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Université de Nice-Sophia Antipolis, Institut Non-Linéaire de Nice,
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Using potential models we analyze range corrections to the universal law dictated by the Efimov
theory of three bosons. In the case of finite-range interactions we have observed that, at first order,
it is necessary to supplement the theory with one finite-range parameter, Γ3

n, for each specific n-
level [Kievsky and Gattobigio, Phys. Rev. A 87, 052719 (2013)]. The value of Γ3

n depends on the
way the potentials is changed to tune the scattering length toward the unitary limit. In this work
we analyze a particular path in which the length rB = a − aB, measuring the difference between
the two-body scattering length a and the energy scattering length aB , results almost constant.
Analyzing systems with very different scales, as atomic or nuclear systems, we observe that the
finite-range parameter remains almost constant along the path with a numerical value of Γ3

0 ≈ 0.87
for the ground state level. This observation suggests the possibility of constructing a single universal
function that incorporate finite-range effects for this class of paths. The result is used to estimate
the three-body parameter κ∗ in the case of real atomic systems brought to the unitary limit thought
a broad Feshbach resonances. Furthermore, we show that the finite-range parameter can be put in
relation with the two-body contact C2 at the unitary limit.

I. INTRODUCTION

The study of universal behavior in few-boson systems
is an intense subject of research nowadays. Universal
properties appear for example in loosely bound systems
in which the particles stay most of the time outside the
range of the interaction. In this situation the details
of the interaction between components are not impor-
tant and the dynamics of the system can be described in
terms of few control parameters. In the two-body sys-
tem the scattering length a can be used as the control
parameter. In fact, when the two-body binding energy
E2 → 0 its value results E2 ≈ ~

2/ma2 and all of the two-
body observables can be written in terms a as well [1].
The paradigm for this universal behavior is represented
by the zero-range theory: the particles are outside the
interaction range all of the time. In this case the above
relation becomes exact, E2 = ~

2/ma2, and the usual ef-
fective range expansion for the s-wave phase-shift reduces
to k cot δ = −1/a (with the total energy E = ~

2k2/m).
Application of this theory to the three-boson system

produces the Thomas collapse [2]: the ground state en-
ergy is unbounded from below. Besides this singular be-
havior, the three-boson system shows a very peculiar be-
havior as the two-body scattering length approaches the
unitary limit, 1/a → 0. In this limit, as has been shown
by V. Efimov in a series of papers [3, 4], a system of three
identical bosons interacting through a two-body short-
range interaction shows a geometrical series of bound
states whose energies accumulate to zero. The ratio be-
tween the energies of two consecutive states is constant
and does not depend on the nature of the interaction.
This particular behavior is known as the Efimov effect
and its observation has triggered an enormous amount

of experimental as well as theoretical work in different
fields as molecular, atomic, nuclear and particle physics
(for instance see Refs. [5, 6] and references therein).
The spectrum of the three-boson system close to the

unitary limit is described by the Efimov equation (or Efi-
mov radial law) which can be expressed in a parametric
form as follow

En
3 /(~

2/ma2) = tan2 ξ (1a)

κ∗a = e(n−n∗)π/s0
e−∆(ξ)/2s0

cos ξ
, (1b)

with ∆(ξ) a universal function whose parametrization
can be found in Ref. [1] and s0 ≈ 1.00624 is a universal
number. The scale at which a particular set of eigenval-
ues are selected among the infinite set of values is fixed
by κ∗, called the three-body parameter, which defines the
energy ~

2κ2
∗
/m for n = n∗ at the unitary limit. Knowing

the value of κ∗ the spectrum in terms of a is completely
determined.
The ability of tuning a in atomic-trapped systems

