
ar
X

iv
:1

50
7.

03
37

7v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
3 

Ju
l 2

01
5

⋆ These authors equally contributed to the work

Macrospin Dynamics in Antiferromagnets Triggered by Sub-20 femtosecond

Injection of Nanomagnons

D. Bossini⋆,1, ∗ S. Dal Conte⋆,2, 3 Y. Hashimoto,1 A. Secchi,1

R. V. Pisarev,4 Th. Rasing,1 G. Cerullo,2, 3 and A. V. Kimel1

1Radboud University, Institute for Molecules and Materials,

Heyendaalseweg 135, Nijmegen, The Netherlands

2Dipartimento di Fisica, Politecnico di Milano,

Piazza Leonardo da Vinci 32, Milano, Italy

3Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche,

Piazza Leonardo da Vinci 32, Milano, Italy

4A. F. Ioffe Physical-Technical Institute,

Russian Academy of Sciences, 194021 St. Petersburg, Russia

(Dated: June 18, 2018)

1

http://arxiv.org/abs/1507.03377v1


The understanding of how the sub-nanoscale exchange interaction evolves in macroscale

correlations and ordered phases of matter, such as magnetism and superconductivity, re-

quires to bridge the quantum and classical worlds. This monumental challenge[1, 2] has so

far only been achieved for systems close to their thermodynamical equilibrium[3, 4]. Here

we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter

triggered by the impulsive optical generation of spin excitations with the shortest possible

nanometer-wavelength and femtosecond-period. Our experiments also disclose a possibil-

ity for the coherent control of these femtosecond nanomagnons, which are defined by the

exchange energy. These findings open up novel opportunities for fundamental research

on the role of short-wavelength spin excitations in magnetism and high-temperature su-

perconductivity, since they provide a macroscopic probe of the femtosecond dynamics of

sub-nanometer spin-spin correlations and, ultimately, of the exchange energy. With this ap-

proach it becomes possible to trace the dynamics of such short-range magnetic correlations

for instance during phase transitions. Moreover, our work suggests that nanospintronics

and nanomagnonics can employ phase-controllable spin waves with frequencies in the 20

THz domain.

Experimental studies allowing to investigate correlated matter in general, and magnetism

in particular, at the length and time-scales of the exchange interaction have recently devel-

oped into an exciting research area. The experiments involving ultrashort timescales provided

intriguing results, like the femtosecond laser induced transient ferromagnetic state of a fer-

rimagnet alloy[5] and even superconductivity[6]. However, in these cases the wavelengths of

the photo-induced excitations lie orders of magnitude above the nanometer length scale of the

exchange interaction. An alternative strategy consists in the investigation of magnetic order

induced by introducing impurities with atomic resolution in space[7–9], but these are static ex-

periments at equilibrium. A fundamentally new approach to the problem, that combines the

femtosecond timescale and nanometer lengthscale consists in studying the ultrafast dynam-

ics of macroscale magnetic order parameter triggered by spin excitations with wavelength and

period pertinent to the length- and time-scales of the exchange interaction.

These spin excitations correspond to magnons (or spin waves) with wavevector near the

edges of the Brillouin zone. In antiferromagnetic materials such magnons can be elegantly

excited in the time domain, via a second order impulsive stimulated Raman scattering (ISRS)

process involving pairs of magnons with wavevectors almost equal in magnitude and oppo-
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site in sign. Although this process is allowed throughout the whole Brillouin zone, the magnon

density of states is largest in the high-frequency region near the zone edges, which is domi-

nated by the exchange interaction[10, 11] (see Supplementary Fig. S1). Thus a bound state

of two high-energy, high-wavevector and counter-propagating spin waves, usually denoted as

two-magnon (2M) mode, can be induced by a femtosecond light pulse. The frequency and

wavevector of this magnetic excitation are the sums of the frequencies and wavevectors of the

two magnons involved in the bound state[10–13]. Although an impulsive excitation of such 2M

mode was reported, the subsequent dynamics of the magnetic order parameter has not even

been discussed yet[14].

In this Letter, we disclose the fastest possible dynamics of the macroscopic order parameter

in a magnetic system, by means of an impulsive all-optical injection and detection of short-

range spin excitations near the edges of the Brillouin zone. The wavelengths of the correspond-

ing magnons are of the order of 1 nm and the frequencies in the 20 THz range. We demonstrate

that the phase of the spin waves can be controlled by changing the polarization of the excitation

beam.

