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ABSTRACT 

Despite recent progress in the first-principles calculations and measurements of 

phonon mean-free-paths (), contribution of low-energy phonons to heat conduction 

in silicon is still inconclusive, as exemplified by the discrepancies as large as 30% 

between different first-principles calculations. Here we investigate the contribution of 

low-energy phonons with >0.8 μm by accurately measuring the cross-plane thermal 

conductivity (Λcross) of crystalline silicon films by time-domain thermoreflectance 

(TDTR), over a wide range of film thicknesses 1≤hf≤10 µm and temperatures 

100≤T≤300 K. We employ a dual-frequency TDTR approach to improve the accuracy 

of our Λcross measurements. We find from our Λcross measurements that phonons with 

>0.8 µm contribute 53 W m-1 K-1 (37%) to heat conduction in natural Si at 300 K 

while phonons with >3 µm contribute 523 W m-1 K-1 (61%) at 100 K, >20% lower 

than the first-principles predictions by Lindsay et al. of 68 W m-1 K-1 (47%) and 695 

W m-1 K-1 (77%), respectively. Using a relaxation times approximation (RTA) model, 

we demonstrate that macroscopic damping (e.g., Akhieser’s damping) eliminates the 

contribution of phonons with mean-free-paths >30 µm at 300 K, which contributes 15 
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W m-1 K-1 (10%) to heat conduction in Si according to Lindsay et al. Thus, we 

propose that omission of the macroscopic damping for low-energy phonons in the 

first-principles calculations could be one of the possible explanations for the observed 

differences between our measurements and calculations by Lindsay et al. Our work 

provides an important benchmark for future measurements and calculations of the 

distribution of phonon mean-free-paths in crystalline silicon.
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Text  

Phonons are the dominant energy carriers in most semiconductors and 

dielectric materials.1 For many decades, understanding of heat transport by phonons is 

incomplete, mainly due to lack of quantitative knowledge2 of how far phonons 

propagate without being scattered, a property called the mean-free-paths () of 

phonons. Recently, significant breakthroughs are attained with successful calculations 

of phonon mean-free-paths without any fitting parameters using first-principles 

approaches,3-5  and good agreement was achieved between the first-principles 

calculations and experimental data of bulk thermal conductivity for a wide range of 

materials.6-9 This exciting development leads to predictions of the thermal 

conductivity of new materials10 that are yet to be discovered. 

Despite these impressive achievements, disagreement still exists between first-

principles calculations by different researchers, especially for low-energy phonons 

with long mean-free-paths, see Fig. S7 in the online supporting materials for a 

comparison of published first principles calculations of isotopically pure Si at room 

temperature. For example, Lindsay et al.11, 12 calculated that phonons with mean-free-

paths >0.8 µm contribute ≈70 W m-1 K-1 (47%) to thermal transport in isotopically 

pure Si, but Garg et al.13 estimated a contribution of only ≈40 W m-1 K-1 (30%), even 

though the contributions of high-energy phonons calculated by both groups are 

similar (≈90 W m-1 K-1). While this paper was under review for publication, Jain and 

McGaughey published their first-principles calculations of isotopically pure Si using 

different exchange-correlation and pseudopotential schemes to represent the many-

body interactions of electrons within the framework of density function theory 

(DFT).14 They found that the calculated thermal conductivities vary by 30% when 
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different DFT schemes were employed, demonstrating that the accuracy of first-

principles calculations hinges on a close approximation of the computationally 

expensive many-body interactions of electrons. Moreover, in the first-principles 

approaches, researchers do not take into account attenuation of low-energy phonons 

due to macroscopic mechanisms,15 such as irreversible viscous absorption (often 

called Akhieser’s damping) and thermoelastic energy loss, which are proven to 

dominate scattering of low-energy phonons.16-18 In fact, Maznev estimated that the 

onset of measurable size effects of Si is reduced from ≈100 µm as predicted by first-

principles calculations to ≈10 µm if the macroscopic mechanisms are taken into 

account.19   

In principle, the contribution of low-energy phonons can be verified by 

measurements of micron-sized Si structures. Goodson and his coworkers20, 21 

measured the in-plane thermal conductivity of Si thin films with film thickness hf<1 

µm by the 3ω method, and, contrary to the first-principles calculations, they observed 

no significant reduction in the thermal conductivity in their 1-µm thick film. More 

recently, Cuffe et al.22 reported in-plane thermal conductivity of Si membranes of 15 

nm–1.5 µm using transient thermal grating method, and they reconstructed a thermal 

conductivity accumulation function that compares fairly well with the first-principles 

calculations by Esfarjani et al.4 In these experiments, however, the focus was on the 

contribution of higher-energy phonons, considering the thinner films with hf<1 µm 

studied in the experiments and the fact that boundary scattering of phonons is weak in 

the in-plane direction23 when hf≪.  