has allowed different experimental groups to measure
the value of the scattering length a− at which the
three-body bound state disappears into the continuum
(ξ → −π). From Eq. (1) we can see that measuring
a− = −e−∆(π)/2s0/κ∗ ≈ −1.50763/κ∗, is an indirect way
for measuring the three-body parameter κ∗. As an inter-
esting result, it has been experimental found [5, 7–9], and
theoretically justified [10, 11], that in the class of alkali
atoms a−/ℓ ≈ −9.5, with ℓ the van der Waals length.
Recently the same behavior has been seen in a gas of
4He atoms [12]. This fact has extended the discussion
of universal behavior to analyzed the dependence of the
three-body parameter on the two-body dynamics [13].
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In the above discussion we have used that Eq. (1) and
the parametrization of ∆(ξ) have been derived in the
zero-range limit (scaling limit). On the other hand ex-
periments and calculations made for real systems deal
with finite-range interactions and, for this reason, finite-
range corrections have to be considered [14]. In Refs. [15–
17], the authors have solved the Schrödinger equation
using potential models in order to observe in which man-
ner finite-range corrections manifest in numerical calcu-
lations. The following modifications to the Efimov radial
law have been proposed

En
3 /E2 = tan2 ξ (2a)

κ3
naB + Γ3

n =
e−∆(ξ)/2s0

cos ξ
. (2b)

In the above equation there are two different cor-
rections: one comes from the two-body sector and is
taken into account by substituting aB for a, defined by
E2 = ~

2/ma2B, with E2 the two-body binding energy if
a > 0, or the two-body virtual-state energy in the oppo-
site case, a < 0 [18]. The second correction enters as a
shift Γ3

n in the control parameter κ∗aB. As we will show
below the shift is almost constant close to the unitary
limit. Moreover, the values of the three-body parameter
and the shift depend on the energy level.

In both Eqs. (1) and (2) the three-body energy is ex-
pressed as a function of the scattering length. In princi-
ple, there can be different ways and different mechanisms
to change the scattering length and tune it to a → ±∞,
and we refer to a given protocol as a path to the unitary
limit. In this work we explore one of these paths, or one
class of paths, in which the length rB = a − aB is kept
constant. Along this path we obtain that the shift Γ3

n,
which takes into account range corrections in the three-
body sector, is independent, at a first order, on the kind
of potential we use. This fact points to a kind of univer-
sality of the first-order range corrections.

One can speculate that this class of paths to the uni-
tary limit is pertinent for the description of broad Fesh-
bach resonances; using the universal corrections we can
thus estimate the value of the 3-body parameter κ∗ and
compare it to what found in literature. Finally, we show
that the shift Γ3

0 can be related to the two-body contact
C2 for a trimer at the unitary limit.

The paper is organized as follow: in the Sec. II we
study the path to the unitary limit which describes a
broad Feshbach resonance, and we analyze the behaviour
of the two-body properties, in particular of rB. In Sec. III
the three-body system is studied along that path using
different potential models. We construct the Gaussian
universal function, and we argue on its universality inside
the potential models. In particular we show how to use it
to predict the three-body parameter κ∗ in real systems.
In the same section we show the relation between the
two-body contact and the shift. In Sec. IV we make our
conclusions.

II. PATH TO THE UNITARY LIMIT

In the zero-range Efimov theory aB = a and this is the
only way to move toward the unitary limit. On the con-
trary, in a potential-based theory the finite-range char-
acter of the interaction allows for different paths con-
necting the physical point to the unitary limit. For ex-
ample, in atomic-trapped systems, experimentalists use
Feshbach resonance to modified the interatomic poten-
tial. By changing the intensity of the magnetic field the
two-body scattering length a is modified and for partic-
ular values of the magnetic field it diverges. These reso-
nances, which are further classified as broad or narrow,
can be interpreted as a particular path along which the
unitary limit is reached. Different theoretical descrip-
tions of Feshbach resonances are available and the most
common describes this process as a coupled channel sys-
tem [19]; still, broad resonances can be simply modeled
by modifying the potential strength. In the following we
analyze this option. We define

Vλ(r) = λV (r) , (3)

a potential with variable strength where V (r) is the po-
tential that reproduces the binding energy E2 and the
two-body scattering length a of a particular system. The
original potential corresponds to λ = 1, and the unitary
limit is reached decreasing the value of λ down to a crit-
ical value λc. Examples could be a dimer of two helium
atoms, E2 ≈ 1.3mK and a ≈ 190 a0, or the deuteron,
E2 ≈ 2.22MeV and a ≈ 5.4 fm (here a is the triplet scat-
tering length). To analyze these two cases we consider
the LM2M2 potential of Aziz [20] for the helium dimer
and, in the case of the deuteron, a combination of two
Yukawians as the MTIII nucleon-nucleon potential [21].
It should be noticed that these potentials reproduced a
large set of two-body data and, for this reason, are con-
sidered realistic potentials. On the other hand the Efi-
mov radial law depends only on a or aB, this suggests
the use of this minimal information to construct a two-
parameter potential as a Gaussian