The macroscopic magnetic order of an ideal Heisenberg antiferromagnet is conveniently

described in terms of the antiferromagnetic vector L, which is the order parameter[15] and is

defined as

L =
∑

i

〈Ŝ
⇑

i 〉−
∑

j

〈Ŝ
⇓

j 〉 = S
⇑−S

⇓, (1)

where Ŝ
⇑

i and Ŝ
⇓

j are the spin operators located on two nearest-neighbor sites (i , j ), belong-

ing to different magnetic sublattices (⇑ and ⇓), while S
⇑ and S

⇓ are the total spins of the two

sublattices [see Fig. 1(A)]. In the approximation of non-interacting magnons we determined

analytically that the dynamical response of the z-projection of L to the impulsive excitation of

the 2M mode has the form

∆Lz (t ) ∝ A sin(ω2M t )+B cos(ω2M t ) (2)

where z is the direction parallel to the spins, ω2M is the frequency of the 2M mode and A and

B are amplitudes. Equation (2) describes a purely longitudinal, non-precessional, dynamics of

the antiferromagnetic vector (see Supplementary Materials for the complete derivation). Note

that the light scattering by a magnon pair can be visualized as two spin flip events, one on
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each sublattice, such that the total spin remains unchanged [10, 11, 16] [see Fig. 1(A)]. Conse-

quently the transient magneto-optical Faraday and Kerr effects, which measure light-induced

variations of the total spin, inevitably fail to track the dynamics of such magnetic excitation.

On the other hand, the 2M process is expected to be revealed by second order magneto-optical

effects, which depend on quadratic combinations of the spin operators via the same spin cor-

relation function[17] appearing in the Heisenberg term of the Hamiltonian (see Methods). Our

model reveals that the spin correlation function has the same time dependence of the antifer-

romagnetic vector (see Supplementary Eq. S47). The time evolution of these two quantities

is unraveled by the transient antiferromagnetic linear dichroism (see Eq.(4)). This magneto-

optical effect induces a rotation of the probe polarization in the experimental configuration

shown in Fig. 1(B) (see Methods).

An excellent system for the all-optical excitation and detection of the dynamics of high-

frequency and shortest-wavelength magnons is the cubic Heisenberg antiferromagnet KNiF3,

which is ordered below the Néel point TN = 246 K. A recent study of the dynamics of the low-

energy magnons revealed that it is indeed possible to access the spin dynamics in KNiF3 via

a transient quadratic magneto-optical effect[18]. Moreover, in this material the Raman cross

section of the 2M mode is so high that it dominates the whole spectrum[10, 16]. For the ultra-

fast excitation of the 2M mode in KNiF3 (ν2M ≈ 22 THz, period ≈ 45 fs, wave vector ≈ 107 cm−1,

wavelength ≈ 1 nm) we rely on the ISRS mechanism to trigger a Raman-active collective mode,

provided that the duration of the stimulus is shorter than the period of the mode[19, 20]. A suc-

cessful impulsive excitation of such high-frequency magnons therefore demands laser pulses

with a duration significantly shorter than 40 fs. To meet these requirements we used linearly

polarized sub-20 fs laser pulses, with a central photon energy of 2.2 eV, which lies in the trans-

parency window of the material [18]. For the probe we employed equally short pulses centred

around 1.3 eV and with a polarization perpendicular to that of the pump.

Figure 2 shows the typical result of a time-resolved measurement of the laser-induced spin

dynamics. The transient rotation of the probe polarization shows oscillations in time with a

period of ≈ 45 fs (i.e. a frequency of ≈ 22 THz) that are damped on a 500 fs timescale. The os-

cillatory dynamics is superimposed on an incoherent increase of the background, as it is clear

from the difference between the time trace and the zero line at longer delays (> 500 fs). To assess

the nature of the 22 THz mode, we compared the temperature dependence of the time-domain

signal with that of the spontaneous Raman spectra of the 2M bound state. Supplementary Fig-
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ure S2 shows that the frequency and the lifetime of the pump-induced oscillations decrease as

the Néel point is approached, in qualitatively and quantitatively agreement with spontaneous

Raman data [10, 16]. Thus Fig. 2 reveals the femtosecond spin dynamics triggered by the impul-

sive excitation of the 2M mode in KNiF3, which is not accessible with any other experimental

approach. A fit to the data in Fig. 2 (see Methods) gave τd = (167± 4) fs (damping of the co-

herent oscillations) and τr = (255± 16) fs (rise-time of the incoherent background response).

