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The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are
studied by means of the coupled cluster method. For few fermions we recover the results of exact
diagonalization, yet with this method we are able to study much larger systems. We compute
the energy, the chemical potential, the pairing gap, and the density profile of the trapped clouds,
smoothly mapping the crossover between the few-body and many-body limits. The energy is found
to converge surprisingly rapidly to the many-body result for every value of the interaction strength.
Many more particles are instead needed to give rise to the non-analytic behavior of the pairing gap,
and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the shell
structure of the trap.

Ultracold gases are ideal systems for engineering highly
non-trivial states of matter. They allow one to prepare,
manipulate, and measure with great accuracy strongly
correlated quantum systems [1–3]. Thus, they pro-
vide a perfect playground for classical simulations, and
can accurately serve as quantum simulators [4]. One-
dimensional (1D) systems are particularly fascinating be-
cause of the important role played by quantum fluctua-
tions [5]. Experimental studies of strongly correlated ul-
tracold atomic gases started with the seminal works on
the Tonks-Girardeau gas [6–8]. More recently the su-
per Tonks-Girardeau regime has been achieved [9], and
the first experiments with fermions with a tunable spin
have been launched [10]. For this Rapid Communication,
particularly relevant are experiments on two-component
Fermi gas performed in 1D harmonic traps containing
very few atoms, where the number of spin-up and spin-
down atoms may be fully, and separately, controlled [11–
15]. The theoretical studies of 1D Fermi gases in the
many-body regime have a long tradition [16–27]. More
recently, several papers have addressed in detail the few-
body case, and its evolution towards the many-body
regime [28–37].

In order to address increasingly more elaborate ex-
perimental findings, the efficient numerical treatment of
many-body quantum systems stands as one of the great
challenges of modern physics. Despite enormous progress
and the development of many powerful approaches (cf.,
e.g., density functional theory [38], exact diagonalization
[39, 40], quantum Monte Carlo (QMC) [26, 40, 41], den-
sity matrix renormalization group (DMRG) and tensor
network states [42, 43]), new numerical approaches that
are able to investigate hitherto unexplored phenomena
are always more than welcome.

In this Rapid Communication, we study a balanced
two-component Fermi gas in a one-dimensional harmonic

trap by means of a quantum chemistry approach—the
coupled cluster (CC) method [44–51]. In condensed mat-
ter, this method has up to now been successfully ap-
plied to spin-1/2 lattice models in 1D and 2D (see Refs.
[52, 53] and references therein), and to trapped ultra-
cold bosons [54, 55]. However, the CC method is ideally
suited to study fermionic systems, where the number of
occupied orbitals grows at least as fast as the number of
particles in the system, even in the absence of interac-
tions. CC recovers results known from exact diagonal-
ization [35] and a path integral approach [56], but it also
allows one to study much larger systems (up to ' 80 par-
ticles). QMC methods permit one to look at even bigger
clouds [26]; ground state properties may be studied by
means of the very accurate diffusion QMC, while finite
temperatures may be considered via path-integral MC.
Finally, CC compares well with the state-of-art DMRG
calculations [27], with the advantage however of being
a method explicitly working in continuous space rather
than in a lattice.

Here we compute with high precision the energy, the
chemical potential, the pairing gap and the density pro-
file of the fermionic gas as a function of the number
of particles and of the interaction strength. While the
ground state energy of the system converges astonish-
ingly rapidly to the many-body result for any interaction
strength, the other quantities depend more sensitively
on system size and interaction strength. In particular,
strong even/odd oscillations in the chemical potential of
the trapped gas persist up to a very large number of par-
ticles, and the non-analytic behavior of the BCS pairing
gap emerges only relatively slowly with the system size.

Model. We consider a two-component Fermi gas con-
taining N = N↑+N↓ atoms in a balanced configuration,
i.e., with N↑ = N↓. All atoms have the same mass m,
and they are bound to move along one dimension due to
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Figure 1. Rescaled energies EN = EN/E
(0)
N for various num-

ber of fermions, as a function of the interaction strength γ.
The squares and circles are respectively the results of the
FCI and CC calculations. The black dashed line is the an-
alytic two-body result E2 for 1+1 particles [57], and the red
dotted line is the thermodynamic result E∞ obtained from
the GY+LDA approach [18]. The inset shows the difference
E∞ − E2 vs. γ, which remains surprisingly small for every in-
teraction strength.

