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BRILL’S EQUATIONS AS A GL(V )-MODULE

YONGHUI GUAN

Abstract. The Chow variety of polynomials that decompose as a product of linear forms has
been studied for more than 100 years. Brill, Gordon [10] and others obtained set-theoretical
equations for the Chow variety. In this article, I compute Brill’s equations as a GL(V )-module.

1. Introduction

1.1. Motivation. There has been substantial recent interest in the equations of certain alge-
braic varieties that encode natural properties of polynomials (see e.g. [5, 18, 15, 4, 19, 17, 6]).
Such varieties are usually preserved by algebraic groups and it is a natural question to un-
derstand the module structures of the spaces of equations. One variety of interest is the
Chow variety of polynomials that decompose as a product of linear forms, which is defined
by Chd(V ) = P{z ∈ S

dV ∣z = w1⋯wd for some wi ∈ V } ⊂ PS
dV, where V be a finite-dimensional

complex vector space and PSdV is the projective space of homogeneous polynomials of degree
d on the dual space V ∗.

The ideal of the Chow variety of polynomials that decompose as a product of linear forms has
been studied for over 100 years, dating back at least to Gordon and Hadamard. Let Sδ(SdV )
denote the space of homogeneous polynomials of degree δ on SdV ∗. The Foulkes-Howe map
hδ,d ∶ S

δ(SdV ) → Sd(SδV ) was defined by Hermite [13] when dim V = 2, and Hermite proved
the map is an isomorphism in his celebrated “Hermite reciprocity”. Hadamard [11] defined the
map in general and observed that its kernel is Iδ(Chd(V

∗)), the degree δ component of the ideal
of the Chow variety. We do not understand this map when d > 4 (see [12, 14, 7, 20, 2, 3]).

Brill and Gordon (see [9, 10, 16]) wrote down set-theoretic equations for the Chow variety
of degree d + 1, called “Brill’s equations”. Brill’s equations give a geometric derivation of set-
theoretic equations for the Chow variety, it is a natural question to understand these equations
in terms of a GL(V )-module from a representation-theoretic perspective, where GL(V ) denotes
the General Linear Group of invertible linear maps from V to V .

1.2. Result. The group GL(V ) has an induced action on SdV (see §2.2). The Chow variety
Chd(V ) is invariant under the action of GL(V ), therefore the ideal of Chd(V ) is a GL(V )-
module (see §2.2). For any partition λ, let SλV be the irreducible GL(V )-module determined
by the partition λ. For example S(d)V = S

dV , while S(1d)V = Λ
dV is the d-th exterior power of

V .

Theorem 1.1. Assume dim V ≥ 3 and d ≥ 2. The degree d+ 1 equations for Chd(V ) discovered
by Brill, as a GL(V )-module, are:

⎧⎪⎪
⎨
⎪⎪⎩

S(7,3,2)V
∗ d = 3;

⊕d
j=2 S(d2−j,d,j)V

∗ d ≠ 3.

Key words and phrases. Chow Variety, GL(V )-module, Brill’s equations, Brill’s map, 14M99.
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Remark 1.2. Compare the codimension of Chd(C
3) with the dimension of all the modules in

Theorem 3.4 that define Chd(C
3) set- theoretically: When d = 2, the codimension of Ch2(C

3) is
1 and the dimension of S(2,2,2)C

∗3 is 1. When d = 3, the codimension of Ch3(C
3) is 3 while the

dimension of S(7,3,2)C
∗3 is 35. In general the dominant term of the codimension of Chd(C

3) is
d2

2
, but the dominant term of the dimension of the modules from Brill’s equations that define

Chd(C
3) is d7

2
. Therefore, the Chow variety is far from being a complete intersection.

1.3. Overview of method. Brill’s equations [9, 10, 16] are set-theoretical equations for the
Chow variety Chd(V ). The Chow variety Chd(V ) is the zero set of a polynomial mapB ∶ SdV →
S(d,d)V ⊗S

d2−dV of degree d+ 1 (see §2.4). I determine Brill’s equations as a GL(V )-module to
understand these equations and write down these equations explicitly.

The idea is to construct the polarization (see §2.1) B̄ of B, where B̄ ∶ Sd+1(SdV )→ S(d,d)V ⊗

Sd2−dV , and then determine the image of B̄, whose dual is isomorphic to the GL(V )-module
corresponding to Brill’s equations. I call B̄ Brill’s map.

Brill’s map B̄ is a GL(V )-module map, the space S(d,d)V ⊗ Sd2−dV can be decomposed by
Pieri’s rule (see e.g. [8]),

S(d,d)V ⊗ Sd2−dV =
d

⊕
j=0

S(d2−j,d,j)V,

I determine which irreducible GL(V )-modules are in the image of Brill’s map.

1.4. Organization. In §2 I define Brill’s equations B following the notation in [16] in §8.6, and
review the polarization of a polynomial map, G-variety and how to write down highest weight
vectors of a module via raising operators. In §3, I use the polarization of Brill’s polynomial map
B to construct Brill’s map B, which is a GL(V )−module map. I write down the highest vectors

of the modules S(d2−j,d,j)V ⊂ S(d,d)V ⊗S
d2−dV , then I compute the images of some given weight

vectors vj in Sd+1(SdV ) under Brill’s map B, and determine whether the projection of B(vj)
to the module S(d2−j,d,j)V is zero to determine the image of Brill’s map.

1.5. Acknowledgement. I thank my advisor J.M. Landsberg for discussing all the details
throughout this article. I thank C. Ikenmeyer for discussing the ideal of Chow variety.

2. Preliminaries

2.1. Polarization of a polynomial map.

Definition 2.1. Let V1,⋯, Vd be complex vector spaces, define a map ϕ ∶ V1×⋯×Vd → V1⊗⋯⊗Vd

by ϕ(v1,⋯, vd) = v1 ⊗⋯⊗ vd. The universal property of tensors: given a complex vector space

W and a multi-linear map h ∶ V1×⋯×Vd →W , there is a unique linear map h̃ ∶ V1⊗⋯⊗Vd →W ,
such that h = h̃ ○ ϕ.