While τd represents the decoherence of the 2M band, we interpret τr as the characteristic de-

magnetisation time of the two sublattices, solely driven by magnetic interactions[18]. As a laser

pulse excites a continuum of magnons with different frequencies [see Fig. 4(A)], the damping

τd of the oscillations observed in our experiment is actually the decoherence of the inhomoge-

neous ensemble of the coherently excited magnons. This is usually described [21] by means of

the characteristic time T ∗
2 . The demagnetization of the sublattices is a result of the heating of

spins, which is caused by the decoherence of single magnon modes[18] in the ensemble, on a

time scale generally indicated with T2 (T2 > T ∗
2 )[21].

Moreover, only our time-resolved technique allows to observe and control the phase of the

coherent short-range spin excitation, which is claimed to be a necessary requirement for any

implications in the development of magnon-based devices[22]. In Fig. 3 we plot measurements

performed with orthogonal polarizations of the pump beam. A clear π shift of the phase of the

oscillations is observed, if the polarization of the excitation beam is rotated by 90◦. Conse-

quently the impulsive laser excitation of the 2M mode in KNiF3 provides a phase controllable

signal. Note that only a time-domain approach can reveal this feature of the light-spin inter-

action. This observation proves the feasibility of the coherent control of magnons in antifer-

romagnets near the edges of the Brillouin zone, similar to what has been realised at the zone

centre[23].

The real time measurement of the ultrafast spin dynamics triggered by short-range magnons

allows us to disclose another phenomenon not observable with other techniques. Figure 4(A)

shows the spectrum of the time trace in Fig. 2 obtained by a Fourier transform (blue curve).

On the same graph we plot the spectrum of the 2M mode measured via spontaneous Raman

scattering at the same temperature (red curve). The zoom in the inset of Fig. 4(A) shows two

sidebands at about 7.5 THz from the central 2M frequency, that appear to originate from a mod-

ulation of the 2M mode in the time domain. Figure 4(B) shows a two-dimensional spectrogram,

obtained by performing a time-frequency analysis[24, 25] of the data in Fig. 2 (see Supplemen-
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tary Materials). The colormap in Fig. 4(B) represents the time-dependent spectrum of the 2M

mode. The frequencies of the peak of the spectrum at different time delays are traced by a

blue dotted line. This curve displays a periodic oscillation of ν2M , which is consistent with the

observation of the sidebands in the inset of Fig. 4(A). We define the relative frequency shift as

∆ν2M

ν2M
=

ν2M −〈ν2M 〉

〈ν2M 〉
(3)

where 〈ν2M 〉 is the average frequency in the temporal interval where the oscillations have a sig-

nificant amplitude (0-500 fs). We plot the peaks of the spectra obtained by the time-frequency

analysis as a function of the delay in the inset of Fig. 4(B). The frequency of the modulation of

ν2M is ≈ 7.5 THz, which corresponds to the frequency of the infrared-active phonon [26, 27] (≈

7.7 THz), assigned to the stretching vibration of the Ni-F-Ni bond. Unlike other phonon modes

in this material, the frequency of the stretching mode is temperature-independent [26, 27],

which is consistent with the data (see Fig. S6). Though this stretching mode is not Raman

active in the lowest order of the electric field of light[28], considering light-matter interaction

at the next order (hyper-Raman scattering[28, 29]) allows to excite lattice vibrations with the

symmetry of the stretching mode (F1u ) in cubic crystals [29]. We assign the modulation of ν2M

to the interaction on the femtosecond time-scale between the stretching mode and the 2M

mode[25] , which are simultaneously and coherently excited by the laser pulse. Although a 2M-

phonon interaction was previously suggested[13], our time-resolved experiment provides the

first evidence of this effect.

