
ar
X

iv
:1

50
8.

02
22

0v
4 

 [
m

at
h.

G
N

] 
 2

0 
N

ov
 2

01
5

Topological Representation

of Precontact Algebras

and a Connected Version of

the Stone Duality Theorem – I

Georgi Dimov∗ and Dimiter Vakarelov

Department of Mathematics and Informatics, University of Sofia,

5 J. Bourchier Blvd., 1164 Sofia, Bulgaria

Abstract

The notions of a 2-precontact space and a 2-contact space are introduced.
Using them, new representation theorems for precontact and contact algebras
are proved. They incorporate and strengthen both the discrete and topological
representation theorems from [8, 5, 6, 9, 24]. It is shown that there are bijec-
tive correspondences between such kinds of algebras and such kinds of spaces.
As applications of the obtained results, we get new connected versions of the
Stone Duality Theorems [22, 19] for Boolean algebras and for complete Boolean
algebras, as well as a Smirnov-type theorem (in the sense of [20]) for a kind of
compact T0-extensions of compact Hausdorff extremally disconnected spaces.
We also introduce the notion of a Stone adjacency space and using it, we prove
another representation theorem for precontact algebras. We even obtain a bi-
jective correspondence between the class of all, up to isomorphism, precontact
algebras and the class of all, up to isomorphism, Stone adjacency spaces.
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1 Introduction

In this paper we give the proofs of the results announced in the first seven sections of
our paper [7] (the results of the remaining sections will be proved in the second part
of the paper) and obtain many new additional results and some new applications.
In it we present a common approach both to the discrete and to the non-discrete
region-based theory of space. The paper is a continuation of the line of investigations
started in [24] and continued in [5, 6, 9].

Standard models of non-discrete theories of space are the contact algebras of
regular closed subsets of some topological spaces ([21, 18, 24, 5, 6, 9]). In a sense
these topological models reflect the continuous nature of the space. However, in the
“real-world” applications, where digital methods of modeling are used, the continuous
models of space are not enough. This motivates a search for good “discrete” versions
of the theory of space. One kind of discrete models are the so called adjacency spaces,
introduced by Galton [12] and generalized by Düntsch and Vakarelov in [8]. Based on
the Galton’s approach, Li and Ying [16] presented a “discrete” generalization of the
Region Connection Calculus (RCC). The latter, introduced in [17], is one of the main
systems in the non-discrete region-based theory of space. A natural class of Boolean
algebras related to adjacency spaces are the precontact algebras, introduced in [8]
under the name of proximity algebras. The notion of precontact algebra is a general-
ization of the notion of contact algebra. Each adjacency space generates canonically a
precontact algebra. It is proved in [8] (using another terminology) that each precon-
tact algebra can be embedded in the precontact algebra of an adjacency space. In [5]
we proved that each contact algebra can be embedded in the standard contact algebra
of a compact semiregular T0-space, answering the question of Düntsch and Winter,
posed in [9], whether the contact algebras have a topological representation. This
shows that contact algebras possess both a discrete and a non-discrete (topological)
representation. In this paper we extend the representation techniques developed in
[5, 6] to precontact algebras, proving that each precontact algebra can be embedded in
a special topological object, called a 2-precontact space. We also establish a bijective
correspondence between precontact algebras and 2-precontact spaces. This result is
new even in the special case of contact algebras: introducing the notion of 2-contact
space as a specialization of the notion of a 2-precontact space, we show that there is
a bijective correspondence between contact algebras and 2-contact spaces. Also, we
introduce the notion of a Stone adjacency space and using it, we prove another repre-
sentation theorem for precontact algebras. We even obtain a bijective correspondence
between the class of all, up to isomorphism, precontact algebras and the class of all,
up to isomorphism, Stone adjacency spaces.

The developed theory permits us to obtain as corollaries the celebrated Stone
Representation Theorem [22] and a new connected version of it. They correspond,
respectively, to the extremal contact relations on Boolean algebras: the smallest one
and the largest one. We show as well that the new connected version of the Stone
Representation Theorem can be extended to a new connected version of the Stone
Duality Theorem. Let us explain what we mean by a “connected version”. The
celebrated Stone Duality Theorem [22] states that the category Bool of all Boolean
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algebras and Boolean homomorphisms is dually equivalent to the category Stone

of compact Hausdorff totally disconnected spaces (i.e., Stone spaces) and continuous
maps. The restriction of the Stone duality to the categoryCBool of complete Boolean
algebras and Boolean homomorphisms is a duality between the category CBool and
the category of compact Hausdorff extremally disconnected spaces and continuous
maps. We introduce the notion of a Stone 2-space and the category 2Stone of Stone 2-
spaces and suitable morphisms between them, and we show that the category 2Stone

is dually equivalent to the category Bool. The Stone 2-spaces are pairs (X,X0) of a
compact connected T0-space X and a dense subspace X0 of X , satisfying some mild
conditions. We introduce as well the notion of an extremally connected space and show
that the category ECS of extremally connected spaces and continuous maps between
them satisfying a natural condition, is dually equivalent to the category CBool. The
extremally connected spaces are compact connected T0-spaces satisfying an additional
condition, and the open maps are part of the morphisms of the category ECS.

As another application of the obtained results, we prove a Smirnov-type theorem
(in the sense of [20]). In his celebrated Compactification Theorem, Ju. M. Smirnov
[20] proved that there exists an isomorphism between the ordered set of all Efremovič
proximities on a Tychonoff space X and all, up to equivalence, compact Hausdorff
extensions of X. The notion of a contact relation on a Boolean algebra is a generaliza-
tion of the notion of a proximity. We show that there exist an isomorphism between
the ordered by inclusion set of all contact relations on a complete Boolean algebra B
and the ordered (by the injective order) set of all, up to isomorphism, C-semiregular
extensions of its Stone space S(B). In this way we describe C-semiregular extensions
of extremally disconnected compact Hausdorff spaces. The notion of a C-semiregular
space was introduced in [5]. It appears naturally in the theory of contact algebras.
The class of C-semiregular spaces is a subclass of the class of compact T0-spaces. As
a corollary, we obtain that every extremally disconnected compact Hausdorff space X
has a largest C-semiregular extension (γX, γX); moreover, γX is an extremally con-
nected space and this characterizes it between all C-semiregular extensions of X . We
show that every continuous map f : X −→ Y between two extremally disconnected
compact Hausdorff spaces X and Y has a continuous extension γf : γX −→ γY . We
obtain, as well, some other similar results about continuous extensions of continuous
maps.

The paper is organized as follows. In Section 2 we introduce the notions of pre-
contact and contact algebra and give the two main examples of them: the precontact
algebras on adjacency spaces, and the contact algebras on topological spaces. In Sec-
tion 3 we introduce three kinds of points in precontact algebras: ultrafilters, grills and
clans. Also, the notions of a topological adjacency space and a Stone adjacency space
are introduced and our first representation theorem for precontact algebras is proved
there. In Section 4 we introduce the notions of 2-precontact space and canonical pre-
contact algebra of a 2-precontact space. In Section 5 we associate with each precontact
algebra B a 2-precontact space, called the canonical 2-precontact space of B. In Sec-
tion 6 we present the main theorem of the paper: the second representation theorem
for precontact algebras. In Section 7 we introduce the notion of a 2-contact space
and we prove that there exists a bijective correspondence between the class of all (up
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to isomorphism) contact algebras and the class of all, up to isomorphism, 2-contact
spaces. This is a generalization of the similar result about complete contact algebras
obtained in [5]. In Section 8, the results of which are completely new and were not
announced in our paper [7], we demonstrate that the Stone Representation Theo-
rem [22] and the new connected version of it, which we now obtain, follow from our
representation theorem for contact algebras presented in Section 7. Here we obtain
also the new connected versions of the Stone Duality Theorems for Boolean algebras
and for complete Boolean algebras, about which we already mentioned above. In the
last Section 9, we collect our results about C-semiregular extensions of extremally
disconnected compact Hausdorff spaces about which we also mentioned above. These
results were not presented in the paper [7] and are new.

We now fix the notations.
All lattices are with top (= unit) and bottom (= zero) elements, denoted re-

spectively by 1 and 0. We do not require the elements 0 and 1 to be distinct.
If (X, τ) is a topological space and M is a subset of X , we denote by cl(X,τ)(M)

(or simply by cl(M) or clX(M)) the closure of M in (X, τ) and by int(X,τ)(M) (or
briefly by int(M) or intX(M)) the interior of M in (X, τ). The open maps between
topological spaces are supposed to be continuous. The extremally disconnected spaces
and compact spaces are not assumed to be Hausdorff (as it is adopted in [10]).

If X is a topological space, we denote by CO(X) the set of all clopen subsets
of X . Obviously, (CO(X),∪,∩, \, ∅, X) is a Boolean algebra.

If X is a set, we denote by 2X the power set of X .
If C denotes a category, we write X ∈ |C| if X is an object of C, and f ∈ C(X, Y )

if f is a morphism of C with domain X and codomain Y .
The main reference books for all notions which are not defined here are [10, 15,

1].

2 Precontact algebras

Precontact and contact algebras.

Definition 2.1. An algebraic system B = (B,C) is called a precontact algebra ([8])
(abbreviated as PCA) if the following holds:

• B = (B, 0, 1,+, ., ∗) is a Boolean algebra (where the complement is denoted by
“∗”);

• C is a binary relation on B (called a precontact relation) satisfying the following
axioms:

(C0) If aCb then a 6= 0 and b 6= 0;

(C+) aC(b+ c) iff aCb or aCc; (a+ b)Cc iff aCc or bCc.

A precontact algebra (B,C) is said to be complete if the Boolean algebra B is com-
plete. Two precontact algebras B = (B,C) and B1 = (B1, C1) are said to be PCA-
isomorphic (or, simply, isomorphic) if there exists a PCA-isomorphism between them,
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i.e., a Boolean isomorphism ϕ : B −→ B1 such that, for every a, b ∈ B, aCb iff
ϕ(a)C1ϕ(b).

The negation of the relation C is denoted by (−C).
For any PCA (B,C), we define a binary relation “ ≪C” on B (called non-

tangential inclusion) by
a≪C b↔ a(−C)b∗.

Sometimes we will write simply “ ≪” instead of “ ≪C”.
We will also consider precontact algebras satisfying some additional axioms:

(Cref) If a 6= 0 then aCa (reflexivity axiom);

(Csym) If aCb then bCa (symmetry axiom);

(Ctr) If a≪C c then (∃b)(a ≪C b≪C c) (transitivity axiom);

(Ccon) If a 6= 0, 1 then aCa∗ or a∗Ca (connectedness axiom).

A precontact algebra (B,C) is called a contact algebra ([5]) (and C is called
a contact relation) if it satisfies the axioms (Cref) and (Csym). We say that
two contact algebras are CA-isomorphic if they are PCA-isomorphic; also, a PCA-
isomorphism between two contact algebras will be called a CA-isomorphism.

A precontact algebra (B,C) is called connected if it satisfies the axiom (Ccon).

The following lemma says that in every precontact algebra we can define a
contact relation.

Lemma 2.2. Let (B,C) be a precontact algebra. Define

aC#b ⇐⇒ ((aCb) ∨ (bCa) ∨ (a.b 6= 0)).

Then C# is a contact relation on B and hence (B,C#) is a contact algebra.

Proof. If a 6= 0 then a.a = a 6= 0 and thus aC#a. So, C# satisfies the axiom (Cref).
Further, let aC#b. Then there are three possibilities: (1) if aCb then bC#a; (2) if
bCa then bC#a; (3) if a.b 6= 0 then b.a 6= 0 and thus bC#a. Therefore, C# satisfies
the axiom (Csym).

Remark 2.3. We will also consider precontact algebras satisfying the following vari-
ant of the transitivity axiom (Ctr):

(Ctr#) If a≪C# c then (∃b)(a≪C# b≪C# c).

The axiom (Ctr#) is known as the “Interpolation axiom”.
A contact algebra (B,C) is called a normal contact algebra ([4, 11]) if it satisfies

the axiom (Ctr#) and the following one:

(C6) If a 6= 1 then there exists b 6= 0 such that b(−C)a.

The notion of a normal contact algebra was introduced by Fedorchuk [11] (under the
name of “Boolean δ-algebra”) as an equivalent expression of the notion of a compingent
Boolean algebra of de Vries [4] (see its definition below). We call such algebras “normal
contact algebras” because they form a subclass of the class of contact algebras and
naturally arise in normal Hausdorff spaces.
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The relations C and ≪ are inter-definable. For example, normal contact al-
gebras could be equivalently defined (and exactly in this way they were introduced
(under the name of compingent Boolean algebras) by de Vries in [4]) as a pair of a
Boolean algebra B = (B, 0, 1,+, ., ∗) and a binary relation ≪ on B subject to the
following axioms:

(≪1) a≪ b implies a ≤ b;
(≪2) 0 ≪ 0;
(≪3) a ≤ b≪ c ≤ t implies a≪ t;
(≪4) (a≪ b and a≪ c) implies a≪ b.c;
(≪5) If a≪ c then a≪ b ≪ c for some b ∈ B;
(≪6) If a 6= 0 then there exists b 6= 0 such that b≪ a;
(≪7) a≪ b implies b∗ ≪ a∗.

Note that if 0 6= 1 then the axiom (≪2) follows from the axioms (≪3), (≪4),
(≪6) and (≪7).

Obviously, contact algebras could be equivalently defined as a pair of a Boolean
algebra B and a binary relation ≪ on B subject to the axioms (≪1)-(≪4) and (≪7);
then, clearly, the relation ≪ satisfies also the axioms

(≪2’) 1 ≪ 1;
(≪4’) (a≪ c and b≪ c) implies (a+ b) ≪ c.

It is not difficult to see that precontact algebras could be equivalently defined
as a pair of a Boolean algebra B and a binary relation ≪ on B subject to the axioms
(≪2), (≪2’), (≪3), (≪4) and (≪4’).

It is easy to see that axiom (C6) can be stated equivalently in the form of (≪6).

Examples of precontact and contact algebras

1. Extremal contact relations

Example 2.4. Let B be a Boolean algebra. Then there exist a largest and a smallest
contact relations on B; the largest one, ρl (sometimes we will write ρBl ), is defined by

aρlb ⇐⇒ (a 6= 0 and b 6= 0),

and the smallest one, ρs (sometimes we will write ρBs ), by

aρsb ⇐⇒ a ∧ b 6= 0.

Note that, for a, b ∈ B,

a≪ρs b ⇐⇒ a ≤ b;

hence a≪ρs a, for any a ∈ B. Thus (B, ρs) is a normal contact algebra.
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2. Precontact algebras on adjacency spaces. (Galton [12], Düntsch and Vakare-
lov [8])

By an adjacency space we mean a relational system (W,R), where W is a non-empty
set whose elements are called cells, and R is a binary relation on W called the adja-
cency relation; the subsets of W are called regions.

The reflexive and symmetric closure R♭ of R is defined as follows:

xR♭y ⇐⇒ ((xRy) ∨ (yRx) ∨ (x = y)).(1)

A precontact relation CR between the regions of an adjacency space (W,R) is
defined as follows: for every a, b ⊆W ,

aCRb iff (∃x ∈ a)(∃y ∈ b)(xRy).(2)

Proposition 2.5. ([8]) Let (W,R) be an adjacency space and let 2W be the Boolean
algebra of all subsets of W . Then:

(a) (2W , CR) is a precontact algebra;

(b) (2W , CR) is a contact algebra iff R is a reflexive and symmetric relation on W .
If R is a reflexive and symmetric relation on W then CR coincides with (CR)

#

and CR♭;

(c) CR satisfies the axiom (Ctr) iff R is a transitive relation on W ;

(d) CR satisfies the axiom (Ccon) iff R is a connected relation on W (which means
that if x, y ∈ W and x 6= y then there is an R-path from x to y or from y to x).

Theorem 2.6. ([8]) Each precontact algebra (B,C) can be isomorphically embedded
into the precontact algebra (2W , CR) of some adjacency space (W,R). Moreover, if
(B,C) satisfies the axiom (Cref) (respectively, (Csym); (Ctr)) then the relation R is
reflexive (respectively, symmetric; transitive).

3. Contact algebras on topological spaces.

2.7. Let X be a topological space and let RC(X) be the set of all regular closed
subsets ofX (recall that a subset F ofX is said to be regular closed if F = cl(int(F ))).
Let us equip RC(X) with the following Boolean operations and contact relation CX :

• a+ b = a ∪ b;

• a∗ = cl(X \ a);

• a.b = cl(int(a ∩ b))(= (a∗ ∪ b∗)∗);

• 0 = ∅, 1 = X ;

• aCXb iff a ∩ b 6= ∅.