Definition 2.2. Let W be a complex vector space, a map P ∶W → C
m is a polynomial map of

degree k if P = (P1,⋯, Pm), and each Pi (i = 1,⋯,m) is a homogenous polynomial of degree k

on W .
Define the complete polarization P̄ ∶W ×⋯×W → C

m of P to be

P̄ (w1,⋯,wk) =
1

k!
∑

I⊂[k],I≠∅
(−1)k−∣I ∣P (∑

i∈I

wi).
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Where [k] = {1,⋯, k}, wi ∈W and P̄ is a symmetric multi-linear map. By the universal property
of tensors, P̄ is considered as a map P̄ ∶W⊗k → C

m. By the symmetry of P̄ , P̄ can be also seen
as a map P̄ ∶ SkW → C

m, such that

P̄ (w1⋯wk) = 1

k!
∑

I⊂[k],I≠∅
(−1)k−∣I ∣P (∑

i∈I

wi),(1)

and it can be extended linearly to the whole space.

Example 2.3. Let dim V=2, and let {e1, e2} be a basis of V . Consider the polynomial map
P ∶ V → C

2 defined by
a1e1 + a2e2 ↦ (a21, a21 + a22).

P is a polynomial map of degree 2, so by (1) P̄ ∶ S2V → C
2 is defined by

P̄ ((a1e1 + a2e2)(a3e1 + a4e2)) = 1

2
[P (a1e1 + a2e2 + a3e1 + a4e2)
−P (a1e1 + a2e2) −P (a3e1 + a4e2)]

=
1

2
[((a1 + a3)2, (a1 + a3)2 + (a2 + a4)2)
−(a21, a21 + a22) − (a23, a23 + a24)]

= (a1a3, a1a3 + a2a4).
Therefore

P̄ (ae21 + be1e2 + ce22) = aP̄ (e21) + bP̄ (e1e2) + cP̄ (e22)
= (a, a) + (0,0) + (0, c)
= (a, a + c).

2.2. G-variety. I follow the notation in [16] in §4.7.

Definition 2.4. Let W be a complex vector space. A variety X ⊂ PW is called a G-variety if
W is a module for the group G and for all g ∈ G and x ∈X, g ⋅ x ∈ X.

G has an induced action on SdW ∗ such that for any P ∈ SdW ∗ and w ∈W , g⋅P (w) = P (g−1 ⋅w).
Id(X) is a linear subspace of SdW ∗ that is invariant under the action of G, therefore:

Proposition 2.5. If X ⊂ PW is a G-variety, then the ideal of X is a G-submodule of S●W ∗
∶=

⊕
∞
d=0S

dW ∗.

Example 2.6. The Group GL(V ) has an induced action on SdV and Sk(SdV ∗) similarly. The
Chow variety Chd(V ) is invariant under the action of GL(V ), therefore it is a GL(V )-variety
and its ideals is GL(V )-submodules of S●(SdV ∗) = ⊕∞k=0Sk(SdV ∗).

Let X ⊂ PW be a G-variety, and M be an irreducible submodule of S●W ∗, then either
M ⊂ I(X) or M ∩ I(X) = ∅. Thus to test if M gives equations for X, one only need to test one
polynomial in M .

2.3. Representation theory. I follow the notation in [8]. Let dim V = n and {e1, e2,⋯, en}
be a basis of V . The group GL(V ) has a natural action on V ⊗d such that g ⋅ (v1 ⊗ v2⋯⊗ vd) =
g ⋅ v1 ⊗ ⋯ ⊗ g ⋅ vd. Let B ⊂ GL(V ) be the subgroup of upper-triangular matrices (a Borel

subgroup). For any partition λ = (λ1,⋯, λn) with order d, there is a unique line in SλV ⊂ V
⊗d

that is preserved by B, called a highest weight line. Let gl(V ) be the Lie algebra of GL(V ),
there is an induced action of gl(V ) on V ⊗d. For X ∈ gl(V ),

X.(v1 ⊗ v2⋯⊗ vd) =X.v1 ⊗ v2⋯⊗ vd + v1 ⊗X.v2 ⊗⋯⊗ vd +⋯ + v1 ⊗ v2⋯⊗ vd−1 ⊗X.vd.
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Let Ei
j ∈ gl(V ) such that Ei

j(ej) = ei and Ei
j(ek) = 0 when k ≠ j. If i < j, Ei

j is called a raising

operator; if i > j, Ei
j is called a lowering operator.

A highest weight vector of a GL(V )-module is a weight vector that is killed by all raising
operators. Each realization of the module SλV has a unique highest weight line. Let W be a
GL(V )-module, the multiplicity of SλV in W is equal to the dimension of the highest weight
space with respect to the partition λ.

Define the weight space W(a1,⋯,an)⊂ Sk(SdV ) to be the set of all the weight vectors whose

weights are (a1,⋯, an). Note that SdV has a natural basis {eα1

1 ⋯e
αn
n }α1+⋯+αn=d.

Example 2.7. S(4,2)V ⊂ S
3(S2V ) has multiplicity 1.

Proof. Let v be a highest weight vector of S(4,2)V . The weight space W(4,2) has a basis

{(e21)2(e22), (e21)(e1e2)2}. Write v = a(e21)2(e22) + b(e21)(e1e2)2, then E1
2v = 0 implies (2a +

2b)(e21)2(e1e2) = 0, therefore a = −b, so the multiplicity of S(4,2)V in S3(S2V ) is 1. �

2.4. Brill’s equations. Following the idea in §8.6 in [16], I use the following notation to define
Brill’s equations. We first define two maps πd,d and Qd, then use them to define Brill’s equations.

Define the projection map πd,d ∶ S
dV ⊗ SdV → S(d,d)V by

(l1⋯ld)⊗ (m1⋯md)↦ ∑
σ∈Sd

(l1 ∧mσ(1)) ⋅ (l2 ∧mσ(2))⋯(ld ∧mσ(d)),(2)

and then extend linearly to the whole space.