Meanwhile, researchers also attempted to directly probe the phonon mean-

free-paths by imposing a temperature profile with a characteristic length Lc 
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comparable to the mean-free-paths of phonons, by changing either the frequency24, 25 

or the size of the heat source26-28 in the experiments. In these mean-free-path 

spectroscopy techniques, measurements are usually interpreted24-26 using an empirical 

assumption first proposed by Koh et al.24 that phonons with >Lc are ballistic and do 

not contribute to heat conduction. Such simple interpretation, however, is not always 

valid because factors such as the anisotropy29 in heat transport by the non-equilibrium 

phonons, the effects of interfaces29 and the diminished relative phase30 between the 

applied heat flux and the temperature response at high frequencies cannot always be 

ignored. The challenges in the analysis and interpretation of measurements using the 

mean-free-path spectroscopy techniques lead to conflicting conclusions on the 

contribution of phonons with >0.8 µm in Si.24, 25, 29   

In this paper, we examine the reduction of the thermal conductivity in silicon 

thin films in the cross-plane direction to determine the contribution of low-energy 

phonons to heat conduction in Si. We accurately measured the cross-plane thermal 

conductivity (Λcross) of crystalline Si films with thickness 1≤hf≤10 µm at temperatures 

100≤T≤300 K, using a dual-frequency time-domain thermoreflectance (TDTR) 

approach. While our Λcross measurements fall between the wide range of predictions 

derived from the first-principles calculations, our Λcross measurements are higher than 

widely cited22, 25, 26, 31 calculations by Lindsay et al.11 and Esfarjani et al.4 

Specifically, at 300 K, we measured Λcross=90 W m-1 K-1 for hf=1 µm, compared to 

first principles predictions of 78 W m-1 K-1.4,11 The difference is beyond the 

uncertainty of our measurements. We build a relaxation time approximation (RTA) 

model to evaluate whether the difference could be attributed to the macroscopic 

damping not considered in the first-principles calculations. We find that for Si , the 
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macroscopic damping strongly attenuates phonons with >30 µm, 200 µm and 600 

µm at T=300 K, 150 K and 100 K. The reduction of thermal conductivity due to 

macroscopic damping is on the same order of magnitude as the difference between 

our measurements and Lindsay’s calculations.  

 

Experimental details 

Our samples are commercially available p-type <100> silicon-on-insulator 

(SOI) wafers with a device layer of 1−10 µm. The 1 µm thick SOI wafer was 

prepared by the Smart CutTM process while other SOIs were prepared by the bonding 

and etch-back process.32 The device layers are single-crystalline, with a resistivity of 

10−20 Ω-cm (measured by a four-point probe) and an estimated impurity 

concentration of ≈1015 cm-3. With this level of impurity concentration, the strength of 

Rayleigh scattering33 due to the impurity is four orders of magnitude smaller than that 

due to natural isotopes of Si; thus the effect of impurity is negligible. To prepare the 

samples for TDTR measurements, we first etched away the native silicon oxide of the 

SOIs using hydrofluoric acid (HF) and then immediately deposited a ≈100 nm thick 

Al film. We measured the thicknesses of Al, Si and SiO2 layers by picosecond 

acoustics.34 Since accurate thickness of the Al transducer with native oxide is 

important, we measured the thickness of the native Al oxide layer as 3.7±0.5 nm from 

the Al 2p X-ray photoelectron spectroscopy (XPS) spectrum.35, 36  

We employed time-domain thermoreflectance (TDTR)37 to measure the cross-

plane (Λcross) thermal conductivities of the Si films. In TDTR measurements, a train of 

femtosecond laser pulses is split into a pump beam and a probe beam. The pump 

beam, modulated by an electro-optic modulator, is absorbed by the transducer of the 
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sample and periodically heats the sample at a modulation frequency f. The periodic 

temperature response at f at the sample surface is then monitored by a synchronized 

but time-delayed probe beam via thermoreflectance, using a photodiode detector and 

a lock-in amplifier. With the periodic heating at the sample surface, heat diffuses a 

distance dp into the sample, where pd Cfπ= Λ is the thermal penetration depth24 

and C is the volumetric heat capacity. Thus, the temperature response is only sensitive 

to thermal properties within the distance dp of the sample. We then extract the thermal 

conductivity of the Si films by comparing the ratio of in-phase and out-of-phase 

signals of the lock-in amplifier at f, Rf  = −Vin∕Vout, to calculations of a diffusive 

thermal model.38 We note that we used an anisotropic thermal model in the analysis of 

our TDTR measurements, although this is not critical because we designed the 

experiments such that the measurements are sensitive to Λcross but not Λin, see below.  