The following lemma is a well-known fact.
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Lemma 2.8. Let X be a topological space. Then

(RC(X), CX) = (RC(X), 0, 1,+, ., ∗, CX)

is a contact algebra.

The contact algebras of the type (RC(X), CX), where X is a topological space,
are called standard contact algebras.

Recall that a space X is said to be semiregular if RC(X) is a closed base for X .
Recall as well the following definition: if (A,≤) is a poset and B ⊆ A then B is said
to be a dense subset of A if for any a ∈ A \ {0} there exists b ∈ B \ {0} such that
b ≤ a; when (B,≤1) is a poset and f : A −→ B is a map, then we will say that f is
a dense map if f(A) is a dense subset of (B,≤1).

The following theorem answers the question, posed by Düntsch and Winter in
[9], whether contact algebras have a topological representation:

Theorem 2.9. ([5]) For each contact algebra B = (B,C) there exists a dense em-
bedding gB of B into a standard contact algebra (RC(X, τ), CX), where (X, τ) is a
compact semiregular T0-space. The algebra B is connected iff the space X is con-
nected. When B is complete then the embedding gB becomes an isomorphism between
contact algebras (B,C) and (RC(X), CX).

The aim of this work is to generalize Theorem 2.6 and Theorem 2.9 in several
ways: to find a topological representation of precontact algebras which incorporates
both the “discrete” and the “continuous” nature of the space; to find representa-
tion theorems in the style of the Stone representation of Boolean algebras instead of
embedding theorems; to establish, again as in the Stone theory, a bijective correspon-
dence between precontact algebras and the corresponding topological objects; to find
some new applications of the obtained results.

3 Points in precontact algebras

In this section we introduce three kinds of abstract points in precontact algebras:
ultrafilters, grills and clans. This is done by analogy with the case of contact algebras
(see, e.g., [5, 24]). We assume that the notions of a filter and ultrafilter of a Boolean
algebra are familiar. Clans were introduced by Thron [23] in proximity theory. Our
definition is a lattice-theoretic generalization of Thron’s definition.

The set of all ultrafilters of a Boolean algebra B is denoted by Ult(B).

Definition 3.1. Let B = (B,C) be a precontact algebra. A non-empty subset Γ of
B is called a clan if it satisfies the following conditions:

(Clan1) 0 6∈ Γ;

(Clan2) If a ∈ Γ and a ≤ b then b ∈ Γ;

(Clan3) If a + b ∈ Γ then a ∈ Γ or b ∈ Γ;
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(Clan4) If a, b ∈ Γ then aC#b.

The set of all clans of a precontact algebra B is denoted by Clans(B).

The following lemma is obvious:

Lemma 3.2. Let B = (B,C) be a precontact algebra. Each ultrafilter of B is a clan
of B and hence Ult(B) ⊆ Clans(B).

Now, for any precontact algebra B = (B,C), we define a binary relation RB

between the ultrafilters of B making the set Ult(B) an adjacency space.

Definition 3.3. Let B = (B,C) be a precontact algebra and let U1, U2 be ultrafilters
of B. We set

U1RBU2 iff (∀a ∈ U1)(∀b ∈ U2)(aCb) (i.e., iff U1 × U2 ⊆ C).(3)

The relational system (Ult(B), RB) is called the canonical adjacency space of
B.

We say that U1, U2 are connected iff U1(RB)
♭U2 (see (1) for the notation R♭).

The next lemma is obvious.

Lemma 3.4. Let B = (B,C) be a precontact algebra and let I be a set of connected
ultrafilters. Then the union Γ =

⋃
{U | U ∈ I} is a clan.

Lemma 3.5. ([5, 8]) (Ultrafilter and clan characterizations of precon-
tact and contact relations.) Let B = (B,C) be a precontact algebra and
(Ult(B), RB) be the canonical adjacency space of B. Then the following is true for
any a, b ∈ B:

(a) aCb iff (∃U1, U2 ∈ Ult(B))((a ∈ U1) ∧ (b ∈ U2) ∧ (U1RBU2));

(b) aC#b iff (∃U1, U2 ∈ Ult(B))((a ∈ U1) ∧ (b ∈ U2) ∧ (U1R
♭
(B,C)U2));

(c) aC#b iff (∃Γ ∈ Clans(B))(a, b ∈ Γ);

(d) RB is a reflexive relation iff B satisfies the axiom (Cref);

(e) RB is a symmetric relation iff B satisfies the axiom (Csym);

(f) RB is a transitive relation iff B satisfies the axiom (Ctr).

Recall that a non-empty subset of a Boolean algebra B is called a grill if it
satisfies the axioms (Clan1)-(Clan3). The set of all grills of B will be denoted by
Grills(B). The next lemma is well known (see, e.g., [23]):

Lemma 3.6. (Grill Lemma.) If F is a filter of a Boolean algebra B and G is a
grill of B such that F ⊆ G then there exists an ultrafilter U of B with F ⊆ U ⊆ G.
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Stone adjacency spaces and representation of precontact alge-

bras

Definition 3.7. Let X be a non-empty topological space and R be a binary relation
on X . Then the pair (CO(X), CR) (see (2) for CR) is a precontact algebra (by
Proposition 2.5(a)), called the canonical precontact algebra of the relational system
(X,R).

Definition 3.8. An adjacency space (X,R) is called a topological adjacency space
(abbreviated as TAS) if X is a topological space and R is a closed relation on X .
When X is a compact Hausdorff zero-dimensional space (i.e., when X is a Stone
space), we say that the topological adjacency space (X,R) is a Stone adjacency space.

Two topological adjacency spaces (X,R) and (X1, R1) are said to be TAS-
isomorphic if there exists a homeomorphism f : X −→ X1 such that, for every
x, y ∈ X , xRy iff f(x)R1f(y).

Recall that the Stone space S(A) of a Boolean algebra A is the set X = Ult(A)
endowed with a topology T having as a closed base the family {sA(a) | a ∈ A}, where

sA(a) = {u ∈ X | a ∈ u},(4)

for every a ∈ A; then
S(A) = (X,T)

is a compact Hausdorff zero-dimensional space, sA(A) = CO(X) and the Stone map

sA : A −→ CO(X), a 7→ sA(a),(5)

is a Boolean isomorphism; also, the family {sA(a) | a ∈ A} is an open base of (X,T).
Further, for every Stone space X and for every x ∈ X , we set

ux = {P ∈ CO(X) | x ∈ P}(6)

(sometimes we will write also uXx instead of ux). Then ux ∈ Ult(CO(X)) and the
map

f : X −→ S(CO(X)), x 7→ ux,

is a homeomorphism.
When B = (B,C) is a precontact algebra, the pair (S(B), RB) is said to be the

canonical Stone adjacency space of B.
Now we can obtain the following strengthening of Theorem 2.6:

Theorem 3.9. (a) Each precontact algebra B = (B,C) is isomorphic to the canonical
precontact algebra (CO(X,T), CRB

) of the Stone adjacency space ((X,T), RB), where
(X,T) = S(B) and for every u, v ∈ X, uRBv ⇐⇒ u × v ⊆ C; the isomorphism
between them is just the Stone map sB : B −→ CO(X,T). Moreover, the relation
C satisfies the axiom (Cref) (resp., (Csym); (Ctr)) iff the relation RB is reflexive
(resp., symmetric; transitive).

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, precontact algebras and the class of all, up to TAS-isomorphism, Stone
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adjacency spaces (X,R); namely, for each precontact algebra B = (B,C), the PCA-
isomorphism class [B] of B corresponds to the TAS-isomorphism class of the canonical
Stone adjacency space (S(B), RB) of B, and for each Stone adjacency space (X,R),
the TAS-isomorphism class [(X,R)] of (X,R) corresponds to the PCA-isomorphism
class of the canonical precontact algebra (CO(X), CR) of (X,R) (see (2) for CR).

Proof. (a) Let B = (B,C) be a precontact algebra, (X,T) = S(B) and for every
u, v ∈ X , uRBv ⇐⇒ u × v ⊆ C. We will show that RB is a closed relation. Let
(u, v) 6∈ RB. Then there exist a ∈ u and b ∈ v such that a(−C)b. Hence u ∈ sB(a)
and v ∈ sB(b). Also, (sB(a)× sB(b))∩RB = ∅. Indeed, let u′ ∈ sB(a) and v

′ ∈ sB(b);
then a ∈ u′ and b ∈ v′; since a(−C)b, we get that u′(−RB)v

′, i.e. (u′, v′) 6∈ RB.
Therefore, RB is a closed relation. Thus ((X,T), RB) is a Stone adjacency space. We
have, by the Stone Representation Theorem, that CO(X,T) = sB(B). Further, we
have that for every a, b ∈ B, sB(a)CRB

sB(b) ⇐⇒ (∃u ∈ sB(a))(∃v ∈ sB(b))(uRBv).
It is easy to see that (CO(X,T), CRB

) is a precontact algebra. We will show that
sB : (B,C) −→ (CO(X,T), CRB

) is a PCA-isomorphism. We know, by the Stone
Representation Theorem, that sB : B −→ CO(X,T) is a Boolean isomorphism. Let
a, b ∈ B. Then, using Lemma 3.5(a), we obtain that sB(a)CRB

sB(b) ⇐⇒ (∃u ∈
sB(a))(∃v ∈ sB(b))(uRBv) ⇐⇒ (∃u, v ∈ X)((a ∈ u) ∧ (b ∈ v) ∧ (uRBv)) ⇐⇒ aCb.
Therefore, sB : (B,C) −→ (CO(X,T), CRB

) is a PCA-isomorphism. The rest follows
from Lemma 3.5(d,e,f).

(b) Let us set, for every precontact algebra B = (B,C),

Φ(B) = (S(B), RB).

Then, by (a), Φ(B) is a Stone adjacency space. Further, for every Stone adjacency
space (X,R), we set

Ψ(X,R) = (CO(X), CR),

where, for every F,G ∈ CO(X), FCRG ⇐⇒ (∃x ∈ F )(∃y ∈ G)(xRy). Clearly,
Ψ(X,R) is a precontact algebra.

Let B = (B,C) be a precontact algebra. Then B is PCA-isomorphic to the
precontact algebra Ψ(Φ(B)). Indeed, we have that Ψ(Φ(B)) = Ψ(S(B), RB) =
(CO(S(B)), CRB

). Then, by (a), sB : (B,C) −→ Ψ(Φ(B)) is a PCA-isomorphism.
Let (X,R) be a Stone adjacency space. Then (X,R) is TAS-isomorphic to the

Stone adjacency space Φ(Ψ(X,R)). Indeed, let B = CO(X) and B = (B,CR). Then
Φ(Ψ(X,R)) = Φ(B) = (S(B), RB). By the Stone Representation Theorem, we have
that the map

f : X −→ S(B), x 7→ ux, is a homeomorphism.(7)

Let x, y ∈ X and xRy. Since, for every F ∈ ux and every G ∈ uy, we have that
x ∈ F and y ∈ G, we get that uxRBuy, i.e. f(x)RBf(y). Conversely, let x, y ∈ X and
f(x)RBf(y), i.e. uxRBuy. Suppose that x(−R)y. Then (x, y) 6∈ R. Since R is a closed
relation, there exist F,G ∈ CO(X) such that x ∈ F , y ∈ G and (F×G)∩R = ∅. Then
F ∈ ux, G ∈ uy and if x′ ∈ F , y′ ∈ G then (x′, y′) 6∈ R, i.e. x′(−R)y′. This implies
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that ux(−RB)uy, a contradiction. Therefore, xRy. Hence, f : (X,R) −→ Φ(Ψ(X,R))
is a TAS-isomorphism.

Notation 3.10. Let B be a Boolean algebra and (X,T) = S(B). Then we denote
by PCRel(B) (resp., CRel(B)) the set of all precontact (resp., contact) relations on
B and by CloRel(X,T) (resp., CloRSRel(X,T)) the set of all closed relations (resp.,
all reflexive and symmetric closed relations) on (X,T).

Corollary 3.11. Let B be a Boolean algebra and (X,T) = S(B). Then there exists
an isomorphism between the ordered sets (PCRel(B),⊆) (resp., (CRel(B),⊆)) and
(CloRel(X,T),⊆) (resp., (CloRSRel(X,T),⊆)).

Proof. By Theorem 3.9(a), for every precontact relation C on B, the relation RB

(defined there), where B = (B,C), is a closed relation on (X,T). Now we define the
correspondences

Φ′ : PCRel(B) −→ CloRel(X,T), C 7→ RB, and

Ψ′ : CloRel(X,T) −→ PCRel(B), R 7→ CR,

where, for any a, b ∈ B,

aCRb ⇐⇒ sB(a)CR sB(b).

Then, using Theorem 3.9(a), we get that Ψ′ ◦ Φ′ = idPCRel(B). Further, arguing
as in the proof of Theorem 3.9(b), we will show that Φ′ ◦ Ψ′ = idCloRel(X,T). Let
R ∈ CloRel(X,T). Then Φ′(Ψ′(R)) = R(B,CR). Obviously, for every u, v ∈ X , we have
that uR(B,CR)v ⇐⇒ u× v ⊆ CR ⇐⇒ (∀a ∈ u)(∀b ∈ v)(aCRb) ⇐⇒ (∀a ∈ u)(∀b ∈
v)(sB(a)CR sB(b)). Since sB(a)CR sB(b) ⇐⇒ (∃u′ ∈ sB(a))(∃v

′ ∈ sB(b))(u
′Rv′),

we get immediately that R ⊆ R(B,CR). Let now u, v ∈ X and uR(B,CR)v. Suppose
that u(−R)v. Since R is a closed relation, there exist a, b ∈ B such that (u, v) ∈
sB(a)×sB(b) ⊆ X2\R. Then a ∈ u, b ∈ v and (sB(a)×sB(b))∩R = ∅. Thus, for every
u′ ∈ sB(a) and for every v′ ∈ sB(b), we get that u′(−R)v′. Hence sB(a)(−CR)sB(b),
a contradiction. So, uRv. Therefore, Φ′ ◦ Ψ′ = idCloRel(X,T). Hence Φ′ and Ψ′ are
bijections. Note that, by Theorem 3.9(a), C is a contact relation on B iff R(B,C) is,
in addition, a reflexive and symmetric relation on X . Finally, it is clear from the
corresponding definitions that for any C1, C2 ∈ PCRel(B), C1 ⊆ C2 iff R(B,C1) ⊆
R(B,C2) iff Φ′(C1) ⊆ Φ′(C2).

As it is shown in [8], there is no bijective correspondence between the classes
of all, up to corresponding isomorphisms, precontact algebras and adjacency spaces.
Hence, the role of the topology in Theorem 3.9 is essential. However, Theorem 3.9
is not completely satisfactory because the representation of the precontact algebras
(B,C) obtained here does not give a topological representation of the contact algebras
(B,C#) generated by (B,C); we would like to have an isomorphism f such that, for
every a, b ∈ B, aCb iff f(a)CRf(b), and aC#b iff f(a) ∩ f(b) 6= ∅ (see (2) for CR).
The isomorphism sB in Theorem 3.9 is not of this type. Indeed, there are many
examples of contact algebras (B,C) where a.b = 0 (and hence sB(a) ∩ sB(b) = ∅)
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but aCb (note that C and C# coincide for contact algebras). We now construct some
natural topological objects which correspond bijectively to the precontact algebras
and satisfy the above requirement. In the case when (B,C) is a contact algebra,
we will show that these topological objects are just topological pairs satisfying some
natural conditions. In such a way we will obtain new representation theorems for the
contact algebras, completely different from those given in [24, 5, 6, 9].

4 2-Precontact spaces

Let us start with recalling the following well known statement (see, e.g., [3], p.271).

Lemma 4.1. Let X be a dense subspace of a topological space Y . Then the functions

r : RC(Y ) −→ RC(X), F 7→ F ∩X,

and
e : RC(X) −→ RC(Y ), G 7→ clY (G),

are Boolean isomorphisms between Boolean algebras RC(X) and RC(Y ), and e ◦ r =
idRC(Y ), r ◦ e = idRC(X). (We will sometimes write rX,Y (resp., eX,Y ) instead of r
(resp., e).)

Definition 4.2. (a) Let X be a topological space and X0 be a dense subspace of X .
Then the pair (X,X0) is called a topological pair.