Recall S●V = ⊕∞i=0S
iV . Define a multiplication on S●V ⊗ S●V by, for any a, b, c, d ∈ S●V ,

(a⊗ b) ⋅ (c⊗ d) = ac⊗ bd,(3)

and this extends linearly to S●V ⊗ S●V .

Let f ∈ SδV and let fj,δ−j ∈ S
jV ⊗ Sδ−jV be the j-th polarization of f . Define maps

Ej ∶ S
δV → SjV ⊗ Sj(δ−1)V,

f ↦ fj,δ−j ⋅ (1⊗ f j−1).
If j > δ define Ej(f) = 0.
Example 2.8. Let f = l1l2l3 ∈ S

3V , then

E1(f) = f1,2 ⋅ (1⊗ 1)
= l1 ⊗ l2l3 + l3 ⊗ l1l2 + l2 ⊗ l1l3.

E2(f) = f2,1 ⋅ (1⊗ l1l2l3)
= (l1l2 ⊗ l3 + l1l3 ⊗ l2 + l2l3 ⊗ l1) ⋅ (1⊗ l1l2l3).
= l1l2 ⊗ l1l2l

2
3 + l1l3 ⊗ l1l

2
2l3 + l2l3 ⊗ l21l2l3.

E3(f) = f3,0 ⋅ (1⊗ f2)
= f ⊗ f2

= l1l2l3 ⊗ l21l
2
2l

2
3.
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The elementary symmetric and power sum function are:

ej = ej(x1,⋯, xv) = ∑
1≤i1<i2<⋯<ij≤v

xi1⋯xij ,

pj = pi(x1,⋯, xv) =
v

∑
i=1

x
j
i .

The power sum can be written in terms of symmetric function using Girard formula:

pk = Pk(e1,⋯, ed) = ∑
i1+2i2+⋯did=k

k(−1)k+i1+i2+⋯id (i1 + i2 +⋯id − 1)!
i1!⋯id!

ei11 ⋯e
id
d
.(4)

Example 2.9. p2 = P2(e1, e2) = e21 − 2e2. p3 = P3(e1, e2, e3) = e31 − 3e1e2 + 3e3.
Next, we use Girard formula and Ej to define Qd . Define polynomial maps

Qd,δ ∶ S
δV Ð→ SdV ⊗ Sd(δ−1)V

by

Qd,δ(f) = Pd(E1(f),⋯,Ed(f)).(5)

Write Qd = Qd,d. Explicitly

(6)

Qd(f) =
∑

i1+2i2+⋯+did=d

d(−1)d+i1+⋯+id (i1 +⋯+ id − 1)!
i1!⋯id!

( d

∏
j=1

f
ij
j,d−j) ⋅ (1⊗ fd−(i1+⋯+id)).

Example 2.10. Let d = 2, and f ∈ S2V , by (6),

Q2(f) = f2
1,1 − 2f ⊗ f.

Lemma 2.11. ( §8.6 [16]) Let li ∈ V for i = 1,⋯, d, then

Qd(l1⋯ld) = d

∑
j=1

ldj ⊗ (ld1⋯ldj−1ldj+1⋯ldd).(7)

Now we define Brill’s polynomial map B ∶ SdV → S(d,d)V ⊗ Sd2−dV invariantly. It is the
composition of the following two maps:

SdV → SdV ⊗ SdV ⊗ Sd2−dV → S(d,d)V ⊗ Sd2−dV,

where the first map sends f ∈ SdV to f ⊗Qd(f), and the second map is πd,d ⊗ Id
Sd2−dV

. By
Lemma 2.11,

B(l1⋯ld) = πd,d ⊗ Id
Sd2−dV

[(l1⋯ld)⊗ d

∑
j=1

ldj ⊗ (ld1⋯ldj−1ldj+1⋯ldd)]
= 0.

The converse is also true:

Theorem 2.12. (Brill,Gordon [10], Gelfand-Kapranov-Zelevinsky [9], Briand [1]) Consider the
polynomial map

B ∶ SdV → S(d,d)V ⊗ Sd2−dV

given by

B(f) = πd,d ⊗ Id
Sd2−dV

[f ⊗Qd(f)].(8)
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Then B(f) = 0⇔ [f] ∈ Chd(V ).
Remark 2.13. There was a gap in Brill’s argument, that was repeated in [9] and finally fixed by
E. Briand in [1].

3. The image of Brill’s map

3.1. Construction of Brill’s map. First consider the polarization Qd of Qd , where Qd ∶

SdV → SdV ⊗ Sd2−dV .

Example 3.1. Let d = 2, and f, g ∈ S2V , by (6)

Q2(f) = f2
1,1 − 2f ⊗ f.

Therefore by (1), Q2 ∶ S
2(S2V )→ S2V ⊗ S2V is defined by:

Q̄2(f ⋅ g) = 1

2
((f + g)21,1 − 2(f + g)⊗ (f + g) − (f2

1,1 − 2f ⊗ f) − (g21,1 − 2g ⊗ g))
= f1,1g1,1 − f ⊗ g − g ⊗ f.

So by (3)

Q̄2(e1e2 ⋅ e1e2) = (e1e2)21,1 − 2(e1e2)⊗ (e1e2)
= (e1 ⊗ e2 + e2 ⊗ e1)2 − 2(e1e2)⊗ (e1e2)
= e21 ⊗ e22 + e

2
2 ⊗ e21.

Q̄2(e21 ⋅ e1e2) = (e1e2)1,1 ⋅ (e21)1,1 − (e21)⊗ (e1e2) − (e1e2)⊗ (e21)
= (e1 ⊗ e2 + e2 ⊗ e1) ⋅ (2e1 ⊗ e1) − (e21)⊗ (e1e2) − (e1e2)⊗ (e21)
= e21 ⊗ e1e2 + e1e2 ⊗ e21.