In order for TDTR to have high enough sensitivity to Λcross, we applied a large 

laser spot size (i.e., w0=27 µm) and a high modulation frequency fh to ensure that 

dp≪w0 and thus one-dimensional heat transfer in the cross-plane direction; in this 

case, TDTR measurements are sensitive to Λcross not Λin. However, accurate 

measurements of Λcross are still challenging. The TDTR measurements at fh are 

usually far more sensitive to the thickness of the Al transducer hAl due to the low 

thermal resistance of the Si films, yielding an unacceptably large uncertainty for the 

Λcross measurements.  

Here, we develop a dual-frequency TDTR approach to improve the accuracy 

of our Λcross measurements. We observe that for TDTR measurements on similar 

geometries, the sensitivity of TDTR signals to hAl depends only weakly on the 

modulation frequency f, while the sensitivity to Λcross reduces drastically as f 

decreases. Thus, we perform an additional TDTR measurement at a lower modulation 
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frequency f0, such that the sensitivity to hAl is comparable to that at fh and the 

sensitivity to Λcross is near zero. We then derive Λcross of the Si thin films by adjusting 

calculations of the thermal model to fit the ratio of TDTR signals at the two 

frequencies fh and f0, 0
/

hdual f fR R R= , see Fig. 1(a). By analyzing Rdual, the sensitivity 

to Λcross is maintained, while the sensitivity to hAl is greatly reduced; the uncertainty 

of our Λcross measurements is thus improved to ≈10%. The advantage of the dual-

frequency approach is demonstrated in Fig. 1(b), in which we compare calculations of 

the thermal model using the Λcross fitted from the Rdual to the TDTR measurements at 

each individual frequency fh and f0. As shown in Fig. 1(b), the agreement, while 

acceptable, is not perfect, due to additional errors from the parameters (e.g., hAl) that 

only Rf (but not Rdual) is sensitive to. More details on this dual-frequency approach, 

including the choice of fh and f0, can be found in the online supporting material and 

Ref. 39. 

Our measurements are not affected by the frequency dependence24, 25 and laser 

spot size dependence26 observed in prior pump-probe thermoreflectance 

measurements. We verify that frequency dependence is negligible for bulk Si when 

the laser spot size is sufficiently large (i.e., for w0=27 µm used in our Λcross 

measurements), see Fig. 2, consistent with several prior TDTR measurements on Si 

using large laser spot sizes.24, 29, 40 Slight frequency dependence is observed for our 

measurements at 100 K when a small laser spot size of w0=5.5 µm was used, see Fig. 

2. At 100 K, the penetration depths dp are 5 µm and 16 µm for modulation 

frequencies of 10 MHz and 1 MHz, respectively. Thus, the frequency dependence is a 

result of transition from measurements limited by a high modulation frequency 

(dp<2w0) to measurements limited by a small laser spot size (dp>2w0). We note that all 

subsequent Λcross measurements reported in the manuscript were acquired using 
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w0=27 µm, and thus are not affected by the frequency dependence. Our Λcross 

measurements are also not affected by spot size dependence because we use laser spot 

size much larger than the film thicknesses (2w0>hf). In this case, the mean-free-paths 

of low-energy phonons are limited by hf due to the boundary scattering at the thin film 

interfaces and thus the nonequilibrium effects should be minimal. 

 

Results and discussions 

We present our Λcross measurements normalized by the thermal conductivity of 

bulk Si Λbulk at respective temperatures41 in Fig. 3 (a-c), and compare our Λcross 

measurements with the thermal conductivity of Si nanowires,42-44 and the apparent 

thermal conductivity measured on bulk Si using the broadband frequency-domain 

thermoreflectance (BB-FDTR)25 and TDTR with different spot sizes.26, 45 To facilitate 

the comparison, we plot the measurements as a function of a characteristic length Lc 

responsible for the reduction in the measured thermal conductivity; see the caption of 

Fig. 3 for the definitions of Lc for different experiments. Although these experiments 

are based on different underlying physics, the reduction in the measured thermal 

conductivity in all these experiments can be approximated with an additional 

scattering length of Lc; thus the comparison is justified. We note that the effective 

boundary scattering length of 3hf/4 for the Λcross is derived from the radiation limit46 

for heat conduction in the cross-plane direction, assuming that heat is diffusely 

radiated and absorbed at the interfaces. Our Λcross measurements compare favorably 

with prior measurements of thermal conductivity of Si nanowires, the spot size 

dependent TDTR measurements, and BB-FDTR measurements at room temperature, 

but disagree with BB-FDTR measurements at 150 K, see Fig. 3. The source of this 

disagreement is unknown to the authors. 
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We also compare our measurements to the first-principles calculations at 300 