V (r) = V0e
−r2/r2

0 (4)

with the strength and range fixed to describe the two
experimental data. In the specific cases analyzed here
the LM2M2 and MTIII interactions can be mimicked by
a Gaussian of range r0 = rHe

0 = 10 a0 and range r0 =
rNN
0 = 1.65 fm, respectively.
Using the four different potential models, we have stud-

ied the behavior of the energy-scattering length aB, of the
scattering length a, and of the effective range reff close
to λc. In this region these two lengths are related by the
effective range expansion as

1

aB
≈

1

a
+

reff
2a2B

. (5)

If we define ǫ = λ − λc, we have a, aB = O(1/ǫ), while
reff = ru + O(ǫ), or reff = ru + O(1/a), if we want to
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emphasize the dependency on the scattering length. For
convenience we have introduced the length ru as the value
of reff at the unitary limit. Formally ru can be obtained
from the effective range expansion that, at that limit,
takes the form

lim
a→∞

cot δ0
k

=
1

2
ru − Pr3uk

2 + · · · (6)

where δ0 is the s-wave phase-shift, k is the energy mo-
mentum and P is the shape parameter. Therefore

ru = lim
a→∞

reff = 2 lim
k→0

[
lim
a→∞

cot δ0
k

]
. (7)

What we have observed is that while reff changes con-
siderably from its value ru as the system moves away
from the unitary limit, the length rB defined as

rB = a− aB , (8)

results almost constant, even if rB = ru/2 +O(1/a). To
better analyze this fact we write Eq.(5) in the form

reff
2rB

= 1−
rB
a

+O(1/a2) . (9)

If rB were strictly constant, we could replace in the above
equation 2rB by ru, its value at the unitary limit, result-
ing in an universal relation for the ratio reff/ru in terms
of the variable ru/a

reff
ru

= 1− 0.5
ru
a

. (10)

In Fig. 1 we show reff/ru as a function of the inverse scat-
tering length for different potential models. We can ob-
serve that these very different potentials, describing phys-
ical system with different scales as the atomic LM2M2 or
the nuclear MTIII interactions collapse on a very narrow
band; this is more evident for positive values of a where
the physical points are located. The numerical results
for the different values of λ are given by the solid points
whereas the solid lines are fits to the numerical results
using a linear plus a quadratic ru/a term. The results for
the two Gaussian potentials, given by the solid (green)
circles lie on a single line.

The behavior of rB is also shown in Fig. 1, in the case of
the Gaussian interactions, by the (red) circles. The (red)
dashed line is a fit to the numerical results using a linear
plus a quadratic ru/a term. It should be noticed that in
the expansion of 2rB/ru ≈ 1+A0ru/a+. . ., the coefficient
of the linear term, A0 ≈ −0.01 is more than one order
of magnitude smaller than the corresponding one in the
expansion of reff/ru (which results to be always very close
to 0.5) resulting in the almost constant behavior of rB.
In the figure the position of the dimer formed by two
helium atoms and the deuteron are explicitly shown.
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FIG. 1. (color online). The effective range reff as a function of
the inverse of the scattering length (in units of ru) for different
potential models. The length 2rB in units of ru is also shown.

III. THE THREE-BODY SECTOR

The modifications to the Efimov radial law proposed in
Eq.(2) have been derived using potential models follow-
ing the path to the unitary limit discussed above. The
potential strength has been varied in order to cover a
wide range of values of a from positive to negative val-
ues up to a−, the value at which the three-body system
disappears into the three-body continuum.
Let concentrate our analysis to the ground state of the

three-body system, that means n = n∗ = 0, such that
κ∗ = κ3

0; in this case Eq. (1b) and Eq. (2b) are related
by

a(ξ)− aB(ξ) = Γ3
0/κ∗ , (11)

where we want to stress that a and aB are evaluated
at the same angle ξ and so they are not related to the
same E2 value but to the respective solutions of Eqs. (1a)
and (2a). The above relation extends the concept of al-
most constant behavior of the difference a − aB from
the two-body sector to the three-body sector. Defin-
ing r∗ = Γ3

0/κ∗, this length represents the distance be-
tween the zero-range and the finite-range theory in the
(1/a,−

√
|E0

3 |) plane and, if measured at fixed ξ angles,
it results (almost) constant. In order to further analyze
this fact we discuss first the case of a Gaussian potential.