Q̄2(e1e2 ⋅ e1e3) = (e1e2)1,1 ⋅ (e1e3)1,1 − (e1e3)⊗ (e1e2) − (e1e2)⊗ (e1e3)
= (e1 ⊗ e2 + e2 ⊗ e1) ⋅ (e1 ⊗ e3 + e3 ⊗ e1) − (e1e3)⊗ (e1e2) − (e1e2)⊗ (e1e3)
= e21 ⊗ e2e3 + e2e3 ⊗ e21.

Q̄2(e1e2 ⋅ e23) = (e1e2)1,1 ⋅ (e23)1,1 − (e23)⊗ (e1e2) − (e1e2)⊗ (e23)
= (e1 ⊗ e2 + e2 ⊗ e1) ⋅ (2e3 ⊗ e3) − (e23)⊗ (e1e2) − (e1e2)⊗ (e23)
= 2e1e3 ⊗ e2e3 + 2e2e3 ⊗ e1e3 − e

2
3 ⊗ e1e2 − e1e2 ⊗ e23.

In general, Qd ∶ S
d(SdV )→ SdV ⊗ Sd2−dV is used to define Brill’s map B̄:

Lemma 3.2. The polarization of Brill’s polynomial map B

B̄ ∶ Sd+1(SdV )→ S(d,d)V ⊗ Sd2−dV

is

B̄(f1f2 . . . fd+1) = 1

d + 1

d+1

∑
i=1

πd,d ⊗ Id
Sd2−dV

[fi ⊗Qd(f1 . . . f̂i . . . fd+1)].(9)
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Example 3.3. Consider Brill’s map B̄ ∶S3(S2V )→ S(2,2)V ⊗ S2V for d = 2. By Lemma 3.2,

B̄(e1e2 ⋅ e1e2 ⋅ e21) = 1

3
π2,2 ⊗ IdS2V [e21 ⊗Q2(e1e2 ⋅ e1e2)]
+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗Q2(e1e2 ⋅ e21)]

=
1

3
π2,2 ⊗ IdS2V [e21 ⊗ (e21 ⊗ e22 + e

2
2 ⊗ e21)]

+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗ (e21 ⊗ e1e2 + e1e2 ⊗ e21)]

=
1

3
[2(e1 ∧ e2)2 ⊗ e21) + 2

3
(−(e1 ∧ e2)2 ⊗ e21]

= 0.

B̄(e1e2 ⋅ e1e2 ⋅ e1e3) = 1

3
π2,2 ⊗ IdS2V [e1e3 ⊗Q2(e1e2 ⋅ e1e2)]
+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗Q2(e1e2 ⋅ e1e3)]

=
1

3
π2,2 ⊗ IdS2V [e1e3 ⊗ (e21 ⊗ e22 + e

2
2 ⊗ e21)]

+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗ (e21 ⊗ e2e3 + e2e3 ⊗ e21)]

=
1

3
[2(e1 ∧ e2)(e1 ∧ e3)⊗ e21)] + 2

3
[−(e1 ∧ e2)(e1 ∧ e3)⊗ e21]

= 0.

B̄(e1e2 ⋅ e1e2 ⋅ e23) = 1

3
π2,2 ⊗ IdS2V [e23 ⊗Q2(e1e2 ⋅ e1e2)]
+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗Q2(e1e2 ⋅ e23)]

=
1

3
π2,2 ⊗ IdS2V (e23 ⊗ (e21 ⊗ e22 + e

2
2 ⊗ e21))

+
2

3
π2,2 ⊗ IdS2V [e1e2 ⊗ (2e1e3 ⊗ e2e3

+2e2e3 ⊗ e1e3 − e
2
3 ⊗ e1e2 − e1e2 ⊗ e23)]

=
2

3
[(e1 ∧ e3)2 ⊗ e22 + (e2 ∧ e3)2 ⊗ e21 + (e1 ∧ e2)2 ⊗ e23

−2(e1 ∧ e2)(e1 ∧ e3)⊗ e2e3 − 2(e1 ∧ e2)(e2 ∧ e3)⊗ e1e2

−2(e1 ∧ e3)(e2 ∧ e3)⊗ e1e2].
3.2. Brill’s map as a GL(V )-module map. Consider Brill’s map B̄ ∶ Sd+1(SdV )→ S(d,d)V ⊗

Sd2−dV . Recall that the image of Brill’s map is isomorphic to dual of the GL(V )-module
generated by Brill’s equations. Therefore to prove Theorem 1.1, we only need to prove the
following theorem:

Theorem 3.4. Assume dim V ≥ 3. Consider Brill’s map

B̄ ∶ Sd+1(SdV )→ S(d,d)V ⊗ Sd2−dV.
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Then

Im(B) =
⎧⎪⎪⎨⎪⎪⎩
S(7,3,2)V d = 3;

⊕d
j=2 S(d2−j,d,j)V d ≠ 3.

Brill’s map is a GL(V )-module map, therefore by Schur’s lemma, the image of Brill’s map

is a GL(V )-submodule of S(d,d)V ⊗ Sd2−dV . Since we do not know the general decomposition

of Sd+1(SdV ), it is impossible to compute the image of each isotypic component of Sd+1(SdV )
directly. Fortunately, it is easy to decompose the space S(d,d)V ⊗ Sd2−dV by Pieri’s rule, i.e.

S(d,d)V ⊗ Sd2−dV =
d

⊕
j=0

S(d2−j,d,j)V(10)

Each isotypic component S(d,d)V ⊗ Sd2−dV is of multiplicity 1, so the image of Brill’s map is
multiplicity free. Also, we only need to consider the modules with length no more than 3, so we
only need to consider V to be 3-dimensional from now on.

3.3. Weight spaces and weight vectors of S(d,d)V ⊗S
d2−dV and Sd+1(SdV ). Let {e1, e2, e3}

be a basis of V.

Lemma 3.5. As a GL3-module , Sd(∧2C3) is S(d,d)C3.