(b) Let (X,X0) be a topological pair. Then we set

RC(X,X0) = {clX(A) | A ∈ CO(X0)}.(8)

Lemma 4.3. Let (X,X0) be a topological pair. Then RC(X,X0) ⊆ RC(X); the
set RC(X,X0) with the standard Boolean operations on the regular closed subsets
of X is a Boolean subalgebra of RC(X); RC(X,X0) is isomorphic to the Boolean
algebra CO(X0); the sets RC(X) and RC(X,X0) coincide iff X0 is an extremally
disconnected space. If

C(X,X0)

is the restriction of the contact relation CX (see Lemma 2.8) to RC(X,X0), then
(RC(X,X0), C(X,X0)) is a contact subalgebra of (RC(X), CX).

Proof. Since CO(X0) is a Boolean subalgebra of the Boolean algebra RC(X0) and
(in the notation of Lemma 4.1) e(CO(X0)) = RC(X,X0) and e is a Boolean isomor-
phism, we get that RC(X,X0) ⊆ RC(X) and the set RC(X,X0) with the standard
Boolean operations on the regular closed subsets of X is a Boolean subalgebra of
RC(X). Clearly, the restriction e0 = e|CO(X0) : CO(X0) −→ RC(X,X0) is a Boolean
isomorphism. Using the above arguments, we get that RC(X) = RC(X,X0) iff
RC(X0) = CO(X0). As it is well known, the later equality is true iff X0 is an
extremally disconnected space; hence RC(X) = RC(X,X0) iff X0 is an extremally
disconnected space. Finally, it is obvious that (RC(X,X0), C(X,X0)) is a contact sub-
algebra of (RC(X), CX).
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Notation 4.4. Let (X, τ) be a topological space, X0 be a subspace of X , x ∈ X and
B be a subalgebra of the Boolean algebra (RC(X),+, ., ∗, ∅, X) defined in 2.7. We
put

σBx = {F ∈ B | x ∈ F}; Γx,X0
= {F ∈ CO(X0) | x ∈ clX(F )}.(9)

We set also

νBx = {F ∈ B | x ∈ intX(F )}.(10)

When B = RC(X), we will often write simply σx and νx instead of, respectively,
σBx and νBx ; in this case we will sometimes use the notation σXx and νXx as well.

Definition 4.5. (2-Precontact spaces.)
(a) A triple X = (X,X0, R) is called a 2-precontact space (abbreviated as PCS) if the
following conditions are satisfied:

(PCS1) (X,X0) is a topological pair and X is a T0-space;

(PCS2) (X0, R) is a Stone adjacency space;

(PCS3) RC(X,X0) is a closed base for X ;

(PCS4) For every F,G ∈ CO(X0), clX(F ) ∩ clX(G) 6= ∅ implies that F (CR)
#G

(see (2) for CR);

(PCS5) If Γ ∈ Clans(CO(X0), CR) then there exists a point x ∈ X such that
Γ = Γx,X0

(see (9) for Γx,X0
).

(b) Let X = (X,X0, R) be a 2-precontact space. Define, for every F,G ∈ RC(X,X0),

F CX G ⇐⇒ ((∃x ∈ F ∩X0)(∃y ∈ G ∩X0)(xRy)).

Then the precontact algebra

B(X) = (RC(X,X0), CX)

is said to be the canonical precontact algebra of X.

(c) A 2-precontact space X = (X,X0, R) is called reflexive (resp., symmetric; transi-
tive) if the relation R is reflexive (resp., symmetric; transitive); X is called connected
if the space X is connected.

(d) Let X = (X,X0, R) and X̂ = (X̂, X̂0, R̂) be two 2-precontact spaces. We say that

X and X̂ are PCS-isomorphic (or, simply, isomorphic) if there exists a homeomor-

phism f : X −→ X̂ such that:

(ISO1) f(X0) = X̂0; and

(ISO2) (∀x, y ∈ X0)(xRy ↔ f(x)R̂f(y)).
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Remark 4.6. It is very easy to see that the canonical precontact algebra of a 2-
precontact space, defined in Definition 4.5(b), is indeed a precontact algebra.

Proposition 4.7. (a) Let (X,X0, R) be a 2-precontact space. Then X is a semire-
gular space and, for every F,G ∈ CO(X0),

clX(F ) ∩ clX(G) 6= ∅ iff F (CR)
#G.(11)

(b) Let X = (X,X0, R) and X̂ = (X̂, X̂0, R̂) be two isomorphic 2-precontact spaces.

Then the corresponding canonical precontact algebras B(X) and B(X̂) are PCA-
isomorphic.

Proof. (a) By the axiom (PCS3), the family RC(X,X0) is a closed base for the space
X . Since RC(X,X0) ⊆ RC(X) (see Lemma 4.3(a)), we get that X is a semiregular
space.

Let F,G ∈ CO(X0) and F (CR)
#G. The pair (CO(X0), CR) is a precontact

algebra (see Proposition 2.5(a)). Hence, by Proposition 3.5(c), there exists a clan Γ in
(CO(X0), CR) such that F,G ∈ Γ. The axiom (PCS5) implies that there exists x ∈ X

such that Γ = Γx,X0
. Thus x ∈ clX(F ) ∩ clX(G). Therefore, clX(F ) ∩ clX(G) 6= ∅.

The converse implication follows from the axiom (PCS4).

(b) This is obvious.

Lemma 4.8. (Correspondence Lemma.) Let X = (X,X0, R) be a 2-precontact
space and let B(X) = (RC(X,X0), CX) be the canonical precontact algebra of X.
Then the following equivalences hold:

(a) The space X is reflexive iff the algebra B(X) satisfies the axiom (Cref);

(b) The space X is symmetric iff B(X) satisfies the axiom (Csym).;

(c) The space X is transitive iff B(X) satisfies the axiom (Ctr);

(d) The space X is connected iff B(X) is connected.

Proof. By (the proof of) Lemma 4.3(a), the map

ϕ : CO(X0) −→ RC(X,X0), A 7→ clX(A),

is a Boolean isomorphism. From the definitions of the relations CX and CR (see,
respectively, Definition 4.5(b) and (2)) it follows immediately that the map

ϕ : (CO(X0), CR) −→ (RC(X,X0), CX) is a PCA-isomorphism.(12)

Now the assertions (a), (b) and (c) follow from Definition 4.5(c), Theorem 3.9 and
Lemma 3.5(d,e,f). Indeed, by the axiom (PCS2), (X0, R) is a Stone adjacency space;
hence, by Theorem 3.9(b) and in the notation of its proof, Ψ(X0, R) = (CO(X0), CR)
and Φ(Ψ(X0, R)) = (S(CO(X0)), R(CO(X0),CR)) is TAS-isomorphic to the Stone ad-
jacency space (X0, R); now we can apply Lemma 3.5(d,e,f) to the precontact alge-
bra (CO(X0), CR) and its canonical adjacency space (Ult(CO(X0)), R(CO(X0),CR)) =
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(S(CO(X0)), R(CO(X0),CR)). So, the assertions (a), (b) and (c) are proved. Let us
prove the assertion (d). Let X be a connected space. Suppose that the precontact
algebra (CO(X0), CR) is not connected. Then there exists an F ∈ CO(X0) such
that F 6= ∅, X0, F (−CR)F

∗ and F ∗(−CR)F . Since F.F ∗ = ∅ = 0, we get that
F (−(CR)

#)F ∗. Thus, by (11), clX(F ) ∩ clX(F
∗) = ∅. Since F ∗ = X0 \ F and X0 is

dense in X , we obtain that clX(F )∪ clX(F
∗) = clX(F )∪ clX(X0 \F ) = clX(X0) = X .

Hence clX(F ) is a clopen subset of X . Since clX(F ) 6= ∅, X , we get a contradiction.
Thus, the precontact algebra (CO(X0), CR) is connected. Conversely, let the precon-
tact algebra (CO(X0), CR) be connected. Suppose that X is not connected. Then
there exists a clopen in X subset G of X such that G 6= ∅, X . Let F = X0∩G. Then
F ∈ CO(X0) and F 6= ∅, X0. Thus, FCRF

∗ or F ∗CRF . Hence F (CR)
#F ∗. Using

(11), we get that clX(F ) ∩ clX(F
∗) 6= ∅. Since clX(F ) = clX(G ∩X0) = clX(G) = G

and, analogously, clX(F
∗) = clX(X0 \ F ) = clX((X \ G) ∩ X0) = X \ G, we get a

contradiction. Hence, X is connected.

5 The canonical 2-precontact space of a precontact

algebra

In this section we will associate with each precontact algebra a 2-precontact space.

Definition 5.1. Let B = (B,C) be a precontact algebra. We associate with B a
2-precontact space

X(B) = (X,X0, R),

called the canonical 2-precontact space of B, as follows:

• X = Clans(B) and X0 = Ult(B);

• The topology τ on the set X is defined in the following way: the family

{gB(a) | a ∈ B},

where, for any a ∈ B,

gB(a) = {Γ ∈ X | a ∈ Γ},(13)

is a closed base of τ . The topology on X0 is the subspace topology induced by
(X, τ).

• R = RB (see (3) for the notation RB).

Remark 5.2. Note that, in the notation of Definition 5.1, setting, for every a ∈ B,

gB0 (a) = gB(a) ∩X0,

we get that the family {gB0 (a) | a ∈ B} is a closed base of X0 and gB0 (a) = sB(a),
where sB : B −→ CO(X0) is the Stone map.
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Proposition 5.3. Let B = (B,C) be a precontact algebra. Then the canonical 2-
precontact space X(B) = (X,X0, R) of B defined above is indeed a 2-precontact
space.

Proof. Since Clans(B,C) ≡ Clans(B,C#) and (B,C#) is a contact algebra, we can
use [5, Lemma 5.1(i), Lemma 5.7(i) and Lemma 5.3(ii)] which imply that the family
{gB(a) | a ∈ B} can be taken as a closed base for a topology on the set X , that (X, τ)
is a semiregular compact T0-space and that, for every a ∈ B, gB(a) ∈ RC(X).

Let us set, for every a ∈ B, hB(a) = X \ gB(a). Then

hB(a) = {Γ ∈ X | a 6∈ Γ}

and {hB(a) | a ∈ B} is an open base of (X, τ). Let us show that X0 is dense in
(X, τ). Let a ∈ B and a 6= 1 (i.e., hB(a) 6= ∅). Then a∗ 6= 0 and thus there exists
an ultrafilter u in B such that a∗ ∈ u. Thus a 6∈ u and hence u ∈ hB(a). Therefore,
hB(a) ∩ X0 6= ∅. Hence, X0 is dense in (X, τ). So, the axiom (PCS1) is satisfied.
Since gB0 (a) = sB(a), for every a ∈ B (see Remark 5.2), Theorem 3.9 implies that
((X0, τ |X0

), R) is a Stone adjacency space. Thus, the axiom (PCS2) is also satisfied.
Further, we have that for every a ∈ B, gB(a) ∈ RC(X); thus, using Lemma 4.1, we
get that

gB(a) = clX(g
B
0 (a)).(14)

Since CO(X0) = {gB0 (a) | a ∈ B}, we obtain that RC(X,X0) = {gB(a) | a ∈ B}.
Hence, the axiom (PCS3) is satisfied.

Let F,G ∈ CO(X0). Then there exist a, b ∈ B such that F = sB(a)(= gB0 (a))
and G = sB(b)(= gB0 (b)). Let clX(F )∩ clX(G) 6= ∅. Then, by (14), gB(a)∩ gB(b) 6= ∅.
Hence, there exists Γ ∈ gB(a)∩gB(b). Then a, b ∈ Γ and thus, aC#b. There are three
possibilities:

1) aCb: then, by Lemma 3.5(a), there exist u, v ∈ X0 such that a ∈ u, b ∈ v and
uRv; since u ∈ F and v ∈ G, we get that FCRG and therefore, F (CR)

#G;

2) bCa: then, by Lemma 3.5(a), there exist u, v ∈ X0 such that b ∈ u, a ∈ v and
uRv; since v ∈ F and u ∈ G, we get that GCRF and therefore, F (CR)

#G;
3) a.b 6= 0: then, as it is well known (see, e.g., [15, Corollary 2.17]), there exists
u ∈ X0 such that a.b ∈ u; thus a, b ∈ u, i.e., u ∈ F ∩G and therefore, F (CR)

#G.
So, the axiom (PCS4) is satisfied.
Let Γ ∈ Clans(CO(X0), CR). We have, by Theorem 3.9(a), that

s(B,C) : (B,C) −→ (CO(X0), CR), b 7→ sB(b), is a PCA-isomorphism.(15)

Set x = s−1
(B,C)(Γ). Then x is a clan of (B,C), i.e. x ∈ X . We will show that

Γ = Γx,X0
(see (9) for the notation Γx,X0

). We have to prove that (∀F ∈ CO(X0))((x ∈
clX(F )) ⇐⇒ (F ∈ Γ)). Let F ∈ CO(X0). Then there exists a ∈ B such that
F = s(B,C)(a). Let F ∈ Γ. Then s(B,C)(a) ∈ Γ and thus s−1

(B,C)(s(B,C)(a)) ∈ s−1
(B,C)(Γ),

i.e. a ∈ x and hence x ∈ gB(a) = clX(sB(a)) = clX(F ). Conversely, let x ∈ clX(F ).
Since gB(a) = clX(sB(a)), we get that a ∈ x. Then sB(a) ∈ s(B,C)(x) = Γ. Therefore,
F ∈ Γ. Hence there exists x ∈ X such that Γ = Γx,X0

. Thus the axiom (PCS5) is
satisfied.
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Proposition 5.4. Let B1 and B2 be two isomorphic precontact algebras. Then the
corresponding canonical 2-precontact spaces X(B1) and X(B2) are isomorphic.

Proof. It is obvious.

Proposition 5.5. Let B be a precontact algebra, let X(B) be the canonical 2-precon-
tact space of B and let B′ be the canonical precontact algebra of the 2-precontact space
X(B). Then the contact algebras B and B′ are PCA-isomorphic.

Proof. It follows from (15) and (12).

Lemma 5.6. (Topological characterization of the connectedness of
B.) Let B = (B,C) be a precontact algebra and X(B) be the canonical 2-precontact
space of B. Then B is connected iff X(B) is connected.

Proof. Since Clans(B,C) ≡ Clans(B,C#) and (B,C#) is a contact algebra, we can
use [5, Lemma 5.7(i3)] which implies that the 2-precontact space X(B) is connected
iff the contact algebra (B,C#) is connected. Obviously, (B,C#) is connected iff B is
connected. Thus, our assertion is proved.

6 The Main Theorem

Theorem 6.1. (Representation theorem for precontact algebras.)

(a) Let B = (B,C) be a precontact algebra and let X(B) = (X,X0, R) be the canon-
ical 2-precontact space of B. Then the function gB : (B,C) −→ 2X , defined in
(13), is a PCA-isomorphism from (B,C) onto the canonical precontact algebra
(RC(X,X0), CX(B)) of X(B). The same function gB is a PCA-isomorphism
between contact algebras (B,C#) and (RC(X,X0), C(X,X0)) (see Lemma 4.3(a)
for C(X,X0)). The sets RC(X) and RC(X,X0) coincide iff the precontact algebra
B is complete. The algebra B satisfies the axiom (Cref) (resp., (Csym); (Ctr))
iff the 2-precontact space X(B) is reflexive (resp., symmetric; transitive). The
algebra B is connected iff X(B) is connected.

(b) There exists a bijective correspondence between the class of all, up to PCA-
isomorphism, (connected) precontact algebras and the class of all, up to PCS-
isomorphism, (connected) 2-precontact spaces; namely, for every precontact al-
gebra B, the PCA-isomorphism class [B] of B corresponds to the PCS-isomor-
phism class [X(B)] of the canonical 2-precontact space X(B) of B, and for
every 2-precontact space X, the PCS-isomorphism class [X ] of X corresponds
to the PCA-isomorphism class [B(X)] of the canonical precontact algebra B(X)
of X.

Proof. (a) Using (14), we get that ϕ ◦ sB = gB (see (12) for ϕ and (5) for sB). Now,
we apply Proposition 5.5 for obtaining that

gB : (B,C) −→ (RC(X,X0), CX(B)) is a PCA-isomorphism.(16)
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Further, using (11), we get that

gB : (B,C#) −→ (RC(X,X0), C(X,X0)) is a CA-isomorphism.(17)

By Lemma 4.3(a), we have that the sets RC(X) and RC(X,X0) coincide iff
X0 is an extremally disconnected space. Since X0 = S(B), we have (by, e.g., [15,
Proposition 7.21]) that X0 is an extremally disconnected space iff B is a complete
Boolean algebra. Hence, the sets RC(X) and RC(X,X0) coincide iff the precontact
algebra B is complete. All other assertion in (a) follow from Lemma 4.8 and (16).