A. Gaussian universal function

The three-boson ground-state energy, E0,G
3 , has been

calculated with the two Gaussian potentials for different
values of λ. At λ = λc the results verify

κHe
∗
rHe
0 = κNN

∗
rNN
0 ≈ 0.488 (12)
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where κHe
∗

and κNN
∗

are obtained from the energy at the
unitary limit in both cases; thus, for a Gaussian of range
rG0 the ground-state binding energy at the unitary limit
is EG

∗
≈ ~

2(rG0 /0.488)
2/m. The ground state energies

close to the unitary limit can be analyzed using Eq.(2).
The results can be described with high accuracy using a
shift Γ3

0 having a constant plus a 1/(κ∗aB) term

Γ3
0 = Γ3

0,0 +
Γ3
0,1

κ∗aB
. (13)

The parameters Γ3
0,0 ≈ 0.87 and Γ3

0,1 ≈ −0.14 are in-
dependent of the range of the Gaussian potential. The
small value of Γ3

0,1 guarantees an almost constant behav-
ior of the shift along the path of variable strength. This
behavior can be explicitly studied by casting Eq. (2b) in
the following form

1 +
Γ3
0

κ∗aB
=

e−∆(ξ)/2s0

κ∗aB cos ξ
. (14)

The right hand side can be plotted against 1/κ∗aB look-
ing for a linear behavior. This is shown in Fig. 2 where
the solid points represent the calculations with the Gaus-
sian potentials and the solid line is a fit using the expan-
sion of Eq.(13). From the figure the almost constant
behavior of Γ3

0, close to the unitary limit, is confirmed.
Moreover this analysis shows the completely equivalence
between the different Gaussian potentials using κ∗ as a
scale factor.

-0.4 -0.2 0 0.2 0.4 0.6 0.8
1/κ∗ aB
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Γ 03 /(κ

∗a B
)

FIG. 2. (color online). Study of Eq.(14) as a function of
1/κ∗aB. The solid circles are the numerical results for the
r.h.s. of the equation. The (red) solid line is a fit to the
calculations using a linear plus quadratic term.

The equivalence between Gaussian potentials with dif-
ferent ranges suggests the possibility of defining a Gaus-

sian universal function ∆̃(ξ). The modified radial law of

Eq.(2) can be written as

E0
3/E2 = tan2 ξ (15a)

κ∗aB =
e−∆̃(ξ)/2s0

cos ξ
, (15b)

and ∆̃(ξ) can be extracted from the numerical solutions
of the ground state energy, E0

3 , of the three-boson system
calculated with a Gaussian interaction as

∆̃(ξ) = s0 ln

(
E0

3 + E2

~2κ2
∗
/m

)
. (16)

The Gaussian universal function calculated in this way
incorporates finite-range effects along the specific path
used to reach the unitary limit. We would like to stress
that exists only one Gaussian universal function indepen-
dently of the range and strength of the Gaussian used to

calculate it. In Fig. 3 the Gaussian function ∆̃(ξ) cal-
culated using the two Gaussian potentials is given by
the solid (green) circles. The two set of data completely
overlap and cannot be distinguished from which Gaus-
sian potential they have been calculated. The Gaussian
universal function is compared to calculations using the
LM2M2 interaction, (blue) squares, and the Yukawian
MTIII potential, (black) triangles. For the sake of com-
parison the zero-range universal function ∆(ξ) is shown
in the figure by the solid (red) line.
Interestingly, these interaction models, very different

in scale and functional form, give rise to equivalent func-
tions that collapse in a narrow band indicating that they
have similar Γ3