Proof. First, since (e1∧e2)d ∈ Sd(∧2C3) is a highest weight vector with weight (d, d), so S(d,d)C3 ⊂

Sd(∧2C3). Second, dim Sd,dC
3 = dim Sd(∧2C3) = (d+2

2
). The result follows. �

Definition 3.6. Given an integer j such that j ∈ {0,⋯, d}. Define the weight spaceWj⊂S
d+1(SdV )

to be the set of all the degree d+ 1 homogenous polynomials on SdV ∗ such that each monomial
has weight (d2 − j, d, j) .
Define the weight space W̃j⊂S(d,d)V ⊗S

d2−dV = Sd(∧2V )⊗Sd2−dV to be the set of all the weight

vectors in Sd(∧2V )⊗ Sd2−dV whose weights are (d2 − j, d, j).
Lemma 3.7. The weight space W̃j⊂S(d,d)V ⊗ Sd2−dV = Sd(∧2V )⊗ Sd2−dV has indeed basis

{(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s ⊗ ed
2−d−s

1 et2e
s−t
3 }0≤s≤j,0≤t≤s.

Proof. Sd(∧2V )⊗ Sd2−dV has a indeed basis

{(e1 ∧ e2)d−a1−a2(e1 ∧ e3)a1(e2 ∧ e3)a2 ⊗ ed
2−d−a3−a4

1 ea32 ea43 }0≤a1+a2≤d,0≤a3+a4≤d2−d.
Let v ∈Wj be a basis vector of Sd(∧2V )⊗ Sd2−dV . Then

{a1 + a2 + a4 = 0
a1 − a3 = 0.

(11)

Let a3 = t, a3 + a4 = s, then 0 ≤ s ≤ j,0 ≤ t ≤ s and v = (e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s ⊗
ed

2−d−s
1 et2e

s−t
3 . �

Lemma 3.8. The highest weight vector ṽj ∈ S(d2−j,d,j)V ⊂ S(d,d)V ⊗S
d2−dV = Sd(∧2V )⊗Sd2−dV

is

j

∑
s=0

s

∑
t=0

(−1)t(j
s
)(s

t
)(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s ⊗ ed

2−d−s
1 et2e

s−t
3 .(12)
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Proof. By Lemma 3.7, write

ṽj =
j

∑
s=0

s

∑
t=0

ast(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e1 ∧ e2)j−s ⊗ ed
2−d−s

1 et2e
s−t
3 .

Apply raising operators E1
2 and E2

3 on ṽj ,

E1
2 ṽj =

j

∑
s=0

s

∑
t=0

ast(j − s)(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t+1(e1 ∧ e2)j−s−1 ⊗ ed
2−d−s

1 et2e
s−t
3 .

+

j

∑
s=0

s

∑
t=0

tast(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s−1 ⊗ ed
2−d−s+1

1 et−12 es−t3

=
j−1

∑
s=0

s+1

∑
t=1

(tas+1,t + (j − s)as,t−1)(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s−1
⊗ed

2−d−s
1 et−12 es−t3 .

and

E2
3 ṽj =

j

∑
s=0

s

∑
t=0

tast(e1 ∧ e2)d+s−j−t+1(e1 ∧ e3)t−1(e1 ∧ e2)j−s ⊗ ed
2−d−s

1 et2e
s−t
3

+

j

∑
s=0

s

∑
t=0

(s − t)ast(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e2 ∧ e3)j−s ⊗ ed
2−d−s

1 et−+2 es−t−13

=
j

∑
s=1

s

∑
t=1

(tas,t + (s − t + 1)as,t−1)(e1 ∧ e2)d+s−j−t+1(e1 ∧ e3)t−1(e2 ∧ e3)j−s
⊗ed

2−d−s
1 et2e

s−t
3 .

we get two systems of equations of {ast}0≤s≤j,0≤t≤s,
{ tas+1,t + (j − s)as,t−1 = 0
tas,t + (s − t + 1)as,t−1 = 0(13)

and then solve for {ast}0≤s≤j,0≤t≤s, we get a unique solution as,t = (−1)t(js)(st) up to scale. �

Since Brill’s map is a GL(V )-module map, we only need to check whether ṽj is in the image
of Brill’s map.

For convenience, write

Sd+1(SdV ) = Ad⊕( d

⊕
j=0

S(d2−j,d,j)V
⊕mj ).(14)

Where Ad is the direct sum of the isotypic components of Sd+1(SdV ) other than S(d2−j,d,j)V for
j = 0,1,⋯, d, which is certainly in the kernel of Brill’s map.

The idea is to take vj = (ed−11 e2)d(ed−j1 e3
j) ∈ Wj , compute B̄(vj), and see whether the

projection of B̄(vj) to S(d2−j,d,j)V ⊂ S(d,d)V ⊗ Sd2−dV is 0.
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Proposition 3.9. If the projection of B̄(vj) to S(d2−j,d,j)V ⊂ S(d,d)V ⊗S
d2−dV is not 0, then ṽj

is in the image of Brill’s map, therefore S(d2−j,d,j)V ⊂ S(d,d)V ⊗Sd2−dV is in the image of Brill’s

map.

Proof. Write vj = vj1+vj2+vj3, where vj1 ∈ Ad, vj2 ∈⊕
j−1
k=0 S(d2−k,d,k)V

⊕mk , and vj3 ∈ S(d2−j,d,j)V
⊕mj

is a highest weight vector. By Schur’s Lemma, B̄(vj1) = 0, B̄(vj2) ∈ ⊕j−1
k=0 S(d2−k,d,k)V , and

B̄(vj3) ∈ S(d2−j,d,j)V , therefore the projection of B̄(vj) to S(d2−j,d,j)V ⊂ S(d,d)V ⊗ Sd2−dV is

exactly B̄(vj3), by Schur’s Lemma, if it is not 0, it is ṽj (see Lemma 3.8) up to a constant. �

3.4. Computing B̄(vj). Brill’s map is very complicated to compute in general. Fortunately,
we are able to compute B̄(vj).