Unlike previous investigations of the ultrafast spin dynamics in KNiF3[18, 30], the data

reported in Fig. 2 are a measurement of the femtosecond dynamics of the spin correlation

function(see Eq.(4)), which carries informations about magnetic interactions on the sub-

nanometer length-scale. In fact the magnetism of KNiF3 is properly described by taking into

account only the exchange interaction between nearest-neighbours. These antiferromagnet-

ically coupled spins are separated approximately by an 8 Å distance [31]. Our experimental

approach constitutes a unique way to access the ultrafast dynamics of the spin-spin corre-

lations on such a sub-nanometer length scale. Hence we believe that this work opens up

fundamentally novel and exciting perspectives for studies of magnetic and correlated mate-

rials. Following our approach it becomes possible to monitor the evolution of the exchange

energy during a photo-induced phase transition and to probe the femtosecond dynamics of
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the sub-nanometer range spin correlations in strongly correlated materials, included high-Tc

superconductors.

Although our investigation concerned an ideal Heisenberg antiferromagnet, the concept

here employed to study the femtosecond dynamics of the macroscopic magnetic order param-

eter caused by short-range spin excitations is applicable to a broad group of multisublattice

systems[10, 11]. In our view these results provide a fundamentally new approach to elucidate

the dynamical interplay between short-range spin excitations and high-Tc superconductivity

in cuprates [32–34].
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Methods

Sample. Our sample was a 340 µm thick (100) plane-parallel plate of KNiF3, which has a perovskite crystal

structure (point group m3m). Two equivalent Ni2+ sublattices are antiferromagnetically coupled below the Néel

temperature TN = 246 K[18]. This material is known to be a cubic Heisenberg antiferromagnet because of its very

weak anisotropy. The positive sign of the cubic magnetic anisotropy constant determines the alignment of spins

along the [001], [010] or [100] axes[15]. The measurements on the KNiF3 sample are carried out at a minimum

temperature of 77 K in a liquid nitrogen cryostat. The temperature of the sample is monitored by a thermocouple

placed on the sample holder.

Light source. For the pump-probe experiments we used a regeneratively amplified mode-locked Ti:Sapphire

laser, providing 150-fs, 500-µJ pulses at 780 nm and 1 kHz repetition rate. The laser drives two Non-collinear

Optical Parametric Amplifiers (NOPAs) operating in two different spectral ranges[35]. Both NOPAs are pumped

by the second harmonic of the laser (i.e. 390 nm) and seeded by the white-light continuum produced by focusing
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the 780 nm beam into a sapphire plate. The amplified pulse from the first NOPA, which initiates the dynamics

(pump), has a spectrum spanning the 500-700 nm range and is compressed to nearly transform-limited duration

(i.e. 8 fs) by a pair of custom-made chirped mirrors. The amplified pulse, generated by the second NOPA (probe),

covers the frequency range between 820 nm and 1050 nm and is compressed to nearly transform-limited duration

(i.e. 13 fs) by a couple of fused silica prisms. The temporal resolution of the setup has been characterized by the

cross-correlation frequency-resolved optical gating (XFROG) technique and was below 20 fs[34]. The pump and

probe beams were focused on the sample by a spherical mirror down to approximately 100 µm and 70 µm spot

sizes, respectively. The high temporal resolution is preserved by using a very thin (200 µm) fused silica window as

optical access to the cryostat.

Detection. The rotation of the polarization of the probe beam monitors the transient antiferromagnetic linear

dichroism of the sample. This magneto-optical effect is defined by the symmetric part of the dielectric tensor ǫλνs

for which ǫλνs = ǫνλs , where ν and λ are indices. The following definition holds[15, 17]

ǫλνs =
∑

i j

∑

γδ

ρλνγδ
〈Ŝ

γ⇑

i
Ŝ
δ⇓
j
〉 (4)

where ρλνγδ is a magneto-optical polar fourth rank tensor and λνγδ indicate the indices. It can be shown that

the spin correlation function in the z direction
∑

i j 〈Ŝ
z
i

Ŝz
j
〉 has the same time dependence as Lz in Eq. (2) of the

main text , which describes a solely longitudinal, non-precessional, dynamics of the antiferromagnetic vector

