-(17) in Eq. (8) we find

X± = evDδ

1− γg e
~c
pz
p3
B

1− g e

2~c
pz
p3
B

√
p2 − p2z

2p

Ẽx ± iẼy
i(ω ± ω?c )

, (18)

and
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X0 = evD

(γ − 1)g
e

2~c
B

p2
+ δ

[
1− γg e

~c
pz
p3
B + (2γ − 1)

( e

2~c

)2 B2

p4

]
1− g e

2~c
pz
p3
B

pz
p


Ẽz
iω

, (19)

with

ω?c = ω?c (p, pz) ≡ ωc

1− γg e
~c
pz
p3
B

1− g e

2~c
pz
p3
B
. (20)

In writing Eqs. (18)-(19) we have introduced another di-
mensionless control parameter, δ. This takes two values:
δ = 1 is what one should use, while δ = 0 is what one
should use to artificially discard the anisotropy in the
distribution function.

The distribution function determines the total current
carried by electrons at each Weyl node:

Jg = −e
∫

d3p

(2π)3
Dg(p)ṙfg . (21)

The factor Dg(p) ensures that the number of states in the
volume element remains constant in time26. For the sake
of convenience, we decompose the current density per

node in the sum of three terms: Jg = J
(0)
g,E +J

(0)
g,B + δJg,

where J
(0)
g,λ = −e(2π)−3

∫
d3pDg(p)ṙλf

(0)
g with λ = E,B

and δJg = −e(2π)−3
∫
d3pDg(p)ṙBδfg.

We first examine in detail the dependence of J
(0)
g,λ on

the static magnetic field B. In the weak magnetic field

limit, we expand the distribution function f
(0)
g in powers

of B, up to second order:

f (0)g [εg(p)] ≈ f (0)g [ε0(p)]− ∂f
(0)
g

∂εg

∣∣∣∣
ε0(p)

γmg(p) ·B

+
1

2

∂2f
(0)
g

∂ε2g

∣∣∣∣
ε0(p)

[γmg(p) ·B]2 . (22)

Taking the limit T � εF/kB we find

J
(0)
g,E = γ

e3vD
24π2~cεF

B × Ẽ(ω)e−iωt (23)

and

J
(0)
g,B = g

e2εF
4π2~2c

B . (24)

We see that J
(0)
g,E is a) independent of the chirality g of

the Weyl node, and therefore leads to a finite correction
to the ordinary Hall conductivity—see Eq. (29) below—
and b) proportional to the dimensionless parameter γ.
Because of b), Eq. (23) originates from the orbital mag-

netic moment mg(p). The term J
(0)
g,B in Eq. (24) is pro-

portional to the chirality g of the Weyl node, and there-
fore has no effect on the total current J =

∑
g Jg but

yields a finite axial current Jax =
∑
g gJg, in agreement

with Refs. 28 and 29.
We then evaluate the quantity δJg and obtain the op-

tical conductivity tensor σmn(ω). We first consider δJg,z.
By retaining all terms of second order in the ratio ~ωc/µ,
we find30

σzz(ω) = i
D
πω
Czz , (25)

where D = πe2ne/mc is the Drude weight, ne =
ε3F/(3π

2~3v3D) is the electron density, and

Czz = δ +
3~2ω2

c

4ε2F

{
1− 3δ

5
+
γ[2γ(δ + 5) + 11δ − 25]

15

}
.

(26)
Eqs. (25)-(26) are the most important results of this Sec-
tion. Setting δ = γ = 1, we obtain the desired result for
the longitudinal conductivity in the presence of a weak
magnetic field:

σzz(ω) = i
D
πω

(
1 +

1

5

~2ω2
c

ε2F

)
. (27)

Because of the non-trivial dependence of ω?c on p in
Eq. (20), the calculation of δJg,x, δJg,y at an arbitrary
frequency ω is not straightforward. This calculation,
however, notably simplifies in the low-frequency ω � ωc

limit, which is relevant for helicons. In this limit and
after setting γ = δ = 1, we find

σxx = σyy ≈ −i
Dω
πω2

c

(
1− 1

20

~2ω2
c

ε2F

)
, (28)

and

σxy = −σyx ≈
D
πωc

(
1 +

3

20

~2ω2
c

ε2F

)
. (29)

The remaining off-diagonal elements of the optical con-
ductivity tensor, such as σxz, σyz, etc., vanish identically
for symmetry reasons, independently of the frequency ω.
Helicons and plasmons in WSMs.—Using the wave equa-
tion (7) and the semiclassical result for the optical con-
ductivity tensor σmn(ω), we seek for collective modes of
doped WSMs subject to a weak static magnetic field. To
this aim, it is useful to introduce the dielectric tensor

ε`m = δ`mεb +
4πi

ω

[
σ`m − ε`mn

αc

2π2

(
bn − qn

b0
ω

)]
(30)

andM`m = c2(q2δ`m− q`qm)−ω2ε`m. In Eq. (30), ε`mn
is the 3D completely antisymmetric tensor and the Latin
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indices `, m, and n run over the Cartesian coordinates x,
y, and z. Finally, a sum over n is intended.

The zeroes of the determinant ofM correspond to the
self-sustained modes of a doped WSM. Following stan-
dard practice6, we focus on two special cases: i) q par-
allel to the static magnetic field B, i.e. q = qẑ and ii)
q orthogonal to B. When q = qẑ, four collective modes
appear: three gapped modes, which are characterized by
an energy of the order of Fermi energy, and a gapless
mode, the helicon. If the wave vector q is orthogonal
to B, we find only the three gapped modes, while the
helicon solution is absent.