B̄(vj) = B̄((ed−11 e2)d ⋅ (ed−j1 e3
j))

=
1

d + 1
πd,d ⊗ Id

Sd2−dV
((ed−j1 e3

j)⊗Qd((ed−11 e2)d)
+

d

d + 1
πd,d ⊗ Id

Sd2−dV
((ed−11 e2)⊗Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3

j))
=

1

d + 1
πd,d ⊗ Id

Sd2−dV
((ed−j1 e3

j)⊗Qd(ed−11 e2))
+

d

d + 1
πd,d ⊗ Id

Sd2−dV
((ed−11 e2)⊗Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3

j)))

First, I compute and πd,d ⊗ Id
Sd2−dV

((ed−j1 e3
j)⊗Qd(ed−11 e2)). By Lemma 2.11,

Proposition 3.10. πd,d ⊗ Id
Sd2−dV

((ed−j1 e3
j)⊗Qd(ed−11 e2)) is

⎧⎪⎪⎨⎪⎪⎩
d!(e1 ∧ e2)d−j(e3 ∧ e2)j ⊗ ed

2−d
1 j ≠ d

d!(e3 ∧ e2)d ⊗ (ed2−d1 ) + (d − 1)d!⊗ (e3 ∧ e1)d ⊗ ed
2−2d

1 ed2 j = d
(15)

Next, I compute πd,d ⊗ Id
Sd2−dV

((ed−11 e2)⊗Qd((ed−11 e2)d−1(ed−j1 e3
j))).

Lemma 3.11. If h ∈ SdV is divisible by e21, then πd,d(h, ed−11 e2) = 0.
Lemma 3.12. For any f, g ∈ SdV , by polarizing (6),

Qd(fd−1g) = (−1)d ∑
i1+2i2+⋯+did=d

d(−1)i1+i2+⋯+id (i1 + i2 +⋯ + id − 1)!
i1!⋯id!

( d

∑
s=1

is

d
( d

∏
j=1,j≠s

f
ij
j,d−j) ⋅ (f is−1

s,d−sgs,d−s) ⋅ (1⊗ fd−(i1+⋯+id)))

+(d − (i1 +⋯+ id)
d

( d

∏
j=1

f
ij
j,d−j) ⋅ (1⊗ fd−(i1+⋯+id)−1g)).

Now I use Lemma 3.12 to compute Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3
j)). By lemma 3.11, terms of

Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3
j)) whose first components are divisible by e21 are killed by (ed−11 e2) via

πd,d. Therefore, by Lemma 3.12, given i1,⋯, id with i1 + 2i2 + ⋯did = d, we need #{j ≥ 3∣ij ≥
1} ≤ 1 so that the corresponding terms will not vanish. There are 2 possibilities, either some
is = 1 for some s ≥ 3 or is ≡ 0 for all s ≥ 3. More specifically, there are five cases for which

Qd((ed−11 e2)d−1(ed−j1 e3
j)) may not vanish:
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(1) is = 1 for some s ≥ 3 and i2 = 0, i1 = d − s;
(2) is = 1 for some s ≥ 3 and i2 = 1, i1 = d − s − 2;
(3) is ≡ 0 for all s ≥ 3 and i2 = 0, i1 = d;
(4) is ≡ 0 for all s ≥ 3 and i2 = 1, i1 = d − 2;
(5) is ≡ 0 for all s ≥ 3 and i2 = 2, i1 = d − 4.

I use the symbol ≡ to omit those terms of Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3
j)) whose first components

are divisible by e21. I use I1 to denote the terms of the first case in Qd((ed−11 e2)d−1(ed−j1 e3
j)).

For the first case, is = 1 for some s ≥ 3 and i2 = 0, i1 = d− s, so the coefficient of the terms of the
first case is

(−1)d(−1)i1+i2+⋯id (i1 + i2 +⋯id − 1)!
i1!⋯id!

= (−1)dd(−1)d−s−1 (d − s)!(d − s)! = d(−1)s−1,

and the corresponding monomial in Qd(f) is

d(−1)s−1fd−s
1,d−1fs,d−s ⋅ (1⊗ f s−1).

Since the first component of (ed−11 e2)s,d−s is divisible by e21, by lemma 3.11, in order that the

terms will not be killed by (ed−11 e2) via πd,d, e
d−j
1 e3

j should replace (ed−11 e2) in the position
fs,d−s. By Lemma 3.12,

I1 ≡
d

∑
s=3

d(−1)s−1 1
d
(ed−11 e2)d−s1,d−1(ed−j1 e3

j)s,d−s ⋅ [1⊗ (ed−11 e2)s−1]
=

d

∑
s=3

(−1)s−1(ed−11 e2)d−s1,d−1(ed−j1 e3
j)s,d−s ⋅ [1⊗ (ed−11 e2)s−1]

≡
d

∑
s=3

(−1)s−1[(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−s[(j
s
)es3 ⊗ e

d−j
1 e

j−s
3

+(d − j)( j

s − 1
)e1es−13 ⊗ e

d−j−1
1 e

j−s+1
3 ] ⋅ [1⊗ (ed−11 e2)s−1]

≡
d

∑
s=3

(−1)s−1[(d − 1)(d − s)e1ed−s−12 ⊗ ed−21 e2e
(d−1)(d−s−1)
1 + ed−s2 ⊗ e

(d−1)(d−s)
1 ]

[(j
s
)es3 ⊗ e

d−j
1 e

j−s
3 + (d − j)( j

s − 1
)e1es−13 ⊗ e

d−j−1
1 e

j−s+1
3 ] ⋅ [1⊗ (ed−11 e2)s−1]

≡
d

∑
s=3

(−1)s−1[(j
s
)ed−s2 es3 ⊗ e

d2−j−d+1
1 es−12 e

j−s
3

+(d − j)( j

s − 1
)e1ed−s2 es−13 ⊗ e

d2−j−d
1 es2e

j−s+1
3

+(d − 1)(d − s)(j
s
)e1ed−s−12 es3 ⊗ e

d2−j−d
1 es2e

j−s
3 ].
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Similarly for the other four cases,

