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Topological insulators (TIs) are a new quantum state of matter. Their

surfaces and interfaces act as a topological boundary to generate massless

Dirac fermions with spin-helical textures. Investigation of fermion dynamics

near the Dirac point is crucial for the future development of spintronic de-

vices incorporating topological insulators. However, research so far has been

unsatisfactory because of a substantial overlap with the bulk valence band

and a lack of a completely unoccupied Dirac point (DP). Here, we explore

the surface Dirac fermion dynamics in the TI Sb2Te3 by time- and angle-

resolved photoemission spectroscopy (TrARPES). Sb2Te3 has a DP located

completely above the Fermi energy (EF ) with an in-gap DP. The excited elec-

trons in the upper Dirac cone stay longer than those below the Dirac point

to form an inverted population. This was attributed to a reduced density of

states (DOS) near the DP .
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Three-dimensional TIs have emerged as a new state of condensed matter and are

characterized by nontrivial gapless surface states (SS) that occur because of a strong

spin–orbit coupling. The SS traversing the band gap between the bulk valence band

(VB) and conduction band (CB) can be described by the Dirac equation for massless

fermions [1–5]. Additionally, the SS are spin-polarized and the spin orientations are

fixed with respect to their momenta [6–8]. Such a peculiar electronic structure, which

originates from its π Berry phase, results in an anti-localization of surface electrons

with a suppressed backscattering probability. A number of 3D TIs, including Bi2Se3,

Bi2Te3, Sb2Te3, TlBiSe2, PbBi2Te4 and SnSb2Te4, has been discovered experimentally

[9–13]. TIs have recently attracted much attention because of their possible applications

in spintronic devices and in ultra-fast and fault tolerant quantum computation [14–17].

When aiming to improve such novel device applications incorporating TIs, it is important

to understand the hot carrier dynamics of the surface Dirac fermions.

Angle resolved photoemission spectroscopy (ARPES) implemented by a pump-and-

probe method is a powerful tool to study the unoccupied states and electron dynamics

with energy and momentum resolutions. Many groups have made great processes of

TrARPES on TIs [18–28]. Recently, TrARPES measurements at the sub-20-meV energy

resolutions became possible [29, 30]. This enabled us to observe the electron dynamics

near the DP in detail. To examine the flow of electrons across the DP, we need an

initial state situation (for example, before pumping) in which both the upper and lower

parts of the Dirac cone are empty. This could be realized in p-type TIs, wherein the DP

is located above EF . Graphene, whose DP is almost at or below EF , is therefore not

suitable for this purpose. The p-type Bi2Se3 is also unsuitable because the lower part

of Dirac cone is not energetically isolated from the bulk valence band [31]. This feature

can also be seen from the absence of the Landau level quantization in the lower part of

the surface Dirac cone, while it is visible above the DP [32, 33].

In contrast, Sb2Te3 shows surface Landau quantizations over the energy range of

∼240 meV (120 meV below and 120 meV above the DP) [34, 35]. Here, the Dirac cone

SS is separated from the bulk states, which enables us to study an isolated Dirac cone.

Second, a Sb2Te3 single crystal is naturally p-doped, and the DP is located above the
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EF . Therefore, we do not need to dope any element into the mother crystal. This is

advantageous when attempting to increase the quality of the sample. Having considered

the above-mentioned characteristics, Sb2Te3 is suitable for the present study.

In this study, we investigated the unoccupied bulk and surface states of Sb2Te3 using

TrARPES. The electron dynamics below and above the DP were also revealed. One of

the most striking findings is that the decay of the pump-induced carriers are bottlenecked

at the DP, so that the hot carriers in the upper part of the SS stay longer than those in

the lower part.