the presence of a strong transverse confinement. Along
the axial direction the atoms are further confined by a
harmonic potential of frequency ω, and they interact by
means of a short-range (contact) interaction of strength
g. The corresponding Hamiltonian is then

H =

N∑
i=1

(
p2i
2m

+
mω2z2i

2

)
+ g

∑
i<j

δ(zi − zj). (1)

In the absence of interactions, the total energy of the

trapped gas is E
(0)
N = N2~ω/4, while the Fermi energy

(defined as the energy of the first unoccupied level) is
EF = (N+1)~ω/2. The interaction strength may be suit-
ably parametrized in terms of the dimensionless constant
γ = (πg/

√
N)/(~ωaz), where az =

√
~/mω is the har-

monic oscillator length. As the interactions are varied,
the system continuously evolves from a Tonks-Girardeau
(TG) gas of N strongly repulsive fermions (at γ � 1) to
a Lieb-Liniger (LL) gas of N/2 hard-core bosonic dimers
(at γ � −1) [18].

Full configuration interaction (FCI) and CC
methods. The exact solution of the many-body
Schrödinger equation of a fermionic system can always
be written as a linear combination of all Slater determi-
nants that may be obtained from a complete set of one-
particle basis functions. In a numerical solution, how-
ever, only a finite number nb of functions may generally
be taken into account. The simplest approximation to
the exact wave function is the Slater determinant |Φ〉 ob-
tained by solving the mean-field Hartree-Fock (HF) equa-
tions. The best possible solution in a given finite basis

set can be obtained by expanding the wave function in all
Slater determinants that may be obtained by replacing
(i.e., exciting) one-particle functions in |Φ〉, and optimiz-
ing variationally the coefficients in the resulting linear
combination. This method is termed full configuration
interaction (FCI) [58], or exact diagonalization, and it
provides a strict upper bound to the exact ground-state
energy. The computational cost of an FCI calculation
scales as N2nN+2

b for nb � N [59], which forces a trade-
off between the number of particles in the system and
the number of basis functions nb needed to accurately
describe it. At present, we are limited to nb ≈ 50 for
N = 6. One possible way to overcome this obstacle is to
limit the number of excitations included in the FCI wave
function. This leads to considerable savings of computer
time, but unfortunately any truncated CI calculation is
size-inconsistent, in the sense that the total energy of two
systems, not interacting with each other, is not guaran-
teed to be the sum of the energies of the two systems.

To overcome the size-consistency problem, the cou-
pled cluster (CC) method was introduced, first in nuclear
physics [60] and shortly after in quantum chemistry [45].
The CC wave function is given by the exponential Ansatz

|Ψ〉 = eT̂ |Φ〉, (2)

where T̂ = T̂1 + T̂2 + . . . + T̂N is the sum of all possible
excitation operators T̂k replacing k HF one-particle or-
bitals in the reference Slater determinant with k orbitals
which are not present in |Φ〉. Due to the exponential form
of the Ansatz (2), the CC method truncated to single
and double excitations effectively includes various triply,
quadruply, and higher excited determinants, since it con-
tains, e.g., the products T̂1T̂2 and T̂ 2

2 . The CC method
including all excitations is obviously equivalent to the
FCI method, and its computational cost is equally high.
However, truncated CC calculations are by construction
size-consistent, and are much less time consuming than
FCI with the same basis set size nb. In the present work
we use the coupled cluster method restricted to single,
double, and non-iterative triple excitations, CCSD(T),
whose computational complexity scales as n7b [61]. The
CCSD(T) method is very accurate for many properties of
atoms and molecules, and it is now considered the golden
standard of quantum chemistry [50].

We construct our many-body wave function by ex-
panding it on the restricted basis containing the first nb
single-particle eigenfunctions of the 1D harmonic oscilla-
tor, φn(z) = Hn(z/az) exp (−z2/2a2z)/

√
2nn!az

√
π, with

Hn(.) an Hermite polynomial. A detailed study of the
convergence with the type of excitations included in the
coupled cluster model and the size of the basis set have
been reported elsewhere [62]. For the purposes of this
work, we simply note that the CCSD(T) method ap-
pears to be the best choice for 1D fermionic systems,
in terms of the tradeoff between accuracy and computa-
tional cost. As the energy is found to converge to the
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Figure 2. Difference between the rescaled few-body energies
and the analytical 2-body result; filled circles (squares) are the
CC (FCI) results, while the red dotted line is the GY+LDA
result. The insets are vertical cuts across the main figure (i.e.,
at fixed γ), plotted as a function of 1/N . The bright green
dots are the expected many-body limit, and the empty circles
are the first order perturbation6 approximation, Eq. (4).

exact value with a rate ∼ 1/
√
nb, all results presented

here are obtained by extrapolating to the limit of infi-
nite basis set with a quadratic interpolation vs. 1/

√
nb

passing through the energies obtained for three values of
nb up to 200. The FCI and CC calculations were per-
formed with customized versions of the HECTOR [63]
and ACESII codes [64], respectively.