After straightforward algebraic manipulations, we find
the helicon dispersion relation in the long-wavelength
limit:

Ωh(q → 0) =
2αb0cq/π + c2q2

ω2
p/ωc + 2αcbz/π

, (31)

where ω2
p = 4πnee

2/mc is the 3D plasma frequency in a
WSM. Eq. (31) is the most important result of this Arti-
cle. Note that Eq. (31) is independent of the background
dielectric constant εb

6. Due to the time-like component
b0 of the axion angle, the helicon dispersion relation in
a WSM is linear in q rather than quadratic, the latter
functional dependence on q being the one occurring in
ordinary metals—see Eq. (1). Even for b0 = 0, the he-
licon frequency differs from the textbook result (1), in
that the effective helicon mass mh in a WSM depends
on the component of b along the direction of the static
magnetic field B: mh = ~ω2

p/(2ωcc
2) + α~bz/(πc).

Before concluding, we comment on the gapped collec-
tive modes. For the sake of simplicity, we set B = 0 in
the following analysis. In the long-wavelength limit, we
find that the three gapped modes Ωp,λ(q) with λ = 1, 2, 3
are given by:  Ωp,1(q = 0) = ω−

Ωp,2(q = 0) = ωp/
√
εb

Ωp,3(q = 0) = ω+

, (32)

where ω± =
√

(αcb)2/(πεb)2 + ω2
p/εb ± αcb/(πεb), with

b = |b|. Very interestingly, we find that, unlike in an
ordinary non-topological metal6, the degeneracy of the
three gapped collective modes at q = 0 is lifted by the
presence of the axion term Lθ in the electromagnetic re-
sponse. This is due to the fact that WSMs are opti-
cally gyrotropic media33 with gyrotropy parameter pro-
portional to b = |b|. Since the energy of the gapped
collective modes is comparable to the Fermi energy, an
accurate description of these modes requires the inclu-
sion of the inter-band contribution σinter

`` (ω)34–36 to the
optical response, which has been neglected so far in our
semiclassical approach:

σinter
`` (ω) =

αcω

12πvD

[
Θ(~ω − 2εF)− i

π
log

∣∣∣∣ 4Λ2

4ε2F − ~2ω2

∣∣∣∣] .
(33)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

q/kF ×10−3

15
20
25
30
35
40
45
50
55
60

h̄
Ω

p
,λ

[m
eV

]

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

q/kF ×10−3

15
20
25
30
35
40
45
50
55
60

h̄
Ω

p
,λ

[m
eV

]

(b)

FIG. 1. Dispersion relations ~Ωp,λ(q) (in meV) of collec-
tive gapped (“plasmon”) modes in doped Weyl semimetals as
functions of wave vector q, in units of kF = εF/(~vD). Such
dispersions have been obtained by i) generalizing Eq. (32) to
finite q � kF and ii) including inter-band effects, as from
Eq. (33). Dashed line: λ = 1. Solid line: λ = 2. Dash-dotted
line: λ = 3. Panel (a): results for q parallel to b. Panel (b):
results for q orthogonal to b. Results in this figure have been
obtained by setting εb = 5, εF = 40 meV, vD = c/1000,
b0 = 0, b = (0.01, 0.01, 0.01)π/a, and Λ = ~vDπ/a with
a = 3.5 Å. This choice of microscopic parameters is justi-
fied by recent experimental results in NbAs and TaAs15–17.

Here, ` = x, y, z and Λ is an ultraviolet cut-off. Fig. 1
shows the dispersion relations Ωp,λ(q) of the λ =
1, 2, 3 gapped collective modes, as calculated by adding
σinter
`` (ω) to the intra-band semiclassical contribution
σxx(ω) = σyy(ω) = σzz(ω), i.e. Eq. (27) evaluated at
B = 0 and for γ = δ = 1. In Fig. 1(a) [(b)] the wave vec-
tor q is parallel [orthogonal] to the space-like component
b of the axion angle. The main effect of the inter-band
contribution on the collective modes is to redshift their
gaps at q = 0. This can be easily explained by recog-
nizing that, in the long-wavelength limit, the inter-band
contribution σinter

`` (ω) to the optical response can be de-
scribed, to a very good approximation, as a renormal-
ization of the background dielectric constant, i.e. εb →
εb + αc log[|4Λ2/(4ε2F − ~2ω2

p/εb)|]/(3πvD). In Fig. 1(a)
we find two transverse modes with a quadratic disper-
sion relation and a dispersionless longitudinal mode. We
note that in this case there is no mixing of the two trans-
verse modes with the longitudinal mode, exactly like in
an ordinary metal. What is peculariar to WSMs is that
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when q is tilted away from b, the lowest-energy trans-
verse mode hybridizes with the longitudinal mode. This
effect is maximal for q orthogonal to b, as in Fig. 1(b).

In summary, we have evaluated the optical conduc-
tivity tensor of a 3D Weyl semimetal from semiclassical
Boltzmann transport theory, with the inclusion of the
orbital moment mg(p) and anisotropic contributions to
the distribution function. A general expression for the
longitudinal conductivity is reported in Eq. (25). We
have used the calculated optical conductivity tensor to-
gether with the axion contribution (4) to the standard
electromagnetic Lagrangian to find the collective modes
of a 3D Weyl semimetal. We have demonstrated that
the axion term dramatically alters the helicon dispersion,

Eq. (31), with respect to that in non-topological metals,
Eq. (1). Finally, we have highlighted axion anomalies
in the gapped sector of collective excitations, Fig. 1, by
taking into account inter-band corrections to the semi-
classical (intra-band) optical response.
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