Results and discussion

By pumping the electrons into the unoccupied side, we observed a linear Dirac cone

SS as shown in Fig. 1(a). Here, the pump-and-probe delay, t, was set to 0.4 ps. The

DP is located ∼180 meV above the EF and the Dirac velocity was estimated to be

∼2.3×105 m/s. We found that both the upper and lower parts of the Dirac cone (UDC

and LDC, respectively) were clearly visible above EF and they do not overlap with the

bulk continuum states. Figure 1(b) shows the constant energy contours at 100, 290

and 410 meV. With increasing the energy, the SS evolves from a circular to hexagonal

shape. The isotropic constant surface can be observed both below and above the DP

within the bulk energy gap. The hexagonal warping of the constant energy surfaces is

quite small as long as bulk continuum states do not overlap with the SS. In the previous

STM study on Sb2Te3, the DP is 80 meV higher, whereas the energy range of the SS

(∼120 meV above and below the DP) is consistent with the present observations [34, 35];

see Fig. 1(a). With such an ideal situation, there is a good opportunity to study the

carrier dynamics of UDC and LDC separately, where interference from the bulk states

is minimized.

To study the pump-induced dynamics of the surface Dirac fermions, we altered the

pump and probe delay and investigated the time dependent variations in the TrARPES

images. Figure 2(a) shows the difference image along the Γ −K line measured at t =

0.4 ps. Both the Dirac cone SS and unoccupied bulk state were clearly observed. To

show the energy dependent dynamics, we set energy and momentum frames [A to I:
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see Fig. 2(a)] and plotted the intensity variation in each frame as functions of t [see

Fig. 2(b)]. Also, to show the variation in the different bands more clearly, we show the

original and difference images for typical delay times in Fig. 2(c) and in a supplementary

movie S4. Here we note that the intensity variation line profiles of bulk and surface states

at the same energy overlapped each other as shown in the supplementary Fig. S1.

In the highest energy region A, we observed a fast rise of intensity that was limited

by the time resolution without significant delay. The intensity variation was almost

symmetric about t = 0. This indicates that the intensity variation in region A comprises

instantaneous filling of the states by direct excitations and very fast flow of the excited

electrons out of region A into the lower energy states. Because the flow of electrons into

region A from higher energies is negligibly small, the line shape does not show significant

asymmetric tailing into t > 0.

Next, we investigated the energy regions A, B, C, D, E and F, which are overlapped

to the conduction band. The duration of the intensity variation became long as the DP

was approached. This indicates that there was an energy dependence on the transfer

rate of electrons: The net flow rate of electrons from high to low energy decreased

when the Dirac point was approached. This can occur because the available phase

space diminishes on the approach of the DP, and so the hot carriers pile up around

the bottom of the UDC. Similar behaviour was observed above the DP for Bi2Se3 [19].

Considering that the behaviour can be represented by an exponential decay, the decay

constant, τ , of the different regions varied from 0.2 to 2 ps, which is comparable to a

recent study on Sb2Te3 [36].

The most striking observation was found across the DP, namely in the intensity

variations of regions G and H. Although region H in the LDC was located lower in

energy than G in the UDC, the intensity after ∼1 ps diminished faster in H than in

G as shown in Fig. 2(b). Figure 2(d) shows EDCs (integral of the TrARPES images

over ±15 degrees) normalized to the peak in the LDC region. From ∼0.4 to ∼3 ps, the

spectral intensity in the UDC region is higher than that in the LDC region. We take this

as evidence for the population inversion across the DP. Note, if the electron distribution

was obeying a thermal Fermi-Dirac function, there would be no crossings between the
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intensity variation line profiles at different energies, which is opposed to the case seen in

Fig. 2(b); also see supplementary Fig. S2. After ∼3 ps, the intensity in the UDC region

becomes smaller than that in the LDC region [right panel of Fig. 2(d)]. Correspondingly,

the intensity variation line profiles of regions G and H shown in Fig. 2(d) almost overlap

each other after ∼3 ps.

The population inversion can occur across the DP because the node acts as a bot-

tleneck for the electrons flowing from high to low energies: The low DOS near the DP

is considered to play a key role in the formation of the population inversion. In order

to support this view, we solved a rate equation under DOS having some structures.

We find that an inverted population can be formed when the DOS has a valley-like

structure similar to the case having a DP; see Fig. S3 in the supplementary file. The

simulation also shows that, after the ‘electron jam’ near the node is cleared, the decay

profiles across the node become similar, which qualitatively explicates the decay-profile

behaviour after ∼3 ps seen in Fig. 2(b).