K in Fig. 3 (d). To make a fair comparison, we transform the first-principles 

calculations of the cumulative thermal conductivity of bulk Si into the corresponding 

thin film thermal conductivities, using an approach developed by Yang and Dames, 

see Eq. (12) of Ref. 31. We use Matthiessen’s rule to relate the phonon mean-free-

paths in Si thin films f and bulk Si bulk as . We plot the Λcross derived 

from the first-principles calculations of natural Si by Lindsay et al.,11, 12 and of 

isotopically pure Si by Li et al.,47 Esfarjani et al.,4  Garg et al.13 and by Jain and 

McGaughey,14 normalized by the respective Λbulk calculated by the same researchers. 

We find that our measurements fall within the wide range of predictions by the first-

principles approaches, see Fig. 3(d).  

To quantify and compare the contribution of low-energy phonons to heat 

conduction in bulk Si, we define a cumulative thermal conductivity for low-energy 

phonons with mean-free-path longer than  as 
bulklow bulkd

∞
Λ = Λ∫ 



 , where 
bulk

Λ


  is 

the thermal conductivity contribution per bulk
31 and 

bulk bulkdΛ


  is the differential 

thermal conductivity in bulk Si by phonons with mean-free-path from bulk to bulk+ 

dbulk. Note that our definition of cumulative thermal conductivity Λlow is different 

from the typical definition of cumulative thermal conductivity which sums up the 

contribution of high-energy phonons with mean-free-path up to . We then 

approximate Λlow for =Lc from our Λcross measurements, Λlow=Λbulk−Λcross, and plot 

Λlow as a function of phonon mean-free-path  in Fig. 4. We choose this simple 
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approximation instead of more rigorous reconstruction using a complex optimization 

procedure48 because this convenient approach is sufficiently accurate within the range 

of our experiments, considering the uncertainty of our measurements; see the online 

supporting materials for full justification. We note that for the range of our 

experiments, this simple approximation is an overestimation and thus the 

experimental data in Fig. 4 represent an upper limit of Λlow.   

For comparison, we also plot the first-principles calculations of Λlow of natural 

Si by Lindsay et al. as solid lines in Fig. 4. While the calculations by Esfarjani et al.4 

have been widely cited for interpretations of prior experimental results,22, 25, 26, 49 we 

choose to compare our measurements to calculations by Lindsay et al.11 because i) 

Lindsay’s approach, which includes the calculation of all the cubic force constants up 

to seventh nearest neighbors, was considered to be very accurate;4, 50 ii) Lindsay’s 

calculations are similar to those by Esfarjani et al.4, see Fig. 3(d), yet Esfarjani’s data 

are not available for the long mean-free-path range and need extrapolation, but 

Lindsay’s data are available for the full spectrum; iii) Lindsay’s calculations are for 

natural Si, which enables direct comparisons with our measurements, while all the 

other calculations are for isotopically pure Si.  

We find from our measurements that phonons with >0.8 µm contribute 53 W 

m-1 K-1 (37%) to heat conduction in Si at 300 K, while phonons with >3 µm 

contribute to 523 W m-1 K-1 (61%) at 100 K, see Fig. 4. These values of Λlow are 

lower than the first-principles calculations by Lindsay et al. of 68 W m-1 K-1 (47%) 

and 695 W m-1 K-1 (77%), respectively. The differences of >20% are beyond the 

experimental uncertainty especially at cryogenic temperatures, see Fig. 4. 
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One possible explanation for the observed differences is that in our 

measurements some low-energy phonons are not scattered by the interfaces but are 

transmitted51 across the interfaces. However, we argue that all transmitted phonons, if 

any, should be scattered by the underlying amorphous SiO2 and thus the effective 

boundary scattering should be limited by hf. To represent the uncertainty of the 

characteristic length for Λcross, we include error bars of 3hf/4−hf in Figs. 3 and 4. We 

find that the disagreement persists even after the uncertainty is taken into 

consideration, see Figs. 3 and 4. 

Another possible explanation for the discrepancy is that Lindsay et al. did not 

consider macroscopic damping that dominantly scatters low-energy phonons in their 

calculations, and thus overestimated the contribution of the low-energy phonons. 

