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ON THE q-AMPLENESS OF THE TENSOR PRODUCT

OF TWO LINE BUNDLES

MIHAI HALIC, ROSHAN TAJAROD

Abstract. We prove that the tensor product of two line bundles, one being q-ample and
the other with sufficiently low-dimensional base locus, is still q-ample.

The result

The goal of this note is to prove the following property of the q-ample cone of a projective
variety.

Theorem A. Let X be a normal, irreducible projective variety defined over an algebraically

closed field of characteristic zero. Consider A,L ∈ Pic(X) and denote the stable base locus

of A by sb(A). We assume that L is q-ample and

q > dim
(

sb(A)
)

. (⋆)

Then A⊗ L is q-ample too.

The classes of the q-ample line bundles form an open cone in the vector space

N1(X)R := (Pic(X)/ ∼num)⊗Z R,

generated by invertible sheaves (line bundles) on X modulo numerical equivalence (cf. [1, 3]).
The tensor product of two q-ample line bundles is not q-ample in general (cf. [8, Theorem
8.3]), and therefore the q-ample cone is, usually, not convex.

This situation contrasts the classical case of ample line bundles, corresponding to q = 0,
which generate a convex cone. Actually, it is well-known that the ample cone of a projective
variety is stable under the addition of a numerically effective (nef) term.

Moreover, Sommese proved in [7, Corollary 1.10.2] that the tensor product of two globally

generated, q-ample line bundles is still q-ample. However, the concept of q-ampleness used in
loc. cit. is defined geometrically and it is based on the global generation of the line bundles.

For this reason, it is natural to ask whether the q-ample cone is stable under the addition
of suitable terms; by abuse of language, we call such a feature a ‘convexity property’. The
theorem stated above can be viewed as an answer to this question.

1. Notation and proof

Definition 1. (cf. [8, §6]) Let X be a projective variety defined over an algebraically closed
field k of characteristic zero. A line bundle L ∈ Pic(X) is called q-ample if, for all coherent
sheaves F on X, holds:

∃mF such that ∀m > mF ∀ t > q, Ht(X,F ⊗L
m) = 0. (1)
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Since any coherent sheaf admits a finite resolution by locally free sheaves, it is enough to
check the condition (1) for F locally free.

The definition is closely related to the notions of q-positivity in [1] and of geometric q-
ampleness in [7]. These concepts are compared in [6].

Clearly, if L is q-ample, then it is q′-ample, for all q′ > q; the larger the value of q, the
weaker the restriction on L. Any line bundle on X is dimX-ample; the first interesting case
is q = dimX − 1. In [8, Theorem 9.1], Totaro proved that the (dimX − 1)-ample cone is the
complement in N1(X)R of the negative of the closed effective cone.

Notation 2. For A ∈ Pic(X), we denote:

(i) b(A) the base locus of A; it is the zero locus of the ‘universal section’:

OX → H0(X,A)∨ ⊗A, (x, 1) 7−→
∑

s∈basis of H0(X,A)

s∨ ⊗ s(x), ∀x ∈ X,

where (s∨)s∈basis of H0(X,A) is the dual basis.

The scheme structure of b(A) is defined by the following sheaf of ideals:

H0(X,A) ⊗A
−1

։ I
b(A) ⊂ OX . (2)

The stable base locus of A is the closed subset of X obtained as the set-theoretical
intersection sb(A) :=

⋂

a>1
b(Aa)red; when a is sufficiently large and divisible, sb(A) =

b(Aa)red.
(ii) κ(A) the Kodaira-Iitaka dimension of A; it is defined as:

κ(A) := transcend. deg.k

(

⊕

a>0
H0(X,Aa)

)

− 1

= max
a>1

dim
(

Image(X 99K |Aa|)
)

.

The set {a > 1 | H0(X,Aa) 6= 0} is a semi-group under addition and consists, when
a is sufficiently large, of the multiples of a certain integer. Moreover, for a ≫ 0 in
the set, the images of the rational maps X 99K |Aa| are birational to each other; in
particular, their dimension is κ(A).

For details, see [5, Definition 2.1.3, Proposition 2.1.21, Theorem 2.1.33].

Remark 3. Related to our result, consider for instance the case dim(sb(A)) = 0, that is a
power of A is globally generated by its sections (A is semi-ample); the 0-ample cone is stable
under the addition of a semi-ample term.

At the other end of the scale, Totaro’s result [8, Theorem 9.1] shows that the (dimX − 1)-
ample cone is stable under the addition of line bundles A = OX(D), where D is an effective
divisor, that is those line bundles which admit a non-trivial section; clearly, in this case
dim(sb(A)) 6 dimX − 1.

Lemma 4. Assume that the image of X 99K |A| is κ(A)-dimensional and b(A) 6= ∅. Then

holds: κ(A) > codimX

(

b(A)
)

− 1.

Proof. The equation (2) implies that the blow-up BlI(X) of the ideal I := I
b(A) is a closed

subscheme the product X × P(H0(X,A)∨); let (σ, f) denote the inclusion morphism. For
general x ∈ b(A), σ−1(x) is at least

(

codimX

(

b(A)
)

−1
)

-dimensional and it is also contained

in f
(

BlI(X)
)

, which is κ(A)-dimensional. �
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Now we start proving the theorem A.