We also observed that the rise time of the intensity in region I, which is close to EF ,

is faster than those in the UDC regions. The fast intensity rise around EF is attributed

to the impact ionization: The direct photo-excitation accompanies the low energy exci-

tations across EF [37–39]. The effect of impact ionization is limited to .50 meV and is

similar to the Fermi cutoff broadening, as seen in time-resolved photoemission spectra

of metals [40]. Because the effect of impact ionization occurs only in the vicinity of EF ,

the carrier dynamics in the SS are less affected by the impact ionization.

Schematics of the pump and decay processes from the state before pumping to the

final state are shown in Fig. 3. As shown in Fig. 3(b), the direct photo-excitation from

the occupied to the unoccupied states is accompanied by the impact ionization. During

the decay [Fig. 3(c)], the flow of electrons from high to low energy is bottlenecked near

the DP to result in the hourglass-shaped electron distribution shown in Fig. 3(d).

Conclusion

The conclusion is three-fold. First, TrARPES on Sb2Te3 revealed the surface state

Dirac cone in the unoccupied region. It was found to be isotropic within the bulk energy
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gap and the Dirac velocity was larger than that of Bi2Se3. Second, a rapid intensity

increase was found near EF , which was caused by the creation of a large number of

low energy electron-hole pairs due to impact ionization. Third, we found the spectral

intensity inversion at ∼0.4 to ∼3 ps across the DP. The population inversion across the

Dirac dispersion may be used as an optical gain medium for broad band lasing if the

duration of the inversion can be elongated [41], for example, by continuously injecting

carriers into the UDC.

Methods:

The Sb2Te3 single crystal was grown by the Bridgeman method. The results of elec-

tron probe micro analysis (EPMA) showed an atomic ratio of Sb:Te = 2.03 : 2.97. The

experiment was performed with linearly polarized 5.98 (probe) and 1.5 eV (pump) pulses

derived from a Ti:sapphire laser system operating at a repetition rate of 250 kHz [30].

The photoelectron kinetic energy and emission angle were resolved using a hemispher-

ical electron analyser . The measurement was done at 8 K with an energy resolution

of ∼15 meV. The origin of the pump-and-probe delay (t = 0) and the time resolution

of 250 fs was determined from the TrARPES signal of graphite attached next to the

sample. The spot diameters of the pump and probe were 0.5 and 0.3 mm, respectively.
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Figure Legends

Figure 1: Band structure of Sb2Te3 revealed into the unoccupied side. (a)

The TrARPES images of Sb2Te3 recorded at t = 0.4 ps along the Γ−K direction. (b)

Constant energy maps at 100, 290 and 410 meV.

Figure 2: TrARPES of Sb2Te3. (a) TrARPES images recorded along the Γ − K

line recorded before pump (left; images recorded at ≤0.6 ps were averaged), at 0 ps

(middle), and their difference (right panel). The frames A to I span in the angular

range of ±15 degrees and in the energy ranges of [0.80, 0.90], [0.70, 0.76], [0.60, 0.66],

[0.50, 0.56], [0.40, 0.46], [0.30, 0.36], [0.20, 0.26], [0.06, 0.17] and [0.01, 0.05] (in units

of eV), respectively. (b) Intensity variation line profiles. Integrated intensity in each

of the frames A to I is plotted as functions of delay time in a linear (upper panel) and

in a logarithmic scale (lower panel). (c) TrARPES images. Upper and lower panels

show TrARPES and difference to that recorded before pump. Full set of TrARPES and

difference images are provided as a supplementary movie S4. (d) EDCs (integration of

TrARPES images over ±15 degrees) recorded at 0 ≤ t ≤ 1.00 ps (left), 1.00 ≤ t ≤ 2.97 ps

(middle), and at 2.97 ≤ t ≤ 5.13 ps (right panel). Here, the EDCs are normalized to the

area around the peak in the LDC region. For the full set of EDCs, see supplementary

movie S5.

Figure 3: Schematics of the pump and decay processes. The state before pump-

ing (a), upon the pump (b), subsequent decay (c) leading to an hourglass-shaped electron

distribution (d), and the final state (e). The colour gradation represents the electron

density.
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