I2 ≡
d

∑
s=3

d(−1)s(d − s − 1)1
d
(ed−11 e2)d−s−21,d−1 (ed−11 e2)2,d−2(ed−j1 e3

j)s,d−s ⋅ [1⊗ (ed−11 e2)s]
≡

d

∑
s=3

(−1)s(d − s − 1)[(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−s−2((d − 1)e1e2 ⊗ ed−21 )
[(j
s
)es3 ⊗ e

d−j
1 e

j−s
3 + (d − j)( j

s − 1
)e1es−13 ⊗ e

d−j−1
1 e

j−s+1
3 ] ⋅ [1⊗ (ed−11 e2)s−1]

≡
d

∑
s=3

(−1)s(d − s − 1)(d − 1)(j
s
)e1ed−s−12 es3 ⊗ e

d2−d−j
1 es2e

j−s
3 .

I3 ≡
d(d − 3)

2

2

d
(ed−11 e2)d−41,d−1(ed−11 e2)2,d−2(ed−j1 e3

j)2,d−2 ⋅ [1⊗ (ed−11 e2)2]
≡ (d − 3)[(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−4[(d − 1)e1e2 ⊗ ed−21 ]
[(j
2
)e23 ⊗ e

d−j
1 e

j−2
3 ] ⋅ [1⊗ (ed−11 e2)2]

≡ (d − 3)(d − 1)(j
s
)e1ed−32 e23 ⊗ e

d2−d−j
1 e22e

j−2
3 .

I4 ≡ −(d − 2)(ed−11 e2)d−31,d−1(ed−j1 e3
j)1,d−1(ed−11 e2)2,d−2 ⋅ [1⊗ (ed−11 e2)]

−(ed−11 e2)d−21,d−1(ed−j1 e3
j)2,d−2 ⋅ (1⊗ (ed−11 e2)) − (ed−11 e2)d−21,d−1(ed−11 e2)2,d−2 ⋅ [1⊗ (ed−j1 e3

j)]
≡ −(d − 2)[(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−3(je3 ⊗ e

d−j
1 e

j−1
3 )[(d − 1)e1e2 ⊗ ed−21 ] ⋅ [1⊗ (ed−11 e2)]

−[(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−2[(d − j)je1e3 ⊗ e
d−j−1
1 e

j−1
3 + (j

2
)e23 ⊗ e

d−j
1 e

j−2
3 ]

⋅[1⊗ (ed−11 e2)] − [(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 ]d−2[(d − 1)e1e2 ⊗ ed−21 ] ⋅ [1⊗ (ed−j1 e3
j)]

≡ −(d − 2)(ed−32 ⊗ e
(d−1)(d−3)
1 )(je3 ⊗ e

d−j
1 e

j−1
3 )((d − 1)e1e2 ⊗ ed−21 ) ⋅ (1⊗ (ed−11 e2))

−[ed−22 ⊗ e
(d−1)(d−2)
1 + (d − 1)(d − 2)e1ed−22 ⊗ ed

2−3d+1
1 e2][(d − j)je1e3 ⊗ e

d−j−1
1 e

j−1
3

+(j
2
)e23 ⊗ e

d−j
1 e

j−2
3 ] ⋅ [1⊗ (ed−11 e2)] − (ed−22 ⊗ e

(d−1)(d−2)
1 )[(d − 1)e1e2 ⊗ ed−21 ] ⋅ (1⊗ [ed−j1 e3

j)]
≡ [−(d − 2)(d − 1)j − j(d − j)]e1ed−22 e3 ⊗ e

d2−d−j
1 e2e

j−1
3 − (j

2
)ed−22 e23 ⊗ e

d2−j−d+1
1 e2e

j−2
3

−(d − 2)(d − 1)(j
2
)e1ed−32 e23 ⊗ e

d2−j−d
1 e22e

j−2
3 − (d − 1)e1ed−12 ⊗ e

d2−j−d
1 e

j
3.

I5 ≡ (ed−11 e2)d−11,d−1(ed−j1 e3
j)1,d−1

≡ [(d − 1)e1 ⊗ ed−21 e2 + e2 ⊗ ed−11 )]d−1[je3 ⊗ e
d−j
1 e

j−1
3 + (d − j)e1 ⊗ e

j
3e

d
1]

≡ [ed−12 ⊗ e
(d−1)(d−1)
1 + (d − 1)2ed−21 e2 ⊗ e

(d−2)2+d−1
1 ed−22 ][je3 ⊗ e

d−j
1 e

j−1
3 + (d − j)e1 ⊗ e

j
3e

d
1]

≡ jed−12 e3 ⊗ e
d2−j
1 e2e

j−1
3 + (d − j)e1ed−12 ⊗ e

d2−j−d
1 e

j
3 + j(d − 1)2e1ed−22 e3 ⊗ e

d2−j−d
1 e2e

j−1
3 .
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Therefore

Qd((ed−11 e2)d−1(ed−j1 e3
j)) ≡ min{j,d−1}

∑
s=0

(−1)s(j
s
)(1 − j)e1ed−s−12 es3 ⊗ e

d2−d−j
1 es2e

j−s
3

+

j

∑
s=1

(−1)s−1(j
s
)ed−s2 es3 ⊗ e

d2−d−j+1
1 es−12 e

j−s
3 .

This implies

Proposition 3.13.

πd,d ⊗ Id
Sd2−dV

((ed−11 e2)⊗Qd((ed−11 e2)d−1 ⋅ (ed−j1 e3
j)) =

min{j,d−1}

∑
s=0

(−1)s−1(j
s
)(1 − j)(d − 1)!(e1 ∧ e2)d−s(e1 ∧ e3)s ⊗ e

d2−d−j
1 es2e

j−s
3

+

j

∑
s=1

(−1)s−1(j
s
)s(d − 1)!(e1 ∧ e2)d−s(e1 ∧ e3)s−1(e2 ∧ e3)⊗ e

d2−d−j+1
1 es−12 e

j−s
3 .