0,0 values. In fact for the LM2M2 potential

the value Γ3
0,0 ≈ 0.82 is obtained whereas for the MTIII

potential Γ3
0,0 ≈ 0.85. This means that, up to first order,

the range corrections close to the unitary limit are al-
most universal. Moreover, we can conclude that close to
the unitary limit a two-parameter potential as a Gaussian
contains the essential ingredients required by the dynam-
ics. The different scales (here we have explored atomic
and nuclear scales) are absorbed in the control parameter
κ∗aB. The extension of the analysis to the first excited
state, n = 1 level, produce a shift with a constant term
of Γ3

1,0 ≈ 0.08 for the potentials under consideration.

B. Estimation of κ∗

Although the equivalent functions are very similar for
the Gaussian potential and for the realistic ones, differ-
ences are evident when these potential are used to calcu-
late energy levels in the three-boson system. The Gaus-
sian adapted to reproduce the values of the LM2M2 in-
teraction in the two-body system has to be supplemented
with a three-body force in order to reproduce the corre-
sponding energies in the three-boson system. For exam-
ple, in Ref. [22] the low energy dynamics of three helium
atoms has been described using a soft potential model
consisting in a two-body Gaussian plus a Gaussian hy-
percentral force adapted from the LM2M2 interaction.
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FIG. 3. (color online). The zero-range universal function,
(red) solid line, as a function of the angle ξ. The (green)
circles, (blue) squares and (black) triangles are the equivalent
functions calculated for the corresponding potentials. The
dashed lines are the tangents at the unitary limit.

Moving from the physical point towards the unitary limit
this strategy implies that a set of calculations have to be
performed in order to adapted the soft potential model
to the realistic one.
Instead of this type of approach here we want to use

the Gaussian universal function to estimate the three-
body parameter, κ∗, knowing a, E2 and E0

3 for some
specific system. This can be done observing that Eq.(15)
is a one-parameter equation as Eq.(1). The finite-range

effects has been absorbed in ∆̃(ξ). An operative way
to obtain this estimate is to determine the range and
strength of the Gaussian from a and E2. Calling rG0 the
range determined in this way, the three-body parameter
for that Gaussian can be determined from the relation
of Eq.(12), κG

∗
= 0.488/rG0 . Finally the three-body pa-

rameter of the system can be obtained from the following
relation derived using Eq.(15) at a fixed value of the angle
ξ

κ∗ ≈ κG
∗

√
E0

3

E0,G
3

(17)

where E0,G
3 is three-boson ground state energy calculated

using the Gaussian potential at a strength value such that

E0
3/E2 = E0,G

3 /EG
2 and with EG

2 the two-body energy
calculated at that strength.
For example, using the LM2M2 interaction the he-

lium dimer and trimer energies are E2 = 1.303 mK and
E0

3 = 126.4 mK respectively, and E0
3/E2 = tan ξ2 = 97.0.

Using the Gaussian representation with rG0 = rHe
0 = 10a0

and a strength V0 = 1.24294K the following values are

obtained: EG
2 = 1.6209 mK and E0,G

3 = 157.3 mK, ver-

ifying E0
3/E2 = tan ξ2 = 97.0. Using the above equa-

tion, we obtain an estimate of the three-body param-
eter κ∗ ≈ 0.0437a−1

0 to be compared to the value of
0.0440a−1

0 obtained calculating the three-boson ground
state energy with the LM2M2 potential using Eq.(3) with
λc = 0.9743. In the case of the MTIII potential a sim-
ilar reasoning produces and estimate of the three-body
parameter of κ∗ ≈ 0.269fm−1 compare to the exact cal-
culation giving a value of 0.277 fm−1. This results are
well below a 3% accuracy, and a similar accuracy has
been obtained for example using a next to the leading
order effective field theory description [23].