There are at least two macroscopic mechanisms15, 52 that could attenuate the low-

energy phonons (i.e., ultrasonic waves). First, low-energy phonons create a periodic 

temperature profile of hotter (compressed) and colder (expanded) regions in Si, and 

heat transfer between these regions attenuates the low-energy phonons due to 

thermoelastic loss of energy. Second, strains generated by the low-energy phonons 

causes a change of the effective temperature of individual high-energy phonons 

(usually called the thermal phonons). As the thermal phonons relax to a new local 

equilibrium through e.g., the three-phonon processes, entropy is generated and the 

low-energy phonons are damped. This viscous damping is usually called the 

Akhieser's damping.15 

To estimate the effect of macroscopic damping, we build a relaxation time 

approximation (RTA) model that successfully reproduces the accumulation functions 

by Lindsay et al. see Fig. S4 of the online supporting materials and Fig. 4 of the main 

text. Details of our RTA model are described in online supporting materials. In our 
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RTA model, we calculate the phonon dispersion using an adiabatic bond-charge 

model,53 and use the averaged values of the zeroth-order relaxation times from the 

first-principles calculations by Lindsay et al.11, 12 To estimate the effects of the 

macroscopic damping to heat conduction in Si, we follow Maznev19 to approximate 

the relaxation times due to the macroscopic damping using an expression 

( )2 2
A inf th1 1τ τ τ ω= + , where ω is the phonon angular frequency and τinf and τth are 

parameters derived from fitting of prior measurements of the relaxation times of 

ultrasonic waves16-18 at different temperatures. Since measurements of the relaxation 

times of ultrasonic waves are available only up to ω=100 GHz, this expression of τA 

is a simple approximation that smoothly fits both the experimental data for ω<100 

GHz and the first-principles calculations of phonon relaxation times due to three-

phonon processes for ω>1 THz. We incorporate the relaxation times τA into our RTA 

model using Matthiessen's rule. We calculate the cumulative thermal conductivity 

with and without the macroscopic damping using our RTA model. We then derive 

Λcross using the approach by Yang and Dames, and plot the derived Λ/Λbulk in Fig. 3. 

We also plot the Λlow calculated from our RTA model in Fig. 4.  

We find that inclusion of the macroscopic damping essentially eliminates 

contribution of phonons with >30 µm, 200 µm and 600 µm to heat conduction in Si 

at T=300 K, 150 K and 100 K, respectively, see Fig. 4. Since Lindsay et al. predicts a 

measurable contribution of 15 W m-1 K-1 (10%), 40 W m-1 K-1 (10%), and 120 W m-1 

K-1 (15%), respectively, from these low-energy phonons, inclusion of the macroscopic 

damping reduces the cumulative thermal conductivity of low-energy phonons Λlow 

calculated by our RTA model to be in better agreement with our measurements, see 

Fig. 4. Thus, we propose that omission of macroscopic damping could be one of the 
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possible explanations for the differences in the contribution of low-energy phonons 

between our measurements and the first-principles calculations by Lindsay et al.  

 

Conclusions 

In summary, we find from our measurements of cross-plane thermal 

conductivity of Si films that phonons with >0.8 µm contribute 37% to heat 

conduction in natural Si at 300 K and phonons with >3 µm contribute 61% at 100 K, 

lower than 47% at 300 K and 77% at 100 K predicted by the first-principles 

calculations of Lindsay et al. We find that inclusion of the macroscopic damping in 

our RTA model eliminates the contribution of phonons with >30 µm, 200 µm and 

600 µm to heat conduction in Si at T=300 K, 150 K and 100 K, respectively, and thus 

could explain the differences between our measurements and the first-principles 

calculations. Our measurements also disagree with the BB-FDTR measurements at 

150 K. Our measurements thus provide a crucial set of experimental data for 

comparison in future studies of the mean-free-paths of phonons in Si. 
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Figure 1 | TDTR measurements (open circles) of a 1.02 µm thick Si film measured at 

fh=16 MHz and f0=3.2 MHz, plotted as (a) ; and (b)  at 

each frequency f as labeled. The solid lines are calculations of the thermal model 

using the Λcross value fitted from the Rdual. The dashed lines are calculations of the 

thermal model using ±15% of the best-fit Λcross value.  
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Figure 2 | The apparent thermal conductivity Λ of bulk Si measured as a function of 

modulation frequency f, using 1/e2 radii of laser beams of w0=27 µm (squares), 11 µm 

(circles) and 5.5 µm (triangles) at 100 K and 300 K. The apparent thermal 

conductivity is independent of f when the laser spot size is sufficiently large (w0=27 

µm).  
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Figure 3 | (a-c) Λcross measurements of Si films (solid squares, current work) at (a) 