(b) Let us denote by PCA the set of all, up to PCA-isomorphism, precontact algebras
and by PCS the set of all, up to PCS-isomorphism, 2-precontact spaces. We will
define two correspondences

Φ2 : PCA −→ PCS and Ψ2 : PCS −→ PCA

and we will show that their compositions Φ2 ◦ Ψ2 and Ψ2 ◦ Φ2 are equal to the
corresponding identities. We set, for every precontact algebra B = (B,C),

Φ2([B]) = [X(B)],

where X(B) is the canonical 2-precontact space of B (see Definition 5.1), [B] is the
class of all precontact algebras which are PCA-isomorphic to the precontact algebra
B, and, analogously, [X(B)] is the class of all 2-precontact spaces which are PCS-
isomorphic to the 2-precontact space X(B). Further, for every 2-precontact space
X = (X,X0, R), we set

Ψ2([X ]) = [B(X)],

where B(X) is the canonical precontact algebra of X (see Definition 4.5(b)). It is
easy to see that the correspondences Φ2 and Ψ2 are well-defined.

Using (16), we get that for every precontact algebra B = (B,C), Ψ2(Φ2([B])) =
[B]. Thus we obtain that Ψ2 ◦ Φ2 = idPCA.

We will now prove that Φ2 ◦Ψ2 = idPCS. Let X = (X,X0, R) be a 2-precontact
space. Set (B,C) = (CO(X0), CR); then (B,C) is PCA-isomorphic to the canonical

precontact algebra of X (see Definition 4.5(b)). Let (X̂, X̂0, R̂) be the canonical 2-

precontact space of (B,C) (see Definition 5.1 and (12)). Then X̂ = Clans(B,C),

X̂0 = Ult(B) and R̂ = R(B,C). For every x ∈ X , set

f(x) = {a ∈ B | x ∈ clX(a)}.

Then f(x) 6= ∅ (by (PCS3)) and f(x) is a clan in (B,C). Indeed, we have that:
1) 0 6∈ f(x); 2) if a ∈ f(x), b ∈ B and a ≤ b, then x ∈ clX(a) ⊆ clX(b), and thus
b ∈ f(x); 3) if a+b ∈ f(x) then x ∈ clX(a∪b) = clX(a)∪clX(b), and hence x ∈ clX(a)
or x ∈ clX(b), i.e. a ∈ f(x) or b ∈ f(x); 4) if a, b ∈ f(x) then x ∈ clX(a)∩ clX(b), and

thus, by (PCS4), aC#b. So, f(x) ∈ X̂ . Hence, f : X −→ X̂. We will show that

f : (X,X0, R) −→ (X̂, X̂0, R̂), x 7→ f(x), is a PCS-isomorphism.
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Let x, y ∈ X and x 6= y. Since, by (PCS1), X is a T0-space, there exists an
open subset U of X such that |U ∩ {x, y}| = 1. Suppose that x ∈ U . Then y 6∈ U .
According to (PCS3), there exists a ∈ B such that x ∈ X \ clX(a) ⊆ U . Thus
y ∈ clx(a) and x 6∈ clX(a). Therefore, a ∈ f(y) \ f(x). Hence f(x) 6= f(y). If y ∈ U ,
then we argue analogously. So, f is a injection.

Let Γ ∈ X̂ . Then, by (PCS5), there exists x ∈ X such that Γ = {a ∈ B | x ∈
clX(a)}. Hence Γ = f(x). Thus f is a surjection. So, f is a bijection.

Let a ∈ B. Then f(clX(a)) = {f(x) | x ∈ clX(a)} = {f(x) | a ∈ f(x)}. Since f
is a surjection, we get that f(clX(a)) = gB(a) (see (13) for the notation gB(a)). Since
f is a bijection, we have also that f−1(gB(a)) = clX(a). Now, using (PCS3) and the

fact that {gB(a) | a ∈ B} is a closed base of X̂ (see Definition 5.1), we get that f is
a homeomorphism.

For every x ∈ X0, we have that f(x) = {F ∈ CO(X0) | x ∈ clX(F )} =

{F ∈ CO(X0) | x ∈ F} = ux ∈ Ult(B) = X̂0 (see (6) for the notation ux). Hence

f(X0) ⊆ X̂0. For proving the inverse inclusion, let u ∈ X̂0. Then u ∈ Ult(CO(X0)).
Now, by (PCS2), there exists x ∈ X0 such that x ∈

⋂
u. Then u ⊆ ux and, hence,

u = ux. Since, as we have already seen, ux = f(x), we get that f(X0) ⊇ X̂0.

Therefore, f(X0) = X̂0.

Let x, y ∈ X0. Then f(x) = ux, f(y) = uy. We have that ux, uy ∈ X̂0 and

uxR̂uy ⇐⇒ ux × uy ⊆ CR. Hence, (uxR̂uy) ⇐⇒ (for every F,G ∈ CO(X0) such
that x ∈ F and y ∈ G, there exist x′ ∈ F and y′ ∈ G with x′Ry′). Therefore, if

xRy then, obviously, f(x)R̂f(y). Let now f(x)R̂f(y). Suppose that x(−R)y. Then
(x, y) 6∈ R. Applying (PCS2), we get that there exist F,G ∈ CO(X0) such that
x ∈ F , y ∈ G and (F × G) ∩ R = ∅. Thus F ∈ ux, G ∈ uy and for every x′ ∈ F

and every y′ ∈ G we have that x′(−R)y′. This means that F (−CR)G and, hence,

ux(−R̂)uy, i.e. f(x)(−R̂)f(y), a contradiction. Therefore, xRy.
All this shows that f is a PCS-isomorphism. Hence Φ2(Ψ2([X])) = [X ]. Thus,

Φ2 ◦Ψ2 = idPCS. Therefore,

Φ2 : PCA −→ PCS is a bijection.(18)

The statement for connected precontact algebras follows from (18) and Lemma
5.6.

Corollary 6.2. If X = (X,X0, R) is a 2-precontact space then X is a compact space.

Proof. By Theorem 6.1, there exists a precontact algebra B = (B,C) such that the
2-precontact space X is isomorphic to the canonical 2-precontact space X(B) of B.
Then, by [5, Lemma 5.7(i2)], X is a compact space (see also the proof of Proposition
5.3).
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7 2-Contact spaces and a new representation the-

orem for contact algebras

Proposition 7.1. Let X0 be a subspace of a topological space X. For every F,G ∈
CO(X0), set

Fδ(X,X0)G iff clX(F ) ∩ clX(G) 6= ∅.(19)

Then (CO(X0), δ(X,X0)) is a contact algebra.

Proof. Clearly, the relation δ(X,X0) satisfies the axioms (C0), (Cref) and (Csym) (see
Definition 2.1 for them). It is easy to see that it satisfies the axiom (C+) as well.
Hence, (CO(X0), δ(X,X0)) is a contact algebra.

Definition 7.2. (2-Contact spaces.) (a) A topological pair (X,X0) is called a
2-contact space (abbreviated as CS) if the following conditions are satisfied:

(CS1) X is a T0-space;

(CS2) X0 is a Stone space;

(CS3) RC(X,X0) is a closed base for X ;

(CS4) If Γ ∈ Clans(CO(X0), δ(X,X0)) (see (19) for the notation δ(X,X0)) then there
exists a point x ∈ X such that Γ = Γx,X0

(see (9) for Γx,X0
).

A 2-contact space (X,X0) is called connected if the space X is connected.

(b) Let (X,X0) be a 2-contact space. Then the contact algebra

Bc(X,X0) = (RC(X,X0), C(X,X0))

(see Lemma 4.3(a) for the notation C(X,X0)) is said to be the canonical contact algebra
of the 2-contact space (X,X0).

(c) Let B = (B,C) be a contact algebra, X = Clans(B,C), X0 = Ult(B) and τ be
the topology on X described in Definition 5.1. Take the subspace topology on X0.
Then the pair

Xc(B) = (X,X0)

is called the canonical 2-contact space of the contact algebra (B,C).

(d) Let (X,X0) and (X̂, X̂0) be two 2-contact spaces. We say that (X,X0) and

(X̂, X̂0) are CS-isomorphic (or, simply, isomorphic) if there exists a homeomorphism

f : X −→ X̂ such that f(X0) = X̂0.

Remark 7.3. Note that, by Lemma 4.3(a), the canonical contact algebra of a 2-
contact space is indeed a contact algebra.
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Example 7.4. Let X be a Stone space. Then the pair (X,X) is a 2-contact space.
Indeed, the conditions (CS1)-(CS3) are obviously fulfilled. Let B = CO(X). Obvi-
ously, δ(X,X) = ρBs (see Example 2.4 for ρBs ). Hence, using [5, Corollary 3.3] or arguing
directly, we get that Clans(B, δ(X,X)) = Ult(B) = {ux | x ∈ X} = {Γx,X | x ∈ X}.
Thus, the condition (CS4) is also fulfilled.

Lemma 7.5. For every 2-contact space (X,X0) there exists a unique reflexive and
symmetric binary relation R on X0 such that (X,X0, R) is a 2-precontact space.

Proof. Let (X,X0) be a 2-contact space. For every x, y ∈ X0, set

xRy ⇐⇒ ((∀F ∈ ux)(∀G ∈ uy)(clX(F ) ∩ clX(G) 6= ∅)),(20)

where ux = {A ∈ CO(X0) | x ∈ A} and analogously for uy (see (6)). Clearly, R is a
reflexive and symmetric relation on X0. We will show that for every F,G ∈ CO(X0),

clX(F ) ∩ clX(G) 6= ∅ ⇐⇒ FCRG(21)

(recall that FCRG ⇐⇒ ((∃x ∈ F )(∃y ∈ G)(xRy))). Indeed, let F,G ∈ CO(X0) and
let clX(F ) ∩ clX(G) 6= ∅. Then Fδ(X,X0)G. Now, using Proposition 7.1 and Lemma
3.5(c), we get that there exists a clan Γ in (CO(X0), δ(X,X0)) such that F,G ∈ Γ.
Then, by the axiom (CS4), there exists a point z ∈ X such that Γ = Γz,X0

. Therefore,
Γ = {A ∈ CO(X0) | z ∈ clX(A)}. Clearly, the principal filters F and G of the Boolean
algebra CO(X0), which are generated, respectively, by F and G, are contained in Γ.
Since Γ is a grill, Lemma 3.6 implies that there exist ultrafilters u and v of the Boolean
algebra CO(X0) such that u ∪ v ⊆ Γ, F ⊆ u and G ⊆ v. Using the axiom (CS2), we
obtain that there exist points x, y ∈ X such that

⋂
u = {x} and

⋂
v = {y}. Then,

clearly, u = ux and v = uy. So, we get that z ∈ clX(A), for every A ∈ ux ∪ uy. Thus,
xRy. Obviously, x ∈ F and y ∈ G. Therefore, FCRG. Conversely, let F,G ∈ CO(X0)
and let FCRG. Then (∃x ∈ F )(∃y ∈ G)(xRy). Hence F ∈ ux and G ∈ uy. Thus,
clX(F )∩clX(G) 6= ∅. So, (20) is proved. This shows that the triple (X,X0, R) satisfies
the axiom (PCS4). We obtain, as well, that CR = δ(X,X0) and thus, using the axiom
(CS4), we get that the axiom (PCS5) is satisfied as well.

Let us prove that the relation R is a closed relation on the space X0. Indeed,
let x, y ∈ X0 and (x, y) 6∈ R. Then, by (20), there exist F ∈ ux and G ∈ uy such that
clX(F ) ∩ clX(G) = ∅. This obviously implies that (x, y) ∈ F × G ⊆ X ×X \ R. So,
R is a closed relation. Hence, the triple (X,X0, R) satisfies the axiom (PCS2). Since
the axioms (PCS1) and (PCS3) are obviously satisfied, we get that (X,X0, R) is a
2-precontact space.

Let (X,X0, R
′) be a 2-precontact space and R′ be a reflexive and symmetric

relation on the set X0. Then, by Proposition 2.5(b), CR′ = (CR′)#. Thus, using (11),
we get that for every F,G ∈ CO(X0), clX(F ) ∩ clX(G) 6= ∅ iff F (CR′)G. Now, (21)
implies that for every F,G ∈ CO(X0), F (CR)G ⇐⇒ F (CR′)G. Hence, CR ≡ CR′ .
Set B = CO(X0). Then we get that B = (B,CR) = (B,CR′). Using (12), the
proof of Theorem 6.1(b) and its notation, we obtain that: 1) Ψ2([(X,X0, R

′)]) =
[(B,CR)] = [B], 2) the map f : (X,X0, R

′) −→ X(B,CR) is a PCS-isomorphism and,

for every x ∈ X0, f(x) = ux. Let R̂ = R(B,CR). Now, we get that for every x, y ∈ X0,
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xR′y ⇐⇒ f(x)R̂f(y) ⇐⇒ uxR̂uy ⇐⇒ ux × uy ⊆ CR ⇐⇒ [(∀F ∈ ux)(∀G ∈
uy)(F (CR)G)] ⇐⇒ [(∀F ∈ ux)(∀G ∈ uy)(clX(F ) ∩ clX(G) 6= ∅)] ⇐⇒ xRy.
Therefore, R ≡ R′.

Corollary 7.6. If X = (X,X0) is a 2-contact space then X is a compact space.

Proof. By Lemma 7.5, there exists a 2-precontact space (X,X0, R). Then, by Corol-
lary 6.2, X is a compact space.

Proposition 7.7. If (X,X0, R) is a reflexive and symmetric 2-precontact space then
(X,X0) is a 2-contact space.

Proof. Clearly, the conditions (CS1)-(CS3) are fulfilled. Let

Γ ∈ Clans(CO(X0), δ(X,X0)).

By Proposition 2.5(b), we have that CR = (CR)
#. Now (11) implies that CR = δ(X,X0).

Hence, Γ ∈ Clans(CO(X0), CR) and, by (PCS5), there exists x ∈ X such that
Γ = Γx,X0

. So, the condition (CS4) is satisfied. Therefore (X,X0) is a 2-contact
space.

Proposition 7.8. Let B = (B,C) be a contact algebra. Then the canonical 2-contact
space Xc(B) is indeed a 2-contact space.

Proof. By Proposition 5.3, the canonical 2-precontact space X(B) = (X,X0, R) is a
2-precontact space. Also, Lemma 3.5(d)(e) implies that (X,X0, R) is a reflexive and
symmetric 2-precontact space. Now, using Proposition 7.7, we get that (X,X0) is a
2-contact space. Since Xc(B) = (X,X0), our assertion is proved.

Theorem 7.9. (New representation theorem for contact algebras.)

(a) Let (B,C) be a contact algebra and let (X,X0) be the canonical 2-contact space
of (B,C) (see Definition 7.2(c)). Then the function gB : B −→ 2X , defined in
(13), is a CA-isomorphism from the algebra (B,C) onto the canonical contact
algebra (RC(X,X0), C(X,X0)) of (X,X0). The sets RC(X,X0) and RC(X) co-
incide iff the contact algebra (B,C) is complete. The contact algebra (B,C) is
connected iff the 2-contact space (X,X0) is connected.

(b) There exists a bijective correspondence between the class of all, up to CA-
isomorphism, (connected) contact algebras and the class of all, up to CS-isomor-
phism, (connected) 2-contact spaces; namely, for every CA B, the CA-isomor-
phism class [B] of B corresponds to the CS-isomorphism class [Xc(B)] of the
canonical 2-contact space Xc(B) of B, and for every 2-contact space (X,X0),
the CS-isomorphism class [(X,X0)] of (X,X0) corresponds to the CA-isomor-
phism class [Bc(X,X0)] of the canonical contact algebra Bc(X,X0) of (X,X0).
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Proof. (a) By Lemma 7.5, there exists a unique reflexive and symmetric binary
relation R on X0 such that (X,X0, R) is a 2-precontact space. Since (B,C) is a
contact algebra, we have that C = C#. Thus, using (17), we get that gB : (B,C) −→
(RC(X,X0), C(X,X0)) is a CA-isomorphism. The remaining assertions follow from
Theorem 6.1(a).

(b) In this part of our proof, we will use the notation from the proof of Theorem
6.1(b).