[see Eq.(S47) of the Supplementary Materials]. Therefore the dynamics of Lz must affect ǫλνs [see Eq.(4)] and it

can be detected via the transient antiferromagnetic linear dichroism, which consists of a different absorption

for light beams linearly polarised along and orthogonally to the direction of the antiferromagnetic vector. This

results in the detected rotation of the probe polarization. We measured the pump-induced rotation of the probe

polarization employing a balanced-detection scheme. The transmitted probe is split by a Wollaston prism into

two orthogonal linearly polarized beams and focused on a couple of balanced photodiodes. The Wollaston prism

is rotated in order to equalize the probe intensities on the two photodiodes. The pump-induced imbalance of

the signal registered by the two photodiodes is measured by a lock-in amplifier which is locked to the modulation

frequency of the pump beam (i.e. 500 Hz). Our apparatus was able to detect rotations of the polarization on the

order of 1 mdeg.

Fitting procedure. The transient rotation of the probe polarization was fitted employing the following function

f (t) =C sin (ω̃t +φ)e(−t/τd ) +H(t)D(1−e(−t/τr ))
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where C and D are amplitude coefficients, φ is the phase of the oscillations, H(t) is the Heaviside function, τd is

the damping time of the oscillations and τr is the characteristic rise time of the incoherent contribution to the

signal. Considering the outcome of the Wigner analysis in Fig. 4(B), we employed the modulated frequency ω̃ in

the sinusoidal function, namely

ω̃= 2πν2M (1+G sin (2πνmod t +ψ))

where ν2M is the 2M frequency, G is an amplitude coefficient, νmod is the modulation frequency and ψ is the

phase. The fit to the data shown in Fig. 2 was achieved by setting the following parameters: ν2M = 22.12 THz,

G = 0.002, νmod = 7.5 THz, ψ = 45◦, D = 2.3 · 10−3 deg. These values were obtained from the Wigner analysis

of the data in Fig. 2. The fit parameters allowing to reproduction at best the data are: C = (2.5±0.1) ·10−2 deg,

φ= (220±1)◦, τd = (167±4) fs, τr = (255±16) fs.
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Figure 1. Two-magnon mode and experimental configuration. (A) The two-magnon excitation is equivalent

to a spin flip event per sublattice. Thus the magnetisation of each sublattice (S
⇑,S

⇓) and, therefore, the antifer-

romagnetic vector (Lz ) is decreased in the excited state. The sum of the spins of the two sublattices, thus the

total magnetisation, vanishes both in the ground and in the excited state. (B) Schematic representation of the

experimental geometry. The setup is described in details in the Methods section.
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Figure 2. Laser-induced dynamics of the antiferromagnetic vector. The transient rotation of the probe polar-

ization was measured with the electric fields of the pump and the probe beams linearly polarized along the z and

x axes, respectively. The pump fluence was set to ≈ 8.6 mJ/cm2. The corresponding dynamics of the length of

Lz (blue arrows) is schematically represented. When the pump pulses impinge on the sample Lz decreases (1),

as shown in Fig. 1(A). At positive delays, oscillations at the frequency of the 2M mode are visible (2) [see Eq. (2)].

The black line is a fit to the data (see the main text and the Methods section). The background contribution to the

signal (3) could be interpreted as the demagnetisation of the two sublattices, responsible for the reduction of Lz .
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Figure 3. Polarization dependence of the coherent spin dynamics. The phase of the oscillations is reversed by

π when the direction of the electric field of the pump beam is rotated by 90◦. In both the measurements the probe

beam was linearly polarized along the z axis. The fluence is set to ≈ 12 mJ/cm2 when the pump polarization is

parallel to the z axis, while it is ≈ 9 mJ/cm2 in the other measurement.
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Figure 4. Spectrum of the ultrafast response of the antiferromagnetic vector. (A) The Fourier transform of

the time trace in Fig. 2 measured at 80 K is compared to the spontaneous Raman spectrum obtained at the same

temperature. The small discrepancy between the two lineshapes is discussed in the Supplementary Materials. In

the inset a zoom of the Fourier transform reveals two sidebands at ≈±7.5 THz away from the peak frequency. (B)

The squared modulus of the Wigner distribution of the signal is represented by the color plot. At each time step

we highlight the maximum of the spectrum (blue-dotted line). In the inset the relative frequency shift [Eq. (3)] is

plotted as a function of the delay showing ≈ 7.5 THz oscillations.
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