300 K, (b) 150 K and (c) 100 K, compared with the thermal conductivity of Si 

nanowires42-44 (open squares) and the apparent thermal conductivity of bulk Si 

measured by BB-FDTR25 (open circles) and spot size dependent TDTR26, 45 (open 

diamonds), plotted as a function of characteristic lengths Lc. All measurements are 

normalized by the thermal conductivity of bulk Si41 of Λbulk=143 W m-1 K-1, 399 W 

m-1 K-1 and 853 W m-1 K-1 at T=300 K, 150 K, and 100 K, respectively. Lc are 3hf/4 

for Λcross measurements,46
 the diameter23 for the thermal conductivity of nanowires, 

the thermal penetration depth25 dp for the BB-FDTR measurements, and the root-

mean-square average of the pump and probe 1/e2 diameters29 for the spot size 

dependent TDTR measurements, respectively. The shades in the figures represent the 
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uncertainty in the Λcross and Lc. The solid lines are predictions derived from the first-

principles calculations of natural Si by Lindsay et al.11, 12 The dashed lines are 

calculations of our RTA model, taking into account the macroscopic damping of low-

energy phonons, see the main text for the details of our RTA model. (d) Comparison 

of the Λcross measurements in (a) with predictions derived from the first-principles 

calculations of pure Si by Lindsay et al.11 (solid brown line), Li et al.47 (solid black 

line), Esfarjani et al.4 (solid blue line), Garg et al.13 (solid purple line), and Jain and 

McGaughey14 using different pseudopotential and exchange correlation schemes. 

(Jain-1 (solid red line) refers to calculations using a norm-conserving pseudopotential 

and the local density approximation (LDA); Jain-2 and Jain-3 (dashed pink and green 

lines) refer to calculations using the generalized gradient approximation (GGA) 

developed by different researchers, see calculations labeled "PW91" and "BYLP" in 

ref. 14 for more details). The first principles calculations are normalized by the bulk 

thermal conductivity calculated using the respective scheme. 
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Figure 4 | Cumulative thermal conductivity for low-energy phonons, Λlow, in natural 

Si derived from Λcross measurements of Si films (solid squares, current work) at (a) 

300 K, (b) 150 K and (c) 100 K, compared with Λlow derived from the measurements 

of BB-FDTR25 (open circles) and spot size dependent TDTR26, 45 (open diamonds), as 

a function of phonon mean-free-path. The brown solid lines are the first principles 

calculations of natural Si by Lindsay et al. The dashed red and black lines are 

calculations of our RTA model, with and without incorporating the macroscopic 

damping, as labeled.   
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I. Uncertainty analysis of Λcross measured by dual-frequency TDTR approach  

In the dual-frequency approach, we fit the ratio of TDTR signals at the two 

frequencies 
1 0dual f fR R R= , instead of Rf. The sensitivity of dualR  is the difference of 

the sensitivities of TDTR signals at the two frequencies:   

( )1 0 01

1 2

TDTR TDTR
ln lnln

ln ln ln
f f ffdual

f f

R R RR
S S Sα α αα α α

∂ ∂∂
= = − = −

∂ ∂ ∂
  (S1) 

In this way, we maintain the sensitivity to Λcross, but significantly reduce the 

sensitivities to the other parameters, see Fig. S1(a-b). 

 

  
                     (a)                 (b) 

Figure S1 | (a) Sensitivity of TDTR Rf signal to Λcross, hAl and CAl, as a function of 
modulation frequency. The sample is a 1 µm thick Si film on a 380 nm thick SiO2 film on Si 
substrate, coated with a 100 nm thick Al film. The delay time is fixed at 100 ps and the laser 
spot radius is 27 µm. (b) Sensitivity of 

1 0dual f fR R R= , with f1=16 MHz and f0=3.2 MHz, to 

parameters Λcross, hAl and CAl.  
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The uncertainty of Λcross of the Si film is calculated as:  

1 2

cross

cross cross cross

2 2 2

1 2

dual dualdual

dual dual dual

S SS
S S S

φ φα
αη η δφ δφΛ

Λ Λ Λ

     
= + +          

     
∑   (S2) 

Input parameters α  in the thermal model include the laser spot size, and the 

thickness, heat capacity, cross-plane and in-plane thermal conductivity of each layer 

of the sample. In the analysis, Λcross of the Si thin film and the Al/Si interface 

conductance G  are treated as freely adjustable parameters. For the Al/Si interface 

conductance G, we consistently get the values of 330, 230 and 160 MW m-2 K-1 at 

temperatures 300 K, 150 K and 100 K respectively, independent of Si film thickness. 

TDTR is not sensitive to the Si/SiO2 interface conductance G2; we have varied the G2 

value over a wide range from 50 MW m-2 K-1 to 100 GW m-2 K-1, and find it affects 

Λcross by <2%.  

In our TDTR measurements, we estimate the uncertainty of each input parameter 

as follows: thermal conductivities ΛAl as 15%, ΛSiO2 as 5%; heat capacities CAl as 5%, 

CSi as 5%, CSiO2 as 5%; thicknesses hAl as 6.5%, hSi as 4%, hSiO2 as 4%; interface 

conductance G as 25%; and spot size w as 8%. Based on the uncertainties and 

sensitivities of all the parameters, we estimate the uncertainties of our Λcross 

measurements as ~10%.  