Let CA be the class of all, up to CA-isomorphism, contact algebras. Let CS

be the class of all, up to CS-isomorphism, 2-contact spaces. Let 2CS be the class
of all 2-contact spaces. Let 2PCS be the class of all 2-precontact spaces (X,X0, R)
for which R is a reflexive and symmetric relation. Let 2PS be the class of all, up
to PCS-isomorphism, 2-precontact spaces (X,X0, R) for which R is a reflexive and
symmetric relation. Then, using Lemma 7.5 and Proposition 7.7, we get that the
correspondence

ϕ : 2CS −→ 2PCS, (X,X0) 7→ (X,X0, R),

where the relation R is defined by the formula (20), is a bijection. It is clear that
then the correspondence

ψ : CS −→ 2PS, [(X,X0)] −→ [ϕ(X,X0)],

is a bijection as well. By Theorem 6.1(a), B = (B,C) is a contact algebra iff the
2-precontact space X(B) = (X,X0, R) is reflexive and symmetric, i.e., iff R is a
reflexive and symmetric relation. Thus, if Φ′

2 is the restriction of the correspondence
Φ2 to the subclass CA of the class PCA, then

Φ′
2 : CA −→ 2PS

is a bijection. Therefore, the map

Φc2 = ψ−1 ◦ Φ′
2 : CA −→ CS, [B] 7→ [Xc(B)],

is a bijection. The assertion about connected contact algebras follows now from
Theorem 6.1(b).

We are now going to obtain an assertion from [5] (namely, [5, Theorem 5.1(ii)(for
CAs)]) as a corollary of Theorem 7.9. This assertion concerns the class of C-semiregu-
lar spaces introduced in [5] (see Definition 7.17 below). We will also obtain some new
facts about this class of spaces. We start with recalling and proving some preliminary
assertions. Then we obtain a new theorem about the structure of C-semiregular spaces
(see Theorem 7.19 below) and using it, we derive [5, Theorem 5.1(ii)(for CAs)] from
Theorem 7.9 (see Corollary 7.23 below).

Lemma 7.10. ([5]) Let X be a topological space. Then:

(a) for every x ∈ X, σx is a clan of the contact algebra (RC(X), CX);

(b) if X is semiregular, then X is a T0-space iff for every x, y ∈ X, x 6= y implies
that σx 6= σy (see (9) for σx).
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Lemma 7.11. ([4]) Let (X,T) be a topological space and U, V ∈ T. Then

int(cl(U) ∩ cl(V )) = int(cl(U ∩ V )).

Corollary 7.12. Let (X,T) be a topological space and U, V ∈ T. Then

cl(int(cl(U) ∩ cl(V ))) = cl(U ∩ V ).

Proof. Since cl(U ∩ V ) is a regular closed set, we get, using Lemma 7.11, that
cl(int(cl(U) ∩ cl(V ))) = cl(int(cl(U ∩ V ))) = cl(U ∩ V ).

Definition 7.13. Let (X,T) be a topological space and x ∈ X . The point x is said
to be an u-point if for every U, V ∈ T, x ∈ cl(U) ∩ cl(V ) implies that x ∈ cl(U ∩ V ).

Proposition 7.14. (a) A topological space (X,T) is extremally disconnected iff every
of its points is an u-point;

(b) If X is a dense subspace of a space Y and x ∈ X, then x is an u-point of Y iff x

is an u-point of X.

Proof. (a) Let X be extremally disconnected. Then, for every U, V ∈ T, we have, by
Lemma 7.11, that cl(U) ∩ cl(V ) = int(cl(U) ∩ cl(V )) = int(cl(U ∩ V )) = cl(U ∩ V ).
Hence, every point of X is an u-point.

Conversely, let every point of X be an u-point. Let U ∈ T. Suppose that
cl(U) 6∈ T. Then there exists x ∈ cl(U) \ int(cl(U)). Hence x ∈ X \ int(cl(U)) =
cl(X \ cl(U)). Set V = X \ cl(U). Then V ∈ T and x ∈ cl(U) ∩ cl(V ). Since x is an
u-point, we get that x ∈ cl(U ∩ V ) = ∅, a contradiction. Hence, cl(U) ∈ T. So, X is
extremally disconnected.

(b) Let x be an u-point of X . Let U, V be open subsets of Y and x ∈ clY (U)∩clY (V ).
Set U ′ = U ∩X and V ′ = V ∩X . Then x ∈ X∩clY (U

′)∩clY (V
′) = clX(U

′)∩clX(V
′).

Hence x ∈ clX(U
′ ∩ V ′) = clX(X ∩ U ∩ V ) ⊆ clY (U ∩ V ). So, x is an u-point of Y .

Conversely, let x be an u-point of Y . Let U, V be open subsets of X and
x ∈ clX(U)∩ clX(V ). There exist open subsets U ′ and V ′ of Y such that U = U ′ ∩X
and V = V ′ ∩ X . Then x ∈ clY (U

′) ∩ clY (V
′). Hence x ∈ X ∩ clY (U

′ ∩ V ′) =
X ∩ clY (X ∩ U ′ ∩ V ′) = X ∩ clY (U ∩ V ) = clX(U ∩ V ). Therefore, x is an u-point of
X .

Proposition 7.15. Let (X,T) be a topological space and x ∈ X. Then x is an u-point
iff σx is an ultrafilter of the Boolean algebra RC(X) (see (9) for σx).

Proof. Since, by Lemma 7.10(a), σx is a grill of RC(X), we have that σx is an
ultrafilter of RC(X) iff (∀F,G ∈ σx)(F.G ∈ σx). Hence, using Corollary 7.12, we
get that: (σx is an ultrafilter of RC(X)) ⇐⇒ ((∀F,G ∈ RC(X))[(x ∈ F ∩ G) →
(x ∈ F.G)]) ⇐⇒ ((∀F,G ∈ RC(X))[(x ∈ F ∩ G) → (x ∈ cl(int(F ∩ G)))])
⇐⇒ ((∀U, V ∈ T)[(x ∈ cl(U) ∩ cl(V )) → (x ∈ cl(int(cl(U) ∩ cl(V ))))]) ⇐⇒
((∀U, V ∈ T)[(x ∈ cl(U) ∩ cl(V )) → (x ∈ cl(U ∩ V ))]) ⇐⇒ ( x is an u-point).
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Proposition 7.16. Let X and Y be topological spaces and x ∈ X. If x is an u-point
and f : X −→ Y is an open map, then f(x) is an u-point.

Proof. Let U and V be open subsets of Y and f(x) ∈ clY (U) ∩ clY (V ). We will
show that f(x) ∈ clY (U ∩ V ). We have that x ∈ f−1(clY (U)) and x ∈ f−1(clY (V )).
Using [10, Exercise 1.4.C], we get that x ∈ clX(f

−1(U)) ∩ clX(f
−1(V )). Since x is an

u-point, we get, using again [10, Exercise 1.4.C], that x ∈ clX(f
−1(U) ∩ f−1(V )) =

clX(f
−1(U ∩ V )) = f−1(clY (U ∩ V )). Thus, f(x) ∈ clY (U ∩ V ). Hence f(x) is an

u-point.

Note that Proposition 7.14(a) and Proposition 7.16 imply the well-known fact
that extremal disconnectedness is an invariant of open mappings (see [10, Exercise
6.2.H(b)]).

Definition 7.17. ([5]) A semiregular T0-space (X, τ) is said to be C-semiregular if
for every clan Γ in (RC(X), CX) there exists a point x ∈ X such that Γ = σx (see
(9) for σx).

The next assertion was stated in [5] but it was left without proof there. For
completeness, we will prove it here.

Proposition 7.18. ([5, Fact 4.1]) Every C-semiregular space X is a compact space.

Proof. Let F = {Fa | α ∈ A} be a centered (= with finite intersection property)
family of closed subsets of X . Since X is semiregular, for every α ∈ A there exists
a subfamily Rα of RC(X) such that Fα =

⋂
Rα. Let R =

⋃
{Rα | α ∈ A}. Then⋂

F =
⋂

R and R is a centered family. Thus there exists an ultrafilter u of the Boolean
algebra RC(X) containing R. Since u is a clan in the contact algebra (RC(X), CX),
there exists x ∈ X such that u = σx. Therefore x ∈

⋂
u ⊆

⋂
R =

⋂
F. Hence, X is

compact.

Theorem 7.19. For every C-semiregular space (X,T), the set

X0 = {x ∈ X | x is an u-point of X}

endowed with its subspace topology is a dense extremally disconnected compact Haus-
dorff subspace of (X,T) and is the unique dense extremally disconnected compact
Hausdorff subspace of (X,T).

Proof. Set (B,C) = (RC(X), CX). Then (B,C) is a complete Boolean algebra. Let

(X̂, X̂0) be the canonical 2-contact space of (B,C) (see Definition 7.2(c)). Since B

is a complete Boolean algebra, its Stone space X̂0 is extremally disconnected and
RC(X̂, X̂0) = RC(X̂). Using Lemma 7.10(b) and the fact that X is C-semiregular,
we get that the map

f : X −→ X̂, x 7→ σx,

is a bijection. In the notation of Definition 5.1, we have that for every F ∈ RC(X),

f(F ) = {f(x) | x ∈ F} = {σx | x ∈ F} = {σx | F ∈ σx} = {Γ ∈ X̂ | F ∈ Γ} = gB(F ).
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Since f is a bijection, we obtain now that for every F ∈ RC(X), f−1(gB(F )) = F .
Using the fact that RC(X) is a closed base of X and {gB(F ) | F ∈ RC(X)} is a

closed base of X̂ , we get that f is a homeomorphism. Since X̂0 = Ult(RC(X)), we

get that X̂0 = {σx | σx is an ultrafilter of RC(X)}. Thus, Proposition 7.15 implies

that f−1(X̂0) = X0. Hence, f(X0) = X̂0. Therefore, (X,X0) is a 2-contact space and

f : (X,X0) −→ (X̂, X̂0) is a CS-isomorphism. From this we get, in particular, that
X0 is a dense extremally disconnected compact Hausdorff subspace of (X,T).

Let now X ′
0 be a dense extremally disconnected compact Hausdorff subspace of

(X,T). We will show that X ′
0 = X0. Since X

′
0 is extremally disconnected, Proposition

7.14(a) implies that every point of X ′
0 is an u-point of X ′

0. Using the fact that X ′
0 is

dense in X , we get, by Proposition 7.14(b), that every point of X ′
0 is an u-point of

X . Hence X ′
0 ⊆ X0. Obviously, X ′

0 is a dense subspace of X0. Since X0 is Hausdorff
and X ′

0 is compact, we get that X ′
0 = X0.

Corollary 7.20. A compact Hausdorff space X is C-semiregular iff it is extremally
disconnected.

Proof. Let X be extremally disconnected.. Then RC(X) = CO(X). Also, the sets
Clans(RC(X), CX) and Ult(CO(X)) coincide. Indeed, let Γ ∈ Clans(RC(X), CX).
Then Γ ⊆ CO(X). Let F,G ∈ Γ. Since F = (F ∩ G) ∪ (F \ G) and F ∩ G,F \ G ∈
CO(X) = RC(X), we have that F ∩G ∈ Γ or F \G ∈ Γ. Clearly, (F \ G)(−CX)G.
Hence F \ G 6∈ Γ. Therefore, F ∩ G ∈ Γ. Thus, Γ is an ultrafilter of the Boolean
algebra CO(X). Then |

⋂
Γ| = 1. Let {x} =

⋂
Γ. Then, obviously, Γ = σx. Hence,

X is a C-semiregular space.
Conversely, if X is C-semiregular then, by Theorem 7.19, X contains a dense

extremally disconnected compact Hausdorff space Y . Since X is a Hausdorff space,
we get that X ≡ Y . Therefore, X is extremally disconnected.

Corollary 7.21. If X is C-semiregular and X0 = {x ∈ X | x is an u-point of X}
then the pair (X,X0) is a 2-contact space and X0 is a dense extremally disconnected
compact Hausdorff subspace of X; moreover, X0 is the unique dense extremally dis-
connected compact Hausdorff subspace of X.

Proof. By Theorem 7.19, X0 is a dense extremally disconnected compact Hausdorff
subspace of X and hence, the conditions (CS1) and (CS2) are fulfilled. Also, we
obtain that RC(X0) = CO(X0) and thus RC(X,X0) = RC(X); moreover, the map

e : (CO(X0), δ(X,X0)) −→ (RC(X), CX), F 7→ clX(F ),

is a CA-isomorphism. Since X is semiregular, we get that the condition (CS3) is
fulfilled. Let Γ ∈ Clans(CO(X0), δ(X,X0)). Then e(Γ) ∈ Clans(RC(X), CX) and,
therefore, there exists x ∈ X such that e(Γ) = σx. Since, obviously, σx = Γx,X0

, we
get that the condition (CS4) is also fulfilled. Hence (X,X0) is a 2-contact space.

The uniqueness assertion follows from Theorem 7.19.
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Lemma 7.22. If (X,X0) is a 2-contact space and X0 is extremally disconnected, then
X is C-semiregular.

Proof. By (CS1), X is a T0-space. Using Lemma 4.3(a) and (CS3), we get that X
is a semiregular space and RC(X,X0) = RC(X). Since CO(X0) = RC(X0), Lemma
4.1 implies that the map

e : (CO(X0), δ(X,X0)) −→ (RC(X), CX), F 7→ clX(F ),

is a CA-isomorphism. Let Γ ∈ Clans(RC(X), CX) and Γ′ = e−1(Γ). Then Γ′ ∈
Clans(CO(X0), δ(X,X0)). Thus, by (CS4), there exists x ∈ X such that Γ′ = Γx,X0

.
Then we get that Γ = e(Γ′) = e(Γx,X0

) = σx. Therefore, X is a C-semiregular space.

Corollary 7.23. ([5]) There exists a bijective correspondence between the class of all,
up to CA-isomorphism, (connected) complete contact algebras and the class of all, up
to homeomorphism, (connected) C-semiregular spaces.

Proof. Let CCA be the class of all, up to CA-isomorphism, complete contact algebras.
Let CCS be the class of all, up to CS-isomorphism, 2-contact spaces (X,X0) such that
X0 is extremally disconnected. Using Theorem 7.9(b) and the notation of its proof,
we get that the map

Φc2 : CA −→ CS, [(B,C)] 7→ [(X,X0)],

where (X,X0) is the canonical 2-precontact space of the contact algebra (B,C) (see
Definition 7.2(c)), is a bijection. Then Theorem 7.9(a) implies that the restriction Φc
of the correspondence Φc2 to the class CCA is a bijection between the later class and
the class CCS, i.e.,

Φc : CCA −→ CCS

is a bijection. Let CSR be the class of all, up to homeomorphism, C-semiregular
spaces. Then the map

α : CCS −→ CSR, [(X,X0)] 7→ [X ],

is a bijection. Indeed, Lemma 7.22 implies that the correspondence α is well-defined;
the fact that α is a bijection follows from Theorem 7.19. Now we get that the
composition

Φ′
c = α ◦ Φc : CCA −→ CSR

is a bijection. The assertion about connected complete contact algebras follows now
from Theorem 6.1(b).
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8 A connected version of the Stone Duality Theo-

rem

The new representation theorems, presented in the previous section, permit us to
obtain as particular cases the Stone Representation Theorem [22] and a new connected
version of it. Let us start with the Stone Representation Theorem [22].

Proposition 8.1. The Stone Representation Theorem follows from Theorem 7.9;
namely, we obtain it equipping each Boolean algebra B with the smallest contact
relation ρBs on B (see Example 2.4 for ρBs ).

Proof. Let B be a Boolean algebra. Then, by [5, Corollary 3.3], Ult(B, ρs) =
Clans(B, ρs). Hence, the canonical 2-contact space of the contact algebra B = (B, ρs)
is the pair Xc(B) = (X,X0), where X = X0 is the Stone space of B. Also,
RC(X,X0) = CO(X0) and C(X,X0) = ρB

′

s , where B′ = CO(X0). So, Theorem 7.9(a)
reduces to the Stone Representation Theorem. Note that RC(X0) = CO(X0) iff X0

is extremally disconnected. Note as well that (B, ρs) is connected iff B = {0, 1}.
Further, Theorem 7.9(b) reduced to the Stone Theorem that there exists a bijective
correspondence between the class of all, up to Boolean isomorphism, Boolean algebras
and the class of all, up to homeomorphism, Stone spaces. Finally, Corollary 7.23 and
Corollary 7.20 imply that there exists a bijective correspondence between the class of
all, up to Boolean isomorphism, complete Boolean algebras and the class of all, up
to homeomorphism, compact Hausdorff extremally disconnected spaces.