C. Finite-range parameter in terms of the contact

The shift modifies the Efimov radial law equation to
take into account finite-range corrections [16]; thus, we
have shown that the description of an Efimov-state en-
ergy requires two three-body parameters, κ∗ and the
shift. We can relate the two parameters to other proper-
ties of a bosonic gas at the unitary limit: the two- and
three-body contacts [24–26].
We briefly recall that the two- and three-body contacts

are defined by the following relations
(
a
∂E

∂a

)

κ∗

=
~
2

8πma
C2 , (18a)

(
κ∗

∂E

∂κ∗

)

a

= −
2~2

m
C3 . (18b)

They are important quantities entering in several prop-
erties of a many body system. For instance, the tail of
the momentum distribution n(k) of a bosonic gas con-
tains C2 and C3 in its asymptotic behaviour

n(k) →
1

k4
C2 +

F (k)

k5
C3 . (19)

In Eq. (19) F (k) is an universal log-periodic function [27–
29], it is not relevant for what follows.
In Refs. [27, 30] C2 has been calculated for the Efimov

trimer in the unitary limit, a → ±∞, and the result can
be expressed in the following way

C2 = 8π
∆′(−π/2)

s0
κ∗ ≈ 53.01 κ∗ , (20)

where ∆′(−π/2) ≈ 2.125850 [30] is the derivative of the
universal function calculated at the unitary point. In the
same way, we can consider the two-body contact for the
ground-state trimer calculated with the Gaussian poten-
tial; using Eq. (15) we obtain

C̃2 = 8π
∆̃′(−π/2)

s0
κ∗ ≈ 96.924 κ∗ , (21)

where we have used the numerical derivative ∆̃′(−π/2) ≈
3.8565.
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In order to show how the two-body contacts, for the
Efimov and the Gaussian trimers, are related to the shift
Γ3
0, we use Eqs. (2b) and (15b) to write

Γ3
0 =

e−∆̃(ξ)/2s0

cos ξ
−

e−∆(ξ)/2s0

cos ξ
. (22)

We can Taylor expand the right hand side of Eq. (22)
around the unitary limit, ξ = −π/2 obtaining

Γ3
0,0 =

1

2s0

(
∆̃′(−π/2)−∆′(−π/2)

)
. (23)

Therefore we conclude that the constant term of the shift
is proportional to the difference of the derivatives of the
Gaussian and zero-range universal function at the unitary
limit. The derivatives are shown as the dashed lines in
Fig. 3. Combining Eqs. (23), (20), and (21) we obtain

Γ3
0,0 =

1

16πκ∗

(C̃2 − C2) ≈ 0.8653 . (24)

The shift can therefore be related to a different varia-
tion of the three-boson energy with respect to the scat-
tering length at the unitary limit given by the potential
models with respect to the zero-range case. In the case
of real potentials moving along the path in which rB is
constant the shift measures the increase in this variation.
Here we have observed almost equal values of the shift
using different potential models with variable strengths
to explore the dynamics close to the unitary limit. How-
ever, we point out that in systems governed by a coupled-
channel dynamics, different values of Γ3

0,0 are possible,
even negative ones.
In the case of the three-body contact, with the defini-

tion given in Eq.(18b) it results C3 = κ2
∗
in both cases,

using the zero-range theory or the Gaussian model. As
before we can related the latter to the range of the Gaus-
sian as C3 = 0.238/(rG0 )

2.

D. Relation with experimental results.

In atomic trapped systems the measured three-body
parameter is a− and not the binding energy at the uni-
tary limit. Therefore the method described before used
to predict the three-body parameter from a known en-
ergy value cannot be applied. However, it is possible to
estimate the three-body parameter κ∗ using the value
of a−. In fact, Eq. (15) can be solved at ξ = −π re-
ducing the strength of the Gaussian potential up to the
point in which the three-body energy results to be zero.
From detailed calculations around such a point we obtain

∆̃(−π) ≈ −1.83 and, accordingly,

κ∗a
−

B = −2.483 . (25)

It should be noticed that the parametrization proposed
in Eq.(13) can be used in connection with Eq.(22) to ap-

proximate ∆̃(−π) using the value of the zero-range uni-
versal function, ∆(−π) = −0.8262, derived in Ref. [31]

and solving a second order equation. In such a case we
obtain an estimate of κ∗a

−

B ≈ −2.44 in reasonable agree-
ment with the above (more exact) result, showing that
the two-term parametrization of the shift Γ3