  

 2 



II. Estimate thickness of native Al oxide by XPS 

Figure S2 is the XPS spectrum of our sample of a thermally evaporated Al film 

exposed to the typical laboratory environment of Singapore for two weeks. Based on 

the method of Strohmeier, (see Eq. (2) in Ref. 1), we estimate the oxide film thickness 

as ~37.4 Å for this specific sample.  

 
Figure S2 | XPS spectrum of a thermally evaporated Al film with a native oxide layer. The Al 
2p peak envelop shows the respective metal and metal oxide components, from which the 
AlOx layer thickness can be estimated.  
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III. Estimate effect of macroscopic damping using a relaxation time 

approximation (RTA) model 

The first-principles calculations do not take into account the macroscopic 

damping of low-energy phonons. To estimate the effect of macroscopic damping, we 

use a relaxation time approximation (RTA) model that reproduces the cumulative 

thermal conductivity of natural Si by first-principles calculations of Lindsay et al.2, 3  

In the RTA model, the thermal conductivity is calculated as:  

( )
2 2

2
0 020

1 1 ( )
3 c

j B

n n v D d
k T

ω τ ω ω
∞

Λ = +∑∫
     (S3) 

where j stands for polarization, ℏ is the reduced Planck constant, Bk is the Boltzmann 

constant, 0n  is the Planck distribution function, cτ  is the combined relaxation time of 

relaxation times for N-process Nτ , U-process Uτ  and impurity scattering Iτ , 

determined by Matthiessen’s rule as 1 1 1 1
c N U Iτ τ τ τ− − − −= + + , v is the group velocity, D(ω) 

is the density of states, ω is the phonon angular frequency. The ingredient 2 ( )v D ω  of 

Si in the integral in Eq. (S3) is calculated utilizing a full phonon dispersion from the 

adiabatic bond charge model4 and the Gilat-Raubenheimer method5 for integration 

over the k-space.  

We extract the relaxation times of the normal and Umklapp processes in Si from 

the zeroth-order solution of the first-principles calculations by Lindsay et al.2, 3 For 

high-energy phonons with frequency ω/2π > 3 THz, we estimate the relaxation times 

from the harmonic mean of the first-principles calculations. For the low-energy 

phonons with ω/2π < 3 THz, we assume a ω2 dependence for the N-process and a ω3  

dependence for the U-process scattering rates6 and extrapolate relaxation times for the 

low-energy phonons from the limited first-principles calculations data, see Figure S3.  

We calculate the relaxation time for impurity scattering from7  

1 2( ) ( )
6I
V Dπτ ω ω ω− = Γ       (S4) 

where V is the volume per atom, Γ is the dimensionless mass-defect scattering 

strength and can be calculated8 as ( )21i i
i

c m mΓ = −∑ , with ci the fractional 

concentration of the ith species, mi the atomic mass the ith species, and m the average 

atomic mass.  

 4 



      (a) 
  

     (b) 
Figure S3 | Relaxation times of Si for (a) N-process and (b) U-process, from the zeroth-order 
solution of first-principles calculation at 300 K. The symbols are the direct outputs from first-
principles calculations, and the curves are extracted relaxation times used in our RTA model.  
 

To estimate the effect of macroscopic damping on low-frequency phonons, we 

follow Maznev9 to add an additional scattering term to the total relaxation time. We 

employ Matthiessen’s rule and derive 1 1 1 1 1
c N U I Aτ τ τ τ τ− − − − −= + + + , where Aτ  is the 

relaxation time contribution due to the macroscopic damping 

inf 2 2
th

11Aτ τ
τ ω

 
= + 

 
       (S5) 

The parameters infτ and thτ  are the fitting parameters derived by comparing the 

calculation of τc to the available experimental data.10-15 The derived values of infτ and 

thτ  at different temperatures are summarized in Table S1.   

The cumulative thermal conductivity of natural Si calculated by the RTA model 

without macroscopic damping compare very well with the first-principles results at 

different temperatures, as shown in Fig. S4 as the solid lines. The effect of 

macroscopic damping estimated on the basis of the RTA model is shown as the 

dashed lines in Fig. S4.  
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(a) 

  
(b) (c) 

Figure S4 | Cumulative thermal conductivity of natural Si at 300 K, 150 K and 100 K 
calculated by RTA model with and without incorporating macroscopic damping, compared 
with the first-principles results by Lindsay et al. 