Now, equipping each Boolean algebra B with the largest contact relation ρBl
on B (see Example 2.4 for ρBl ), we will obtain a connected version of the Stone
Representation Theorem. Further on we will extend it to a connected version of the
Stone Duality Theorem.

Definition 8.2. (Stone 2-spaces.)

(a) A topological pair (X,X0) is called a Stone 2-space (abbreviated as S2S) if it
satisfies conditions (CS1)-(CS3) of Definition 7.2 and the following condition:

(S2S4) If Γ ∈ Grills(CO(X0)) then there exists a point x ∈ X such that Γ = Γx,X0

(see (9) for Γx,X0
).

(b) Let (X,X0) and (X̂, X̂0) be two Stone 2-spaces. We say that (X,X0) and (X̂, X̂0)
are S2S-isomorphic (or, simply, isomorphic) if there exists a homeomorphism f :

X −→ X̂ such that f(X0) = X̂0.

Proposition 8.3. Let (X,X0) be a Stone 2-space and B = RC(X,X0). Then:

(a) C(X,X0) = ρBl (see Example 2.4 for ρBl ), and

(b) (X,X0) is a 2-contact space.

Proof. (a) Clearly, C(X,X0) ⊆ ρBl . Recall that for any F,G ∈ CO(X0),

clX(F )C(X,X0)clX(G) ⇐⇒ clX(F ) ∩ clX(G) 6= ∅.
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We will show that ρBl ⊆ C(X,X0). Let F,G ∈ CO(X0) and F 6= ∅, G 6= ∅ (i.e.,
clX(F ), clX(G) ∈ B and clX(F )ρ

B
l clX(G)). Obviously, there exist u, v ∈ Ult(CO(X0))

such that F ∈ u and G ∈ v. Then Γ = u ∪ v ∈ Grills(CO(X0)) (see, e.g., [5,
Corollary 3.1]). Hence, by (S2S4), there exists a point x ∈ X such that Γ = Γx,X0

.
Then x ∈ clX(F ) ∩ clX(G) and thus clX(F )C(X,X0)clX(G). So, ρ

B
l = C(X,X0).

(b) Since the map e : (CO(X0), δ(X,X0)) −→ (RC(X,X0), C(X,X0)), F 7→ clX(F ), is
a CA-isomorphism, we get, using (a) and [5, Example 3.1], that

Clans(CO(X0), δ(X,X0)) = Grills(CO(X0)).

Thus, condition (CS4) follows from condition (S2S4). Hence (X,X0) is a 2-contact
space.

Corollary 8.4. Let (X,X0) be a Stone 2-space. Then X is a compact connected
T0-space.

Proof. According to Proposition 8.3(b), (X,X0) is a 2-contact space. Hence, by
Corollary 7.6, X is a compact space. Since the canonical CA (RC(X,X0), C(X,X0))
of the 2-contact space (X,X0) is connected (by Proposition 8.3(a)), Theorem 7.9(a)
implies that the space X is connected.

Definition 8.5. (The canonical Stone 2-space of a Boolean algebra and
the canonical Boolean algebra of a Stone 2-space.)

(a) Let B be a Boolean algebra. Then the canonical 2-contact space of the contact
algebra (B, ρBl ) is said to be the canonical Stone 2-space of the Boolean algebra B
and is denoted by Xs(B).

(b) Let (X,X0) be a Stone 2-space. Then the Boolean algebra RC(X,X0) is said to
be the canonical Boolean algebra of (X,X0).

Proposition 8.6. The canonical Stone 2-space of a Boolean algebra B is indeed a
Stone 2-space.

Proof. Let Xc(B, ρBl ) = (X,X0). Then, by Theorem 7.9(a), the contact algebras
(B, ρBl ) and (RC(X,X0), C(X,X0)) are CA-isomorphic. Since the contact algebras
(RC(X,X0), C(X,X0)) and (CO(X0), δ(X,X0)) are CA-isomorphic, we get that the con-
tact algebras (B, ρBl ) and (CO(X0), δ(X,X0)) are CA-isomorphic. Then, by [5, Exam-
ple 3.1], Clans(CO(X0), δ(X,X0)) = Grills(CO(X0)). According to Proposition 7.8,
(X,X0) is a 2-contact space. Now we obtain that (X,X0) is a Stone 2-space.

Theorem 8.7. (A connected version of the Stone Representation The-
orem.)

(a) Let B be a Boolean algebra and let (X,X0) be the canonical Stone 2-space of
B (see Definition 8.5). Then the function gB : B −→ 2X , defined in (13), is
a Boolean isomorphism from the Boolean algebra B onto the canonical Boolean
algebra RC(X,X0) of (X,X0). The sets RC(X,X0) and RC(X) coincide iff
the Boolean algebra B is complete.
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(b) There exists a bijective correspondence between the class of all, up to Boolean
isomorphism, Boolean algebras and the class of all, up to S2S-isomorphism,
Stone 2-spaces; namely, for every Boolean algebra B, [B] 7→ [Xs(B)], and for
every Stone 2-space (X,X0), [(X,X0)] 7→ [RC(X,X0)].

Proof. (a) Since (X,X0) is, by Definition 8.5(a), the canonical 2-contact space of the
contact algebra (B, ρBl ), our assertion follows from Theorem 7.9(a).

(b) It follows from Theorem 7.9(b), Definition 8.5(a), Proposition 8.6 and Proposition
8.3.

Definition 8.8. (Extremally connected spaces.) A semiregular T0-space X
is called an extremally connected space (abbreviated as ECS) if for every grill Γ in
RC(X) there exists a point x ∈ X such that Γ = σx (see (9) for σx).

Proposition 8.9. Let X be an extremally connected space and B = RC(X). Then:

(a) CX = ρBl (see Lemma 2.8 for CX and Example 2.4 for ρBl ), and

(b) X is a C-semiregular space.

Proof. (a) Let F,G ∈ B and F 6= ∅, G 6= ∅. Then, as in the proof of Proposition
8.3(a), we get that there exists a grill Γ in B such that F,G ∈ Γ. Then, by Definition
8.8, there exists x ∈ X such that Γ = σx. Thus x ∈ F ∩ G, i.e. FCXG. Therefore,
ρBl ⊆ CX . Since, obviously, CX ⊆ ρBl , we get that CX = ρBl .

(b) Since, by (a), (B,CX) = (B, ρBl ), [5, Example 3.1] implies that Clans(B,CX) =
Grills(B). Thus X is a C-semiregular space.

Corollary 8.10. Let X be an extremally connected space and

X0 = {x ∈ X | x is an u-point of X}.

Then (X,X0) is a Stone 2-space and X0 is a dense extremally disconnected compact
Hausdorff subspace of X; moreover, X0 is the unique dense extremally disconnected
compact Hausdorff subspace of X.

Proof. According to Proposition 8.9(b), X is a C-semiregular space. Then, by Corol-
lary 7.21, (X,X0) is a 2-contact space and X0 is a dense extremally disconnected com-
pact Hausdorff subspace of X . Let Γ ∈ Grills(CO(X0)). We have that CO(X0) =
RC(X0) and thus, by Lemma 4.1, the Boolean algebra CO(X0) is isomorphic to the
Boolean algebra RC(X). Now, using [5, Example 3.1] and Proposition 8.9(a), we get

that Grills(CO(X0)) = Clans(CO(X0), ρ
CO(X0)
l ) = Clans(CO(X0), δ(X,X0)). Hence,

by condition (CS4), there exists x ∈ X such that Γ = Γx,X0
. Therefore, condition

(S2S4) is satisfied and we obtain that (X,X0) is a Stone 2-space.
The uniqueness assertion follows from Theorem 7.19.

Lemma 8.11. If (X,X0) is a Stone 2-space and X0 is extremally disconnected, then
X is an extremally connected space.
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Proof. Let B = RC(X). Since X0 is an extremally disconnected space, we have
that RC(X0) = CO(X0). Then RC(X,X0) = B. Now, Proposition 8.3(a) implies
that CX = ρBl and (X,X0) is a 2-contact space. Then, by Lemma 7.22, X is a C-
semiregular space. Since (B,CX) = (B, ρBl ), [5, Example 3.1] implies that X is an
extremally connected space.

Theorem 8.12. There exists a bijective correspondence between the class of all, up
to Boolean isomorphism, complete Boolean algebras and the class of all, up to home-
omorphism, extremally connected spaces; namely, for every complete Boolean algebra
B, [B] 7→ [X ], where X is the first component of Xs(B), and for every extremally
connected space X, [X ] 7→ [RC(X)].

Proof. It follows from Theorem 8.7(b), the Stone bijection between complete Boolean
algebras and extremally disconnected Stone spaces, Lemma 8.11 and Corollary 8.10.

Now we will obtain a connected version of the Stone Duality Theorem. We
start with three simple assertions, the first of which is a slight generalization of [5,
Proposition 4.1(iv)].

Lemma 8.13. Let X be a topological space, B be a subalgebra of the Boolean algebra
(RC(X),+, ., ∗, ∅, X) (defined in 2.7), Γ be a grill of B, x ∈ X and Γ ⊆ σBx . Then
νBx ⊆ Γ (see (10) for νBx and (9) for σBx ).

Proof. We can suppose that Γ 6= σBx . Let F ∈ σBx \ Γ. Since F + F ∗ = 1 ∈ Γ, we get
that F ∗ ∈ Γ. Suppose that F ∈ νBx . Then x ∈ int(F ) and thus x 6∈ F ∗. Since Γ ⊆ σBx ,
we get a contradiction. Therefore, F 6∈ νBx . So, we obtain that νBx ∩ (σBx \ Γ) = ∅.
Since νBx ⊆ σBx , we get that νBx ⊆ Γ.

Lemma 8.14. Let X be a topological space, B be a subalgebra of the Boolean algebra
(RC(X),+, ., ∗, ∅, X) (defined in 2.7) and B be a closed base for the space X. Then,
for every x ∈ X, the family Bx = {int(F ) | F ∈ νBx } is a base for X at the point x.

Proof. Since B is a closed base for X , the family B = {X \ F | F ∈ B} is an
open base for X . Further, for any F ∈ B, we have that int(F ∗) = X \ F . Thus
B = {int(F ∗) | F ∈ B} = {int(F ) | F ∈ B}. Hence, for every x ∈ X , the family
{U ∈ B | x ∈ U} is a base for X at the point x. Clearly, {U ∈ B | x ∈ U} =
{int(F ) | F ∈ B, x ∈ int(F )} = {int(F ) | F ∈ νBx } = Bx. Therefore, for every x ∈ X ,
the family Bx is a base for X at the point x.

Lemma 8.15. Let A be a subalgebra of a Boolean algebra B and Γ ∈ Grills(B).
Then Γ ∩ A ∈ Grills(A).

Proof. Clearly, if u ∈ Ult(B) then u ∩ A ∈ Ult(A). Then, using [5, Corollary 3.1],
we obtain our assertion.
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Definition 8.16. Let (X,X0) and (X ′, X ′
0) be two Stone 2-spaces and f : X −→ X ′

be a continuous map. Then f is called a 2-map if f(X0) ⊆ X ′
0.

The category of all Stone 2-spaces and all 2-maps between them will be denoted
by 2Stone.

The category of all Boolean algebras and all Boolean homomorphisms between
them will be denoted by Bool.

Theorem 8.17. The categories Bool and 2Stone are dually equivalent.

Proof. We will first define two contravariant functors

Da : Bool −→ 2Stone and Dt : 2Stone −→ Bool.

Let (X,X0) ∈ |2Stone|. Define

Dt(X,X0) = RC(X,X0),

i.e. Dt(X,X0) is the canonical Boolean algebra of the Stone 2-space (X,X0) (see
Definition 8.5(b)). Hence Dt(X,X0) ∈ |Bool|.

Let f ∈ 2Stone((X,X0), (Y, Y0)). Define Dt(f) : Dt(Y, Y0) −→ Dt(X,X0) by
the formula

Dt(f)(clY (G)) = clX(X0 ∩ f
−1(G)), ∀G ∈ CO(Y0).(22)

Set ϕf = Dt(f). We will show that ϕf is a Boolean homomorphism between the
Boolean algebras RC(Y, Y0) and RC(X,X0). Clearly, ϕf(∅) = ∅ and ϕf (Y ) = X .
Let F,G ∈ CO(Y0). Then ϕf(clY (F )+clY (G)) = ϕf(clY (F ∪G)) = clX(X0∩f

−1(F ∪
G)) = clX((X0 ∩ f

−1(F )) ∪ (X0 ∩ f
−1(G))) = ϕf(clY (F )) + ϕf(clY (G)). Also, using

Lemma 4.1, we get that ϕf ((clY (F ))
∗) = ϕf(clY (Y0 \ F ) = clX(X0 ∩ f

−1(Y0 \ F )) =
clX(X0 ∩ (f−1(Y0) \ f

−1(F ))) = clX(X0 \ (X0 ∩ f−1(F ))) = (clX(X0 ∩ f−1(F )))∗ =
(ϕf(clY (F ))

∗. So, ϕf is a Boolean homomorphism, i.e. Dt(f) is well-defined.
Now we will show that Dt is a contravariant functor. Clearly, Dt(idX,X0

) =
idDt(X,X0). Let f ∈ 2Stone((X,X0), (Y, Y0)) and g ∈ 2Stone((Y, Y0), (Z,Z0)). Then,
for every F ∈ CO(Z0), D

t(g ◦ f)(clZ(F )) = clX(X0 ∩ (g ◦ f)−1(F )) = clX(X0 ∩
f−1(g−1(F ))) and (Dt(f) ◦ Dt(g))(clZ(F )) = Dt(f)(clY (Y0 ∩ g−1(F ))) = clX(X0 ∩
f−1(Y0 ∩ g−1(F ))) = clX(X0 ∩ f−1(Y0) ∩ f−1(g−1(F ))) = clX(X0 ∩ f−1(g−1(F ))) =
Dt(g ◦ f)(clZ(F )). So, D

t is a contravariant functor.
For every Boolean algebra A, set

Da(A) = (X,X0),

where (X,X0) is the canonical Stone 2-space of the Boolean algebra A (see Definition
8.5(a)). Then Proposition 8.6 implies that Da(A) ∈ |2Stone|.

Let ϕ ∈ Bool(A,B). Let Da(A) = (X,X0) and Da(B) = (Y, Y0). Then we
define the map

Da(ϕ) : Da(B) −→ Da(A)

by the formula

Da(ϕ)(Γ) = ϕ−1(Γ), ∀Γ ∈ Y.(23)
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Set fϕ = Da(ϕ). Since every grill of a Boolean algebra B′ is a union of ultrafilters of
B′ and every union of ultrafilters of B′ is a grill of B′ (see, e.g., [5, Corollary 3.1]), and
the inverse image of an ultrafilter by a Boolean homomorphism between two Boolean
algebras is again an ultrafilter, we get that ∀Γ ∈ Y , fϕ(Γ) ∈ X , i.e. fϕ : Y −→ X .

We will show that fϕ is a continuous function. Let a ∈ A. Then gA(a) = {Γ ∈
X | a ∈ Γ} is a basic closed subset of X (see Definition 8.5(a)). We will show that

f−1
ϕ (gA(a)) = gB(ϕ(a))(= {Γ′ ∈ Y | ϕ(a) ∈ Γ′}).(24)

Indeed, let Γ′ ∈ f−1
ϕ (gA(a)). Then fϕ(Γ

′) ∈ gA(a). Thus a ∈ ϕ−1(Γ′), i.e. ϕ(a) ∈ Γ′.
So, Γ′ ∈ gB(ϕ(a)). Hence f−1

ϕ (gA(a)) ⊆ gB(ϕ(a)). Conversely, let Γ′ ∈ gB(ϕ(a)), i.e.
ϕ(a) ∈ Γ′. Then a ∈ ϕ−1(Γ′) = fϕ(Γ

′). Hence fϕ(Γ
′) ∈ gA(a). Then Γ′ ∈ f−1

ϕ (gA(a)).
So, f−1

ϕ (gA(a)) ⊇ gB(ϕ(a)). Thus the equation (24) is verified and we get that fϕ is
a continuous function.

Let us now show that fϕ(Y0) ⊆ X0. Let u′ ∈ Y0. Then u′ ∈ Ult(B). Hence
fϕ(u

′) = ϕ−1(u′) ∈ Ult(A) = X0. Therefore, fϕ(Y0) ⊆ X0. So,

Da(ϕ) ∈ 2Stone(Da(B), Da(A)).