Results. We start by considering the ground state en-
ergy EN of a balanced ensemble ofN interacting fermions
in the trap. In order to appropriately compare ensembles
with different numbers of particles, in Fig. 1 we plot the

dimensionless quantity EN = EN/E
(0)
N as a function of

the rescaled interaction strength γ. The result is analytic
for the simplest case of two (1 + 1) particles, and is the
solution of the implicit equation [57]

1

g
=

Γ(3/2− E2/2)√
2(E2 − 1)Γ(1− E2/2)

. (3)

In the thermodynamic limit of an infinite number of par-
ticles, instead, the analytic result E∞ can be obtained
by applying the local density approximation (LDA) to
the solution of the Gaudin-Yang (GY) integral equations
describing a homogeneous gas [18]. We start by noticing
that the results in the two extreme limits are actually
surprisingly close to each other. As shown in the inset
of Fig. 1, the many-body and two-body rescaled ener-
gies differ by less than 0.05 over the complete range of
interaction strengths. This poses a serious challenge to
the numerical calculation of the energies. Nonetheless,
we see that the results of both CC and FCI lie nicely be-
tween the two curves, thereby on one side showing their
accuracy, and on the other providing a further confirma-
tion of the validity of LDA for computing the energy of
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Figure 3. BCS pairing gap ∆N of a few-fermion system with
N particles. Filled circles indicate CC results for increasing
N , and the red squares are their extrapolation to N → ∞.
The red dotted line is the thermodynamic result, Eq. (5).
Inset: chemical potential µN [in units of N~ω] vs. 1/N , eval-
uated at γ = −π/2.

a trapped 1D gas.

The size of the computational space diverges exponen-
tially with the number of particles within exact diagonal-
ization, so that with this method we could obtain con-
verged results only for very small systems, containing at
most three pairs of atoms (N = 6), compatibly with what
was recently published in Ref. [35]. On the other hand,
only a carefully chosen subset of the total Hilbert space
is retained in the CC calculations, so that this method
allows us to investigate much larger systems, even up to
40+40 particles. The range of interaction strengths we
are able to explore however slowly shrinks with the size of
the system N , as the complexity of the calculation scales
with the bare interaction strength g, rather than with its
rescaled counterpart γ ∝ g/

√
N .

To investigate in detail the continuous crossover from
few- to many-body systems, in Fig. 2 we show our results
after subtracting the analytical two-body contribution
E2. Even after the subtraction, the energies are shown
to converge remarkably fast to the thermodynamic limit
(red dotted line). While our CC and FCI results closely
match for 2+2 particles, at this level of precision one no-
tices that the FCI results for 3+3 particles start to devi-
ate from the expected behavior: as an example, for γ & 2
the 3+3 FCI results (orange squares) unphysically cross
the 2+2 results (blue symbols), even after a very time-
consuming calculation (a week of CPU time to get one
not-yet-converged FCI point, compared to two hours for
a converged CCSD(T) point). The insets of Fig. 2 show
the rescaled CC few-body energies plotted at fixed inter-
action strengths versus 1/N . For large N the few-body
results smoothly extrapolate to the GY+LDA thermo-
dynamic limit (green dots), while for small g (i.e., small
γ and small N) the results match the first order pertur-
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bation result

EN = E
(0)
N + g

∫ ∞
−∞

dz n20 +O(g2), (4)

where n0 =
∑N/2−1

i=0 |φi(z)|2 is the density of a gas of
N/2 identical fermions. We note in passing that, in the
limit of small g and large N , the latter equation recovers

the expected weak-coupling LDA result, EN = E
(0)
N +

4gN3/2/(3π2az) +O(g2) [22].
We turn now to consider the BCS pairing gap, which

for this few-body system we define as ∆N = EN −
(EN+1 + EN−1)/2, for odd values of N (with N↑ =
N↓ + 1). The results of our CC calculations are shown
in Fig. 3. The BCS pairing gap equals half the spin gap,
and in the thermodynamic limit for a homogeneous sys-
tem it is identically zero for repulsive interactions, while
it has a characteristic non-analytic behavior for small at-
tractive interactions. The GY result for a homogeneous
gas [20] may be adapted to describe a trapped system
by replacing the homogeneous Fermi momentum πn/2
(n being the total density) with its value at the center
of the trap, kF ∼