 

 

Table S1: Parameters for the relaxation times of macroscopic damping 

 infτ  (ns) 
thτ (ps) 

 LA TA 
100 K 140 700 50 
150 K 30 150 30 
300 K 5 25 14 
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IV. Approximation of Λlow from Λbulk −Λcross  

In the main text, we approximate the cumulative thermal conductivity of low-

energy phonons Λlow in bulk Si as Λlow=Λbulk−Λcross from our cross-plane thermal 

conductivity measurements. To evaluate the accuracy of this approximation, we 

calculate Λbulk−Λcross from Λcross of Si thin films derived from the first-principles 

calculations of the accumulation function of bulk Si (see the main text for how the 

conversion is performed), and compare the calculations to the Λlow of bulk Si derived 

directly from the first-principles calculations using the definition 
bulklow bulkd

∞
Λ = Λ∫ 





, see Fig. S5. We observe that within the mean-free-path of 0.1<<10 µm, Λbulk−Λcross 

is an acceptable approximation for Λlow, see Fig. S5. 

To understand the observation, we define ( )low bulk cross∆ = Λ − Λ − Λ  as the 

error for using the expression Λbulk−Λcross. To the first-order approximation,  

 
bulk bulk

bulk
bulk bulk0

bulk

c

c

Lc
L

c

L d d
L

∞
∆ = Λ − Λ∫ ∫ 



 



      (S6) 

where bulk  is the mean-free-path of phonons in bulk Si, Lc=3hf/4 is the characteristic 

length for boundary scattering in Si thin films, and 
bulk bulk

bulk

1
3j

dCv
d

ω
Λ = −∑






 is the 

bulk thermal conductivity per mean-free-path,16 with an SI unit of W m-2 K-1. We 

have utilized Matthiessen’s rule to relate f  of thin film and bulk of bulk Si,

1 1 1
f bulk cL− − −= +  , when deriving the error ∆ .   

The first term of Eq. S6 represents the error due to underestimation of the 

contribution by phonons with >Lc using Λbulk−Λcross, because of the additional 

boundary scattering at Lc in Λcross. The second term, on the other hand, represents the 

residues of contribution by phonons with <Lc in Λbulk−Λcross, compared to zero 

contribution from these phonons in Λlow. Note that the first and the second terms 

always have opposite signs. Within 0.1<<10 µm, the amplitude of both terms are 

comparable and thus leaving ∆ close to zero. As →∞, the first term is diminishing 

and, as a result, Λbulk−Λcross becomes larger than Λlow. This is observed in Fig. S5 
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when >1 µm. Thus, within the range of our experiments, the expression Λbulk−Λcross 

is an over-approximation of Λlow and set an upper limit for Λlow.  

 
Figure S5 | Λlow of natural Si at 300 K as a function of phonon mean-free-paths calculated by 
the first-principles approach of Lindsay et al., compared with the approximation from 
measurements of (Λbulk-Λcross) plotted as a function of Lc.  
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V. Comparison of the accumulation functions of natural and isotropically pure 

Si 

For some first-principles calculations, only the accumulation functions of 

isotopically pure Si are available in literature. We demonstrate in Fig. S6 that 

accumulation functions of natural Si and pure Si from the first-principles calculations 

of Lindsay et al.2, 3 are almost identical above 100 K. Thus it is valid to compare the 

measurements of natural Si with calculations of pure Si in terms of thermal 

conductivity ratio or accumulation function.  

 
Figure S6 | Comparison of  accumulation functions of natural Si vs. pure Si calculated by 
Lindsay et al.2  
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VI. Comparison of different first-principles calculations on Si 

 Here we compile the thermal conductivity accumulation functions of pure Si 

at 300 K calculated by different research groups via first-principles approach. It 

shows that except the calculation by Jain and McGaughey17 using the generalized 

gradient approximation (GGA) developed by Becke18 and Lee et al.19 (labeled 

“BLYP” in Ref. 17 and referred as Jain-2 in this plot), all the first-principles 

approaches result in similar thermal conductivity accumulation, up to ≈5 µm. For the 

long mean-free-path range, however, the calculations by different groups differ from 

each other, suggesting the difficulties in the correct calculation of low-energy 

phonons.  
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Figure S7 | Accumulation functions of pure Si at 300 K from first-principles calculations of 
different research groups by Lindsay et al.,2, 3 Li et al.,20 Esfarjani et al.,6, 16 Garg et al.,21 and 
Jain and McGaughey17 using different schemes (Jain-1 refers to calculations using a norm-
conserving pseudopotential and the local density approximation (LDA); Jain-2 and Jain-3 
refer to calculations using the generalized gradient approximation (GGA) developed by 
different researchers, see calculations labeled "PW91" and "BYLP" in ref. 17 for more details).  
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