Clearly, for every Boolean algebra B, Da(idB) = idDa(B). Let ϕ ∈ Bool(A,B)
and ψ ∈ Bool(B,B′). Let fϕ = Da(ϕ), fψ = Da(ψ) and Da(B′) = (Z,Z0). Then, for
every Γ ∈ Z, we have that Da(ψ◦ϕ)(Γ) = (ψ◦ϕ)−1(Γ) = ϕ−1(ψ−1(Γ)) = fϕ(fψ(Γ)) =
(Da(ϕ) ◦Da(ψ))(Γ). We get that Da is a contravariant functor.

Let (X,X0) ∈ |2Stone|. Then Dt(X,X0) = RC(X,X0). Set B = RC(X,X0).
Let Da(B) = (Y, Y0). Then Y = Grills(B) and Y0 = Ult(B). By [5, Proposition
4.1(ii)], if x ∈ X then σx ∈ Clans(RC(X), CX). Using Lemma 8.15, we get that, for
every x ∈ X , σBx ∈ Clans(B,C(X,X0)). According to Proposition 8.3(a), C(X,X0) = ρBl
(see Example 2.4 for ρBl ). Hence, by [5, Example 3.1], Clans(B,C(X,X0)) = Grills(B).
Therefore, for every x ∈ X , σBx ∈ Grills(B). So, the following map is well-defined:

t(X,X0) : (X,X0) −→ Da(Dt(X,X0)), x 7→ σRC(X,X0)
x ,(25)

and we will show that it is a homeomorphism. We start by proving that t(X,X0) is
a surjection. Let Γ ∈ Y . Then Γ ∈ Grills(B). Using Lemma 4.1, we get that
Γ′ = rX0,X(Γ) ∈ Grills(CO(X0)). Hence, by (S2S4), there exists x ∈ X such that
Γ′ = Γx,X0

. Since, by Lemma 4.1, Γ = eX0,X(Γ
′), we get that Γ = σBx = t(X,X0)(x). So,

t(X,X0) is a surjection. For showing that t(X,X0) is a injection, let x, y ∈ X and x 6= y.
Since X is a T0-space, there exists an open subset U of X such that |U ∩ {x, y}| = 1.
We can suppose, without loss of generality, that x ∈ U and y 6∈ U . Since B is a closed
base of X , there exists F ∈ B such that x ∈ X \ F ⊆ U . Then y ∈ F and x 6∈ F .
Hence F ∈ σBy and F 6∈ σBx , i.e. t(X,X0)(x) 6= t(X,X0)(y). So, t(X,X0) is a injection.
Thus t(X,X0) is a bijection. We will now prove that t(X,X0) is a continuous map. We
have that the family {gB(F ) = {Γ ∈ Y | F ∈ Γ} | F ∈ B} is a closed base of Y . Let
F ∈ B. We will show that

t−1
(X,X0)

(gB(F )) = F.(26)
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Let x ∈ F . Set t(X,X0)(x) = Γ. Then Γ = σBx . Since F ∈ Γ, we get that Γ ∈ gB(F ).
Thus t(X,X0)(F ) ⊆ gB(F ), i.e. F ⊆ t−1

(X,X0)
(gB(F )). Conversely, let x ∈ t−1

(X,X0)
(gB(F )).

Set Γ = t(X,X0)(x). Then Γ ∈ gB(F ). Hence F ∈ Γ. Since Γ = σBx , we get that x ∈ F .
Hence F ⊇ t−1

(X,X0)
(gB(F )). So, F = t−1

(X,X0)
(gB(F )). This shows that t(X,X0) is a

continuous map. For showing that t−1
(X,X0)

is a continuous map, let F ∈ B. Using

(26) and the fact that t(X,X0) is a bijection, we get that t(X,X0)(F ) = gB(F ). Hence
(t−1

(X,X0)
)−1(F ) = gB(F ). This shows that t

−1
(X,X0)

is a continuous map. So, t(X,X0) is a
homeomorphism.

We will now show that t(X,X0)(X0) = Y0. Let x ∈ X0. Set Γ = t(X,X0)(x).
Then Γ = σBx and rX0,X(Γ) = {F ∈ CO(X0) | x ∈ F} = uX0

x ∈ Ult(CO(X0).
Then, by Lemma 4.1, Γ = eX0,X(u

X0
x ) ∈ Ult(B) = Y0. Hence t(X,X0)(X0) ⊆ Y0. Let

now Γ ∈ Y0. Then Γ ∈ Ult(B) and thus u = rX0,X(Γ) ∈ Ult(CO(X0)). Clearly,
there exist x ∈ X0 such that u = uX0

x . Then Γ = eX0,X(u
X0
x ) = σBx = t(X,X0)(x).

Therefore, t(X,X0)(X0) ⊇ Y0. We have proved that t(X,X0)(X0) = Y0. So, t(X,X0) is a
2Stone-isomorphism.

Let B be a Boolean algebra and let us set (X,X0) = Da(B). Then Dt(X,X0) =
RC(X,X0) and, using Theorem 8.7(a), we get that the map

gB : B −→ RC(X,X0), a 7→ gB(a) = {Γ ∈ X | a ∈ Γ},

is a Boolean isomorphism.
We will now show that

t : Id2Stone −→ Da ◦Dt,

defined by t(X,X0) = t(X,X0), ∀(X,X0) ∈ |2Stone|, is a natural isomorphism.

Let f ∈ 2Stone((X,X0), (Y, Y0)) and f̂ = Da(Dt(f)). We have to show that
f̂ ◦ t(X,X0) = t(Y,Y0) ◦ f . Set ϕf = Dt(f), A = RC(X,X0) and B = RC(Y, Y0). Let
x ∈ X . Then

(t(Y,Y0) ◦ f)(x) = t(Y,Y0)(f(x)) = σBf(x) = {F ∈ B | f(x) ∈ B}.

Further, f̂(t(X,X0)(x)) = f̂(σAx ) = ϕ−1
f (σAx ). Set Γ′ = ϕ−1

f (σAx ). Then Γ′ = {G ∈

B | ϕf (G) ∈ σXx } = {clY (G0) | G0 ∈ CO(Y0), x ∈ clX(X0 ∩ f−1(G0))}. Let G0 ∈
CO(Y0) and clY (G0) ∈ Γ′. Then x ∈ clX(X0 ∩ f

−1(G0)) and thus f(x) ∈ f(clX(X0 ∩
f−1(G0)) ⊆ clY (f(X0 ∩ f

−1(G0))) ⊆ clY (G0). Therefore,

Γ′ ⊆ σBf(x).

We have that Γ′ ∈ Grills(B). Hence Γ′
r = rY0,Y (Γ

′) ∈ Grills(CO(Y0)). Thus, by
(S2S4), there exists y ∈ Y such that Γ′

r = Γy,Y0 . Then

Γ′ = σBy .

Since Γ′ ⊆ σBf(x), we get, by Lemma 8.13, that νBf(x) ⊆ Γ′. According to [5, Proposition

4.1], νBf(x) is a filter of B. Hence, by Lemma 3.6, there exists an ultrafilter u of B such
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that νBf(x) ⊆ u ⊆ Γ′. Then u ⊆ σBy and since u is a grill of B, Lemma 8.13 implies

that νBy ⊆ u. So, we obtained that νBf(x) ∪ ν
B
y ⊆ u ⊆ Γ′. Then, for every F ′ ∈ νBf(x)

and every G′ ∈ νBy , we have that F ′.G′ 6= 0, i.e. clY (intY (F
′ ∩ G′)) 6= ∅. Hence

intY (F
′ ∩ G′) 6= ∅ and thus intY (F

′) ∩ intY (G
′) 6= ∅, for every F ′ ∈ νBf(x) and every

G′ ∈ νBy . Since Y is a T0-space, using Lemma 8.14, we get that y = f(x). Therefore

Γ′ = σBf(x). Thus f̂ ◦ t(X,X0) = t(Y,Y0) ◦ f and hence t is a natural isomorphism.
Finally, we will prove that

g : IdBool −→ Dt ◦Da, where g(A) = gA, ∀A ∈ |Bool|,

is a natural isomorphism.
Let ϕ ∈ Bool(A,B) and ϕ̂ = Dt(Da(ϕ)). We have to prove that gB ◦ϕ = ϕ̂◦gA.

Set f = Da(ϕ), (X,X0) = Da(A) and (Y, Y0) = Da(B). Then ϕ̂ = Dt(f)(= ϕf ). Let
a ∈ A. Then gB(ϕ(a)) = {Γ′ ∈ Y | ϕ(a) ∈ Γ′}. Further, using (14), we get that

gB(ϕ(a)) = clY (sB(ϕ(a))) and gA(a) = clX(sA(a)).

Thus
ϕ̂(gA(a)) = clY (Y0 ∩ f

−1(sA(a))).

Let u′ ∈ Y0 ∩ f−1(sA(a)). Then u′ ∈ Ult(B) and f(u′) ∈ sA(a). Hence ϕ−1(u′) ∈
sA(a) = {u ∈ Ult(A) | a ∈ u}. Thus a ∈ ϕ−1(u′), i.e. ϕ(a) ∈ u′. Therefore
u′ ∈ sB(ϕ(a)). So, Y0 ∩ f−1(sA(a)) ⊆ sB(ϕ(a)). Conversely, let u′ ∈ sB(ϕ(a)).
Then u′ ∈ Y0 and ϕ(a) ∈ u′. Hence a ∈ ϕ−1(u′) = f(u′). Thus f(u′) ∈ sA(a).
Therefore, u′ ∈ Y0 ∩ f−1(sA(a)). So, Y0 ∩ f−1(sA(a)) ⊇ sB(ϕ(a)) and we get that
Y0 ∩ f

−1(sA(a)) = sB(ϕ(a)). Hence ϕ̂(gA(a)) = clY (sB(ϕ(a))) = gB(ϕ(a)). So, g is a
natural isomorphism.

We have proved that (Dt, Da, g, t) is a duality between the categories 2Stone

and Bool.

Definition 8.18. (a) Let ECS be the category whose objects are all extremally
connected spaces and whose morphisms are all continuous maps between the objects
of ECS which preserve u-points (i.e., for every X, Y ∈ |ECS|, f ∈ ECS(X, Y ) iff f
is a continuous map and for every u-point x ∈ X , f(x) is an u-point of Y ).

(b) Let CBool be the full subcategory of the category Bool, whose objects are all
complete Boolean algebras.

Remark 8.19. (a) Clearly, ECS is indeed a category;

(b) Note that, according to Proposition 7.16, every open map between two objects of
the category ECS is an ECS-morphism.

Theorem 8.20. The categories CBool and ECS are dually equivalent.

Proof. Let 2CStone be the full subcategory of the category 2Stone, whose objects
are all Stone 2-spaces (X,X0) for which X0 is extremally disconnected. We will
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first show that the categories 2CStone and ECS are isomorphic. Let us define two
(covariant) functors

E1 : ECS −→ 2CStone and E2 : 2CStone −→ ECS.

Let X ∈ |ECS| and X0 = {x ∈ X | x is an u-point of X}. Then, by Corollary 8.10,
(X,X0) ∈ |2CStone| and we set

E1(X) = (X,X0).

Let (X,X0) ∈ |2CStone|. Then, by Lemma 8.11, X ∈ |ECS| and we set

E2(X,X0) = X.

Let f ∈ ECS(X, Y ), E1(X) = (X,X0) and E1(Y ) = (Y, Y0). Then, by the cor-
responding definitions, we get that f is continuous and f(X0) ⊆ Y0. Hence f ∈
2CStone(E1(X), E1(Y )) and we set

E1(f) = f.

Let f ∈ 2CStone((X,X0), (Y, Y0)). Then, by Lemma 8.11 and Corollary 8.10, we
get that X0 = {x ∈ X | x is an u-point of X} and Y0 = {y ∈ Y | y is an u-point of
Y }. Since f(X0) ⊆ Y0, we obtain that f ∈ ECS(X, Y ) = ECS(E2(X,X0), E2(Y, Y0))
and we set

E2(f) = f.

Obviously, E1 and E2 are functors. If X ∈ |ECS| then E2(E1(X)) = E2(X,X0) = X .
If (X,X0) ∈ |2CStone| then E1(E2(X,X0)) = E1(X). Using again Lemma 8.11 and
Corollary 8.10, we get that E1(X) = (X,X0). Hence E1(E2(X,X0)) = (X,X0). Now
it becomes obvious that E1 ◦E2 = Id2CStone and E2 ◦E1 = IdECS. So, the categories
ECS and 2CStone are isomorphic. Let EDStone be the class of all extremally
disconnected Stone spaces. Then, using the Stone Theorem that S(|CBool|) =
EDStone, we get that the restrictions Da

|CBool
and Dt

|2CStone
of the duality functors

Da and Dt defined in the proof of Theorem 8.17, are duality functors between the
categories CBool and 2CStone. Setting

Da
c = E2 ◦D

a
|CBool

and Dt
c = Dt

|2CStone
◦ E1,(27)

we obtain that

Da
c : CBool −→ ECS and Dt

c : ECS −→ CBool

are duality functors.
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9 On a class of compact T0 extensions

Definition 9.1. An extension of a space X is a pair (Y, f), where Y is a space and
f : X −→ Y is a dense embedding of X into Y .

Two extensions (Yi, fi), i = 1, 2, of X are called isomorphic (or equivalent) if
there exists a homeomorphism ϕ : Y1 −→ Y2 such that ϕ ◦ f1 = f2. Clearly, the
relation of isomorphism is an equivalence in the class of all extensions of X ; the
equivalence class of an extension (Y, f) of X will be denoted by [(Y, f)].

We write
(Y1, f1) ≤ (Y2, f2)

and say that the extension (Y2, f2) is projectively larger than the extension (Y1, f1) if
there exists a continuous mapping f : Y2 −→ Y1 such that f ◦ f2 = f1. This relation
is a preorder (i.e., it is reflexive and transitive). Setting for every two extensions
(Yi, fi), i = 1, 2, of a space X , [(Y1, f1)] ≤ [(Y2, f2)] iff (Y1, e1) ≤ (Y2, e2), we obtain a
well-defined relation on the class of all, up to equivalence, extensions of X ; obviously,
it is also a preorder (see, e.g., [2]).

We write
(Y1, f1) ≤in (Y2, f2)

and say that the extension (Y2, f2) is injectively larger than the extension (Y1, f1) if
there exists a continuous mapping f : Y1 −→ Y2 such that f ◦ f1 = f2 and f is a
homeomorphism from Y1 to the subspace f(Y1) of Y2. This relation is a preorder.
Setting for every two extensions (Yi, fi), i = 1, 2, of a space X , [(Y1, f1)] ≤in [(Y2, f2)]
iff (Y1, e1) ≤in (Y2, e2), we obtain a well-defined relation on the class of all, up to
equivalence, extensions of X ; obviously, it is also a preorder (see, e.g., [2]).

Notation 9.2. Let Y be a space. We will denote by CSR(Y ) (resp., by CCSR(Y ))
the class of all, up to equivalence, (connected) C-semiregular extensions of Y .

Recall that if B is a Boolean algebra, then we denote by CRel(B) (resp., CCRel)
the set of all (connected) contact relations on B. We define a relation “ ≤” on the
set CRel(B) setting, for any C1, C2 ∈ CRel(B), C1 ≤ C2 ⇐⇒ C1 ⊇ C2. We will
denote again by “ ≤” the restriction of the relation “ ≤” to the set CCRel.

Theorem 9.3. Let Y be an extremally disconnected compact Hausdorff space and
B = RC(Y ). Then the ordered sets (CRel(B),≤) and (CSR(Y ),≤), as well as the
ordered sets (CRel(B),⊆) and (CSR(Y ),≤in), are isomorphic (see Definition 9.1 for
the relations “ ≤” and “ ≤in” on CSR(Y )). Also, the ordered sets (CCRel(B),≤)
and (CCSR(Y ),≤), as well as the ordered sets (CCRel(B),⊆) and (CCSR(Y ),≤in),
are isomorphic.

Proof. Let (X, f) be a C-semiregular extensions of Y . Set X ′ = f(Y ). Then, clearly,
the map

e : (RC(X ′), δ(X,X′)) −→ (RC(X), CX), F 7→ clX(F ),

is a CA-isomorphism (note that RC(X ′) = CO(X ′)). For every F,G ∈ B, set

FC(X,f)G ⇐⇒ clX(f(F )) ∩ clX(f(G)) 6= ∅,(28)
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i.e., FC(X,f)G ⇐⇒ f(F )δ(X,X′)f(G). Then, obviously, (B,C(X,f)) is a contact
algebra. Set

ϕ(X, f) = (B,C(X,f)).