0 can be ex-
tended up to the three-body threshold into the contin-
uum. Also the constant relation between the scattering
length and the energy scattering length holds at that
threshold, a−B = a− − rB, and it can be used to deduce
the three-body parameter in terms of a−. For systems
having a van der Waals tail we propose the following es-
timate

κ∗ ≈
−2.48

a− − rB
≈

0.22

ℓ
, (26)

where we have introduced the van der Waals length ℓ
and we have approximate the ratios a−/ℓ ≈ −9.5 and
rB/ℓ ≈ 1.4. The first ratio reflects a class of universality
determined by the van der Waals length (see Ref. [11]
and references therein) whereas the second ratio can be
verified using theoretical models as has been done in the
present work in the case of He or, in the case of Cs, by
the model given in Ref. [19]. To be noticed that a very
close relation to determine κ∗ in the case of two-body
Leonnard-Jones potentials has been given in Ref. [35]
showing that also this kind of potentials are well de-
scribed using the Gaussian universal function.
Though approximate, the estimate for the three-body

parameter given in Eq.(26) agrees well with estimates
given in the literature. For an helium trimer, using
ℓ = 5.1 a0, Eq.(26) predicts a three-body parameter of
κ∗ ≈ 0.043 a−1

0 whereas calculations using the LM2M2
potential give κ∗ ≈ 0.044 a−1

0 [32, 33]. It is interesting to
noticed that the above relation is also in agreement with
the estimates of Ref. [34] for the three-body parameter
of 6Li (κ∗ = 0.00678 a−1

0 ) and 133Cs (κ∗ = 0.0017 a−1
0 ).

In the first case, using ℓ = 31.26 a0 Eq.(26) predicts
κ∗ ≈ 0.007a−1

0 , in good agreement with the estimate. In
the second case, using ℓ = 101 a0 a value of κ∗ ≈ 0.002a−1

0

is obtained, in reasonable agreement with the quoted
value in Ref. [34].

IV. CONCLUSIONS.

We have analyzed the behavior of a three-boson sys-
tem close to the unitary limit using potential models dif-
fering in form and scale. Specifically we have used the
LM2M2 helium-helium interaction, the MTIII interac-
tion constructed to describe the s-wave nucleon-nucleon
interaction in triplet state and two Gaussian representa-
tions of these potentials. The strength of the potentials
have been varied in order to move the system towards
the unitary limit. A first observation was that along this
path the length rB = a−aB results to be almost constant.
This quantity characterizes the system, it is about 7.2 a0
for the helium system and about 1.2 fm for the nuclear
system. This can be understood as a particular path to
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the unitary limit and the Gaussian representation of the
potential is constructed to reproduce the length rB along
that path.

The analysis of the three-boson ground-state binding
energy close to the unitary limit using the Gaussian po-
tentials have shown different scaling properties allowing
to determine the three-body parameter, κG

∗
, from the

range of the Gaussians. Moreover this family of poten-
tials produces a shift with a constant term of Γ3

0,0 ≈ 0.87,
independently of the range, and a small first order cor-
rection proportional to 1/κ∗aB. This characteristic al-

lows to construct a Gaussian universal function ∆̃(ξ).
The shift has been shown to be related to the differ-
ence between the zero-range-trimer two-body contact and
the ground-state-trimer two-body contact at the unitary
limit. Being the contact an observable, this connection
allows for a measurement of the shift. Finally, the Gaus-

sian universal function ∆̃(ξ) has been used to estimate
the three-body parameter κ∗ knowing the two- and three-
boson binding energies at a particular value of the two-
body scattering length a. Since in atomic-trapped sys-
tems estimates of the scattering length at dissociation are
given, we make the analysis from the known value of a−
as well. In this case we use the relations a−/ℓ ≈ −9.5
and rB/ℓ ≈ 1.4, verified in several atomic species.
In many cases the zero-range universal function ∆(ξ)

has been used to analyze experimental results with the
conclusion that not always a complete agreement was
found. In those cases in which the agreement is not sat-
isfactory we suggest the use of the Gaussian universal

function ∆̃(ξ) as an alternative to make the analysis. To
this respect a parametrization of the function in terms of
the angle ξ could be helpful. Studies along this line are
at present in progress as well as the analysis of different
classes of paths to reach the unitary limit.
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