Proposition 3.10 and Proposition 3.13 imply:

Proposition 3.14.

B̄((ed−11 e2)d ⋅ (ed−j1 e3
j)) = d!

d + 1
(e1 ∧ e2)d−j(e3 ∧ e2)j ⊗ (ed2−d1 )

+
d!

d + 1

j

∑
s=0

(−1)s−1(j
s
)(1 − j)(e1 ∧ e2)d−s(e1 ∧ e3)s ⊗ e

d2−d−j
1 es2e

j−s
3

+
d!

d + 1

j

∑
s=1

(−1)s−1(j
s
)s(e1 ∧ e2)d−s(e1 ∧ e3)s−1(e2 ∧ e3)⊗ e

d2−d−j+1
1 es−12 e

j−s
3 .

3.5. Orthogonal decomposition of S(d,d)V ⊗S
d2−dV . Let e1, e2, e3 be a basis of V and define

a Hermitian inner product on V such that

< ei, ej >= δi,j.

Extend the Hermitian inner product to V ⊗(d
2+d) naturally by

< ei1 ⊗⋯⊗ ei
d2+d

, ej1 ⊗⋯⊗ ej
d2+d
>= δi1,j1⋯δid2+d,jd2+d .

One can decompose V ⊗(d
2+d) into direct sum of isotypic components as a GL(V )-module. Since

the Hermitian inner product is unitary invariant, distinct isotypic components of V ⊗(d
2+d) are

orthogonal (see e.g. [8]).

Consider S(d,d)V ⊗ Sd2−dV = Sd(∧2V ) ⊗ Sd2−dV as a subspace of V ⊗(d
2+d), the decomposi-

tion S(d,d)V ⊗ Sd2−dV = ⊕d
j=0 S(d2−j,d,j)V is an orthogonal decomposition with respect to the

Hermitian inner product, therefore

Proposition 3.15. The projection of B̄(vj) on S(d2−j,d,j)V ⊂ S(d,d)V ⊗ Sd2−dV is not 0 if and

only if < B(vj), ṽj >≠ 0, where ṽj is defined in Lemma 3.8.

Lemma 3.16. Suppose a1 + a2 + a3 = d and b1 + b2 + b3 = d
2
− d,

< (e1 ∧ e2)a1(e1 ∧ e3)a2(e2 ∧ e3)a3 ⊗ eb11 eb22 eb33 , (e1 ∧ e2)a1(e1 ∧ e3)a2(e2 ∧ e3)a3 ⊗ eb11 eb22 eb33 >

= (1
2
)d a1!a2!a3!

d!

b1!b2!b3!(d2 − d)!
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Recall by Lemma 3.8,

ṽj =
j

∑
s=0

s

∑
t=0

(−1)t(j
s
)(s

t
)(e1 ∧ e2)d+s−j−t(e1 ∧ e3)t(e1 ∧ e2)j−s ⊗ ed

2−d−s
1 et2e

s−t
3 .

and by Proposition 3.14,

B̄((ed−11 e2)d ⋅ (ed−j1 e3
j)) = d!

d + 1
(−1)j(e1 ∧ e2)d−j(e2 ∧ e3)j ⊗ (ed2−d1 )

+
d!

d + 1

j

∑
t=0

(−1)t(j
t
)(j − 1)(e1 ∧ e2)d−t(e1 ∧ e3)t ⊗ e

d2−d−j
1 et2e

j−t
3

+
d!

d + 1

j

∑
t=1

(−1)t−1(j
t
)t(e1 ∧ e2)d−t(e1 ∧ e3)t−1(e2 ∧ e3)⊗ e

d2−d−j+1
1 et−12 e

j−t
3 .

By Lemma 3.16,

Proposition 3.17. For any fixed j ∈ {0,1,⋯, d},
< B(vj), ṽj > = (1

2
)d

(d + 1)(d2 − d)!(
j

∑
t=0

(j!)2(j − 1)(d − t)!(d2 − d − j)!
(j − t)!

+

j−1

∑
t=0

(j!)2(d − t − 1)!(d2 − d − j + 1)!
(j − t − 1)! + (−1)j(d − j)!j!(d2 − d)!).

< B(vj), ṽj >= 0 only when

(1) j = 0,1 for all d ≥ 2;
(2) j = 3 and d = 3.

Proof. The ratio of (d − j)!j!(d2 − d)! and (j!)2(j−1)(d−t)!(d2−d−j)!
(j−t)! is

(d
2
−d

j
)

(j−1)(d−t
j−t
)
, and the ratio of

(d − j)!j!(d2 − d)! and (j!)2(d−t−1)!(d2−d−j+1)!
(j−t−1)! is

(d
2
−d

j−1
)

j(d−t−1
j−t−1

)
. Therefore when d is large enough and

j ≥ 2, the term (−1)j(d − j)!j!(d2 − d)! dominates. For small cases, one can check directly. �

Combining all the results above, we prove Theorem 3.4 to prove Theorem 1.1.

Proof of Theorem 3.4. First, for j = 0 and d ≥ 2, S(d2,d)V is not in the image of Brill’s map

because Chd(C2) = Sd
C
2.

Second, for j = 1 and all d ≥ 2, S(d2−1,d,1)V is not in the image of Brill’s map. If it were in
the image of Brill’s map, then B(v1) = B(v13) = Cṽ1 ≠ 0 (where v13 is defined in the proof of
Proposition 3.9), so < B(v1), ṽ1 >=< Cṽ1, ṽ1 >≠ 0, contradiction.

Third, when d = 3 and j = 3, the module S(6,3,3)V is not in the decomposition of S4(S3V ), so
it is not in the image.

Finally, for other cases, < B(vj), ṽj >≠ 0, by Proposition 3.9 and Proposition 3.15, S(d2−j,d,j)V
is in the image of Brill’s map. �
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