Clearly, two equivalent extension of Y define two coinciding contact relations on the
Boolean algebra B. Thus we have that ϕ([(X, f)]) = (B,C(X,f)) and, for simplicity,
we will denote by the same letter ϕ the induced map on the set of equivalence classes
of the C-semiregular extensions of Y .

Conversely, let C be a contact relation on the Boolean algebra B and let (X̂, X̂0)
be the canonical 2-contact space of the complete contact algebra (B,C) (see Defini-

tion 7.2(c)). Then, by the definition of the space X̂0 and the Stone Representation
Theorem, we have that the map

f̂ : Y −→ X̂, y 7→ uy,

(see (6) for the notation uy) is a homeomorphic embedding and f̂(Y ) = X̂0. Hence,

(X̂, f̂) is an extension of the space Y . Using Lemma 7.22, we get that X̂ is a C-

semiregular space. So, (X̂, f̂) is a C-semiregular extension of the space Y . Set

ψ(B,C) = (X̂, f̂).

Let (X, f0) be a C-semiregular extensions of Y , (B,C) = ϕ(X, f0) and (X̂, f̂0) =

ψ(B,C). We will show that (X, f0) and (X̂, f̂0) are isomorphic extensions of Y . As
we have already seen, the map

e : (RC(f0(Y )), δ(X,f0(Y ))) −→ (RC(X), CX), G 7→ clX(G), is a CA-isomorphism.

Clearly, the map

γ0f0 : (B,C) −→ (RC(f0(Y )), δ(X,f0(Y ))), F 7→ f0(F ), is a CA-isomorphism.

Set γ0 = e ◦ γ0f0. Then

γ0 : (B,C) −→ (RC(X), CX), F 7→ clX(f0(F )), is a CA-isomorphism.

Thus the map

γ′ : Clans(B,C) −→ Clans(RC(X), CX), Γ 7→ γ0(Γ), is a bijection.

Since X is a C-semiregular space, Lemma 7.10 implies that the map

κ : X −→ Clans(RC(X), CX), x 7→ σx, is a bijection.

Let λ = κ−1. Then we get that the map

f : X̂ −→ X, Γ 7→ λ(γ′(Γ)), is a bijection

(i.e., we set f = λ ◦ γ′). We will show that f ◦ f̂0 = f0. Indeed, let y ∈ Y .

Then f̂0(y) = uy ∈ X̂ and f(f̂0(y)) = f(uy) = λ(γ′(uy)). Set x = λ(γ′(uy)). Then
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κ(x) = γ0(uy), i.e., σx = {clX(f0(F )) | F ∈ B, y ∈ F} = {clX(f0(F )) | F ∈ B, f0(y) ∈
f0(F )} = {clX(G) | G ∈ RC(f0(Y )), f0(y) ∈ G} = e(uf0(y)). Hence

e(uf0(y)) = σx and, thus, r(σx) = uf0(y).(29)

Suppose that x 6= f0(y). Since X is T0 and semiregular, we get that there exists
F ∈ RC(X) such that |F ∩ {x, f0(y)}| = 1. If x ∈ F , then f0(y) 6∈ F . Thus F ∈ σx
and F ∩ f0(Y ) 6∈ uf0(y). Since r(F ) = F ∩ f0(Y ), we get a contradiction (see (29)). If
f0(y) ∈ F , then x 6∈ F . Thus F 6∈ σx and F ∩ f0(Y ) ∈ uf0(y). Since e(F ∩ f0(Y )) = F

(by Lemma 4.1), we get a contradiction (see again (29)). Hence x = f0(y). Therefore,

f ◦ f̂0 = f0.

We will now show that f is a homeomorphism. Let F ∈ B. Then, using the
notation of Definition 5.1, we obtain that f(gB(F )) = f({Γ ∈ X̂ | F ∈ Γ}) =
{f(Γ) | F ∈ Γ} = {f(Γ) | γ0(F ) ∈ γ0(Γ)} = {f(Γ) | clX(f0(F )) ∈ γ′(Γ)} =
{λ(γ′(Γ)) | clX(f0(F )) ∈ κ(λ(γ′(Γ)))} = {f(Γ) | clX(f0(F )) ∈ σf(Γ)} = {f(Γ) | f(Γ) ∈
clX(f0(F )) = clX(f0(F )). So, f(gB(F )) = clX(f0(F )), for every F ∈ B. Since f is a
bijection, we also get that for every F ∈ B, f−1(clX(f0(F ))) = gB(F ). Now, using the
fact that {clX(f0(F )) | F ∈ B} = RC(X) and that RC(X) and {gB(F ) F ∈ B} are

closed bases of, respectively, X and X̂ , we get that f is a homeomorphism. Therefore,

ψ(ϕ((X, f0))) is isomorphic to (X, f0).

Let now C be a contact relation on the Boolean algebra B, ψ(B,C) = (X̂, f̂) and

ϕ(ψ(B,C)) = (B, Ĉ). We will show that C ≡ Ĉ. We have that for every F,G ∈ B,

FĈG ⇐⇒ clX̂(f̂(F ))∩ clX̂(f̂(G)) 6= ∅. Recall that the set {hB(H) | H ∈ B}, where

hB(H) = {Γ ∈ X̂ | H 6∈ Γ}, is an open base of X̂ . Let us show that if H ∈ B and

Γ ∈ X̂ , then

Γ ∈ clX̂(f̂(H)) ⇐⇒ H ∈ Γ.(30)

Indeed, using the fact that Γ satisfies condition (Clan2) (see Definition 3.1), we get

that (Γ ∈ clX̂(f̂(H))) ⇐⇒ (for every P ∈ B\Γ, hB(P )∩{uy | y ∈ H} 6= ∅) ⇐⇒ (for
every P ∈ B\Γ, there exists y ∈ H such that P 6∈ uy) ⇐⇒ (for every P ∈ B\Γ, there
exists y ∈ H such that y 6∈ P ) ⇐⇒ (for every P ∈ B\Γ, H 6⊆ P ) ⇐⇒ (H ∈ Γ). So,
(30) is verified. Now, we get, using (30) and Lemma 3.5(c), that for every F,G ∈ B,

FĈG ⇐⇒ ∃Γ ∈ (clX̂(f̂(F )) ∩ clX̂(f̂(G))) ⇐⇒ (∃Γ ∈ X̂)(F,G ∈ Γ) ⇐⇒ FCG.

Therefore C ≡ Ĉ.
So, the correspondence ϕ is a bijection between the set of all, up to equivalence,

C-semiregular extensions of Y and the set of all contact relations on the Boolean
algebra B. Let us show that ϕ is an isomorphism.

Let (Xi, fi), i = 1, 2, be two C-semiregular extensions of Y and [(X1, f1)] ≥
[(X2, f2)] or [(X1, f1)] ≤in [(X2, f2)]. Then there exists a continuous mapping f :
X1 −→ X2 such that f ◦ f1 = f2. Set (B,Ci) = ϕ(Xi, fi), i = 1, 2. Let F,G ∈ B and
F (−C2)G. Then, by (28), clX2

(f2(F )) ∩ clX2
(f2(G)) = ∅. Hence f−1(clX2

(f2(F ))) ∩
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f−1(clX2
(f2(G))) = ∅. Since f(clX1

(f1(F ))) ⊆ clX2
(f(f1(F ))) = clX2

(f2(F )), we get
that clX1

(f1(F )) ⊆ f−1(clX2
(f2(F ))). Analogously, clX1

(f1(G)) ⊆ f−1(clX2
(f2(G))).

Thus clX1
(f1(F )) ∩ clX1

(f1(G)) = ∅. Using once more (28), we get that F (−C1)G.
Therefore C1 ⊆ C2, i.e., C1 ≥ C2.

Conversely, let C1 and C2 be two contact relations on B and C1 ≥ C2, i.e., C1 ⊆
C2. Set (Xi, fi) = ψ(B,Ci), i = 1, 2. Then ϕ−1(B,Ci) = [(Xi, fi)]. By the definition
of the map ψ, we have that for i = 1, 2, Xi = Clans(B,Ci), the topology on Xi is
generated by the closed base {{Γ ∈ Clans(B,Ci) | F ∈ Γ} | F ∈ B}, and fi(y) = uy,
for every y ∈ Y . Since C1 ⊆ C2, we get that Clans(B,C1) ⊆ Clans(B,C2). Now we
define

f : X1 −→ X2, Γ 7→ Γ.

Then, for every y ∈ Y , f(f1(y)) = f(uy) = uy = f2(y). Hence, f ◦ f1 = f2. Since,
for every F ∈ B, f−1({Γ ∈ X2 | F ∈ Γ}) = {Γ ∈ X1 | F ∈ Γ}, we get that f is
a continuous map. Therefore, [(X1, f1)] ≥ [(X2, f2)]. Let us note that f is even an
embedding. Indeed, f is injective and for every F ∈ B, f({Γ ∈ X1 | F ∈ Γ}) =
f(X1) ∩ {Γ ∈ X2 | F ∈ Γ}. Hence, if f ′ : X1 −→ f(X1) is the restriction of f and
g′ = (f ′)−1 : f(X1) −→ X1, then, for every F ∈ B, (g′)−1({Γ ∈ X1 | F ∈ Γ}) =
f(X1)∩{Γ ∈ X2 | F ∈ Γ}. So that, f is an embedding. Hence, [(X1, f1)] ≤in [(X2, f2)].

Therefore, ϕ is an isomorphism between the ordered sets (CSR(Y ),≤) and
(CRel(B),≤), and also between the ordered sets (CSR(Y ),≤in) and (CRel(B),⊆).
Clearly, this implies that CSR(Y ) is a set and the preorders “ ≤” and “ ≤in” on
CSR(Y ), defined in Definition 9.1, are, in fact, orders.

Now, the assertions about connected contact relations on B follow immediately.

Noting that the Stone space of a Boolean algebra B is extremally disconnected
iff B is complete (see, e.g., [15]), the above theorem can be reformulated as follows:

Theorem 9.4. Let B be a complete Boolean algebra and Y = S(B) be its Stone
space. Then the ordered sets (CRel(B),≤) and (CSR(Y ),≤), as well as the ordered
sets (CRel(B),⊆) and (CSR(Y ),≤in), are isomorphic (see Definition 9.1 for the re-
lations “ ≤” and “ ≤in” on CSR(Y )). Also, the ordered sets (CCRel(B),≤) and
(CCSR(Y ),≤), as well as the ordered sets (CCRel(B),⊆) and (CCSR(Y ),≤in), are
isomorphic.

Corollary 9.5. Let Y be an extremally disconnected compact Hausdorff space and
B = RC(Y ). Then the ordered sets (CSR(Y ),≤) and (CSR(Y ),≤in) have largest
and smallest elements. The largest (resp., the smallest) element of the ordered set
(CSR(Y ),≤) coincides with the smallest (resp., the largest) element of (CSR(Y ),≤in).
For the largest element [(γY, γY )] of the ordered set (CSR(Y ),≤in), we have that γY
is an extremally connected space (in fact, γY = Da

c (B) (see (27) for Da
c )). Also, if

(cY, c) is a C-semiregular extension of Y and cY is an extremally connected space
then the C-semiregular extensions (cY, c) and (γY, γY ) of Y are equivalent.

Proof. Clearly, by Theorem 9.3, the smallest (resp., the largest) element of the
ordered set (CSR(Y ),≤) is the largest (resp., the smallest) element of the ordered
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set (CSR(Y ),≤in). So that we will regard only the ordered set (CSR(Y ),≤in). By
Example 2.4, the ordered set (CRel(B),⊆), where B = RC(Y )(= CO(Y )), has largest
and smallest elements. Thus, by Theorem 9.3, the ordered set (CSR(Y ),≤in) also has
largest and smallest elements. The fact that it has smallest element follows also from
Corollary 7.20: this is the equivalence class of the extension (Y, idY ) of Y . It is also
obvious that it corresponds to the contact relation ρs on B (see the formula (28)). For
the largest element [(γY, γ)] of the ordered set (CSR(Y ),≤in), we have that the map
γ is defined by the formula γY (y) = uy, for every y ∈ Y (see (6) for the notation uy),
and γY = Clans(B, ρl) = Grills(B) = Da

c (B). Thus γY is an extremally connected
space (see Theorem 8.20).

Let (cY, c) be a C-semiregular extension of Y and let cY be an extremally
connected space. By Proposition 8.9(a), we have that the standard contact relation

CcY on RC(cY ) coincides with the largest contact relation ρ
RC(cY )
l on the Boolean

algebra RC(cY ). Then, using (28), we obtain that the contact relation C(cY,c) on
the Boolean algebra B, corresponding to the C-semiregular extension (cY, c) of Y
(see the proof of Theorem 9.3), coincides with the largest contact relation ρBl on the
Boolean algebra B. Therefore, (cY, c) corresponds to ρBl ; thus (cY, c) and (γY, γY )
are equivalent C-semiregular extensions of Y .

Theorem 9.6. Let X and Y be two extremally disconnected compact Hausdorff
spaces, (cX, c) be an arbitrary C-semiregular extension of X and f : X −→ Y be
a continuous map. Then there exists a continuous map f ′ : cX −→ γY such that
γY ◦ f = f ′ ◦ c (see Corollary 9.5 for (γY, γY )) (i.e., supposing that c and γY are
the embedding maps of X and Y in, respectively, cX and γY , we get that f can
be extended to a continuous map f ′ : cX −→ γY ). In particular, every continuous
map f : X −→ Y can be “extended” to a continuous map γf : γX −→ γY (i.e.,
γY ◦ f = γf ◦ γX).

Proof. Since (cX, c) ≤in (γX, γX) (see Corollary 9.5), we can regard cX as a subspace
of γX . Thus, it is enough to prove only that there exists a continuous map γf :
γX −→ γY such that γY ◦ f = γf ◦ γX . Regard the Boolean algebras A = RC(X)
and B = RC(Y ). By the Stone Duality, the map

ϕf = S(f) : B −→ A, G 7→ f−1(G),

is a Boolean homomorphism. Hence, using Corollary 9.5 and Theorem 8.20, we get
that Da

c (ϕf ) : γX −→ γY is a continuous map. Set γf = Da
c (ϕf). We will show that

γY ◦ f = γf ◦ γX . Let x ∈ X . Set y = f(x). Using Corollary 9.5, (23) and (27), we
get that γf(γX(x)) = γf(uAx ) = (ϕf)

−1(uAx ) and γY (f(x)) = γY (y) = uBy . So, we have
to show that uBy = (ϕf)

−1(uAx ). Let G ∈ B. Then we have that G ∈ (ϕf)
−1(uAx ) ⇐⇒

ϕf(G) ∈ uAx ⇐⇒ f−1(G) ∈ uAx ⇐⇒ x ∈ f−1(G) ⇐⇒ f(x) ∈ G ⇐⇒ y ∈ G.
Therefore, uBy = (ϕf)

−1(uAx ). Thus, γY ◦ f = γf ◦ γX .

Theorem 9.7. Let X be an extremally disconnected compact Hausdorff space, Z be
an extremally connected space, (cX, c) be an arbitrary C-semiregular extension of X
and f : X −→ Z be a continuous map such that, for every x ∈ X, f(x) is an u-point
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of Z. Then there exists a continuous map f ′ : cX −→ Z such that f = f ′ ◦ c (i.e.,
supposing that c is the embedding map of X in cX, we get that f can be extended to
a continuous map f ′ : cX −→ Z). In particular, every open map f : X −→ Z can be
“extended” to a continuous map f ′ : cX −→ Z (i.e., f = f ′ ◦ c).

Proof. Set Y = {z ∈ Z | z is an u-point of Z}. Then, by Corollary 8.10, Y is a dense
extremally disconnected compact Hausdorff subspace of Z. Setting iY : Y −→ Z

to be the embedding of Y in Z, we get (by Proposition 8.9(b)) that (Z, iY ) is a C-
semiregular extension of Y . Moreover, Corollary 9.5 implies that (Z, iY ) and (γY, γY )
are equivalent C-semiregular extensions of Y . Since f(X) ⊆ Y , our assertion follows
now from Theorem 9.6.

Finally, note that if f is an open map, then, by Proposition 7.14(a) and Propo-
sition 7.16, we have that, for every x ∈ X , f(x) is an u-point of Z .
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