√
N/az (for N � 1). The specific

choice of the momentum at the center of the trap can
be justified by the fact that, even if the extra particles
are added at the edges of the cloud, their presence will
cause an overall reorganization of the gas density profile,
so that the resulting energy gap will be sensitive to the
typical momentum kF . This procedure yields

∆∞ = 8EF

√
− γ

2π3
exp

(
π2

γ

)
(5)

Our few-body results are, as expected, analytic across
the non-interacting point. However, one can clearly see
how the progressive build-up of the Fermi sea gives rise
to the expected non-analytic behavior in the weak in-
teraction limit, as predicted by Eq. (5). The inset of
Fig. 3 shows instead the behavior of the chemical po-
tential µN = EN+1 − EN , which is characterized by a
pronounced even/odd effect due to the shell structure of
the trap. At odds with the energy, the approach to the
thermodynamic behavior is actually very slow for both
the pairing gap and chemical potential.

Finally, of great interest is the density profile of the
trapped cloud. The density at a point z0 is obtained
as the expectation value of the operator

∑N
i=1 δ(zi − z0)

within the FCI calculations, and in the CC approach
from the Hellmann-Feynman theorem by adding a per-
turbation of the form λφi(z0)φj(z0) to the ij-th element
of the one-particle Hamiltonian matrix, and taking the
derivative of the energy with respect to λ. The density
profiles we obtain are shown in Fig. 4. These become
broader as the interaction strength grows increasingly
more repulsive, and display a regular series of peaks.
One finds exactly N/2 peaks in the LL limit of strong
attraction (γ � −1), where pairs of ↑↓ fermions be-
come tightly-bound bosonic hard-core dimers, and the

γ=-13.

γ=-1.3

γ=6.4

γ=64.

� ��� � ���
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Figure 4. Density of a balanced two-component Fermi gas.
The solid lines in the left panel display FCI results for 3+3
particles, while the ones in the right panel show CC results
for 15+15 atoms. The dashed lines are the GY+LDA results,
and the black dotted lines are analytic results for γ � −1
(LL), γ = 0 (0), and γ � 1 (TG).

density approaches nLL = 2
∑N/2−1

i=0 |φ̃i|2, with φ̃i(z) the
wavefunction of the i-th level for a particle of mass 2m.
N/2 peaks are present also in the non-interacting case,
where two distinguishable fermions occupy the same or-
bital, and the density becomes 2n0. The number of peaks
then smoothly evolves to N in the TG limit (γ � 1)
of “fermionized” fermions, where due to the strong re-
pulsion even distinguishable fermions must occupy dif-
ferent one-particle levels, and the density approaches
nTG =

∑N−1
i=0 |φi|2. In the thermodynamic limit, the

GY+LDA analysis [18] predicts a density with the typi-
cal Thomas-Fermi (TF) profile of an inverted parabola,
nTF(z) ∝ (1 − z2/R2

TF), where the radius RTF varies

between
√
N/2az in the LL limit and

√
2Naz in the

TG limit, being exactly equal to
√
Naz for an ideal

gas. The two approaches used here prove to be some-
how complementary. The FCI method allows us to con-
sider very strong repulsive interactions and enter the ex-
treme “fermionized” regimes: the hard-core bosonic LL
gas, and the fermionized atomic TG gas. Such strong
repulsion is out of the reach of present CC calculations,
since in this regime both the Hartree-Fock and the corre-
lation energies diverge. However, with CC we are able to
address much larger systems and explore beyond mean-
field corrections. In particular, this method gives direct
access to non-perturbative effects such as the progressive
build up of a non-analytic behavior for the pairing gap.

Summarizing, we presented a detailed analysis of the
static properties of a two component Fermi gas in a 1D
harmonic trap. We computed with high accuracy the en-
ergy, the chemical potential, the pairing gap, and density
profiles for N ranging from a few to a few tens, and for
a broad range of interaction strengths, well beyond the
mean-field regime. Our predictions for EN , µN and ∆N
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may be tested directly by RF spectroscopy or by tun-
neling measurements, as done in Refs. [13, 14]. The CC
method proved to be extremely well suited to studying
harmonically trapped fermions, and we foresee that it
will equally well describe more complex potentials, such
as double wells or microtrap arrays [15], and dipolar sys-
tems. The method could moreover be generalized to 2D
and 3D, or to few strongly-interacting bosonic atoms.
These studies would, in particular, be crucial to under-
stand whether the rapid convergence of the system’s en-
ergy found here is mainly due to the short-range charac-
ter of the interactions, to the 1D confinement, or to the
harmonic external potential.
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Two Cold Atoms in a Harmonic Trap, Found. Phys. 28,
549 (1998).

[58] C. D. Sherrill and H. F. Schaefer, The Configuration
Interaction Method: Advances in Highly Correlated Ap-
proaches, Adv. Quantum Chem. 34, 143 (1999).

[59] J. Olsen, B. O. Roos, P. Jorgensen, and H. J. A.
Jensen, Determinant based configuration interaction al-
gorithms for complete and restricted configuration inter-
action spaces, J. Chem. Phys. 89, 2185 (1988).

[60] F. Coester and H. Kümmel, Short-range correlations in
nuclear wave functions, Nucl. Phys. 17, 477 (1960).

[61] K. Raghavachari, G. W. Trucks, J. A. Pople, and
M. Head-Gordon, Reprint of: A fifth-order perturbation
comparison of electron correlation theories, Chem. Phys.
Lett. 589, 37 (1989).

[62] T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Mu-
sia l, P. Massignan, M. Lewenstein, and R. Moszyn-
ski, Many interacting fermions in a one-dimensional har-
monic trap: a quantum-chemical treatment, New J. Phys.
17, 115001 (2015).

[63] M. Przybytek, FCI program HECTOR; University of
Warsaw, (unpublished).

[64] J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale,
and R. J. Bartlett, ACES II Program System Release 2.0
QTP; University of Florida: Gainesville, FL, 1994.

http://dx.doi.org/10.1103/PhysRevA.88.033607
http://dx.doi.org/ 10.1103/PhysRevA.88.021602
http://dx.doi.org/ 10.1103/PhysRevA.88.021602
http://dx.doi.org/ 10.1103/PhysRevA.90.013611
http://dx.doi.org/ 10.1103/PhysRevA.90.013611
http://dx.doi.org/ 10.1038/ncomms6300
http://dx.doi.org/ 10.1038/ncomms6300
http://dx.doi.org/ 10.1088/1367-2630/16/6/063003
http://dx.doi.org/10.1126/sciadv.1500197
http://dx.doi.org/10.1126/sciadv.1500197
http://dx.doi.org/10.1103/PhysRevA.91.043610
http://dx.doi.org/ 10.1103/PhysRevA.91.053618
http://stacks.iop.org/0295-5075/109/i=2/a=26005
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1016/j.phpro.2010.09.034
http://dx.doi.org/10.1016/j.phpro.2010.09.034
http://dx.doi.org/ 10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/0029-5582(58)90280-3
http://dx.doi.org/10.1016/0029-5582(58)90280-3
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/ 10.1002/9780470143599.ch2
http://dx.doi.org/10.1002/qua.560050402
http://dx.doi.org/10.1146/annurev.pc.32.100181.002043
http://dx.doi.org/10.1021/j100342a008
http://dx.doi.org/10.1021/j100342a008
http://dx.doi.org/ 10.1007/BF01119617
http://dx.doi.org/ 10.1002/9780470141694.ch1
http://dx.doi.org/ 10.1002/9780470141694.ch1
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1021/cr2001417
http://dx.doi.org/10.1103/PhysRevLett.73.3157
http://dx.doi.org/10.1103/PhysRevA.83.042111
http://dx.doi.org/ 10.1103/PhysRevA.73.043609
http://dx.doi.org/ 10.1016/j.theochem.2006.05.026
http://arxiv.org/abs/1508.05947
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1016/S0065-3276(08)60532-8
http://dx.doi.org/10.1063/1.455063
http://dx.doi.org/ 10.1016/0029-5582(60)90140-1
http://dx.doi.org/10.1016/j.cplett.2013.08.064
http://dx.doi.org/10.1016/j.cplett.2013.08.064
http://stacks.iop.org/1367-2630/17/i=11/a=115001
http://stacks.iop.org/1367-2630/17/i=11/a=115001

	Crossover between few and many fermions in a harmonic trap
	Abstract
	 Acknowledgments
	 References