Proof. We observe that the statement is invariant after replacing A by some power Aa: indeed,
(A ⊗ L)a = A

a ⊗ L
a and the inequality (⋆) is preserved. Thus, henceforth, we may assume

the following:

sb(A) = b(A)red, Image
(

X 99K |A|
)

is κ(A)-dimensional.

If κ(A) > 1, Bertini’s theorem (cf. [2] [4, Théorème 6.3]) implies that we have the exact
sequences:

0 → A
−1 ⊗ OXl−1

→ OXl−1
→ OXl

→ 0, l = 1, . . . , κ(A), (3)

where
X =: X0 ⊃ X1 ⊃ · · · ⊃ Xκ(A), dimXl = dimX − l,

Xl ∈
∣

∣Image
(

H0(A) → H0(A⊗ OXl−1
)
)
∣

∣ are very general,

κ
(

A⊗ OXκ(A)

)

= 0.

(4)

We distinguish two cases, whether sb(A) is empty or not.

Case sb(A) = ∅ In this case, A is globally generated and the image of X → |A| is κ(A)-
dimensional. For shorthand, we denote κ := κ(A).

We argue by descending induction on q. We will prove the following stronger statement:
for all locally free sheaves F on X,

∃mF ∀m > mF ∀ 0 6 j 6 m ∀ t > q, Ht(X,F ⊗A
j ⊗ F

m) = 0. (5)

We fix such an F. If κ = 0, then A ∼= OX because it is globally generated, and there is nothing
to prove. Thus we may assume κ > 1.

Let q = dimX − 1. We tensor the exact sequence (3), with l = 1, by F ⊗ A
j ⊗ L

m and
obtain, for j = 1, . . . ,m:

HdimX(X,F ⊗A
j−1 ⊗ L

m) → HdimX(X,F ⊗A
j ⊗ L

m) → 0.

Thus HdimX(X,F ⊗ L
m) → HdimX(X,F ⊗A

j ⊗ L
m) is surjective, and (5) follows.

Suppose now that (5) holds for q, for some m
(q)
F

, and let us prove it for q − 1. So, if L is
(q − 1)-ample (so it is q-ample), we must show that the Hq(·)-term vanishes. The definition

of the (q − 1)-ampleness implies that there is m
(q−1)
F

> m
(q)
F

such that

Hq(X,F ⊗ L
m ⊗ OXl

) = 0, ∀ l = 0, . . . , κ, ∀m > m
(q−1)
F

. (6)

We observe that A⊗OXκ

∼= OXκ
, because κ(A⊗OXκ

) = 0 and A⊗OXκ
is globally generated,

which implies:

Hq(X,F ⊗A
j ⊗ L

m ⊗ OXκ
) = 0, for 0 6 j 6 m. (7)

Now assume that Xl satisfies Hq(X,F ⊗ A
j ⊗ L

m ⊗ OXl
) = 0, for 0 6 j 6 m, and we prove

the same for Xl−1. The sequence (3) tensored by F ⊗A
j ⊗ L

m, j = 1, . . . ,m, yields:

Hq(X,F ⊗A
j−1 ⊗ L

m ⊗ OXl−1
) → Hq(X,F ⊗A

j ⊗ L
m ⊗ OXl−1

) → 0, ∀m > m
(q−1)
F

.

The equation (6) implies Hq(X,F⊗A
j ⊗L

m ⊗OXl−1
) = 0, for 0 6 j 6 m. Recursively, after

κ steps, we find that (5) holds for X = X0 and t = q. This completes the inductive argument.

Case sb(A) 6= ∅ The key is again the exact sequences (3). Let

κ := codim
(

b(A)
)

− 1.
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The lemma 4 implies that we have the inequality: κ(A) > κ > dimX − q − 1. The term Xκ

in (3), has the following properties:

• κ(A⊗ OXκ
) > 0;

• dimXκ = dimX − κ = dim
(

b(A)
)

+ 1, b(A)red ⊂ (Xκ)red.

Since the base locus is non-empty, there is a section in A which vanishes along a (non-trivial)
divisor Xκ+1 ⊂ Xκ. (Otherwise, a component of Xκ must be contained in b(A).) This yields
one more exact sequence:

0 → A
−1 ⊗ OXκ

→ OXκ
→ OXκ+1 → 0, dimXκ+1 = dimX − (κ+ 1) 6 q.

We tensor it by F ⊗A
j ⊗L

m and deduce, for t > q:

Ht(X,F ⊗A
j−1 ⊗ L

m ⊗ OXκ
) → Ht(X,F ⊗A

j ⊗ L
m ⊗ OXκ

) → 0.

Since L is q-ample, it follows that for t > q holds:

Ht(X,F ⊗A
j ⊗ L

m ⊗ OXκ
) = 0, for m ≫ 0, 0 6 j 6 m.

This is the vanishing (7), necessary for the induction step. Hence we can repeat the proof of
the previous case. �

Remark 5. (i) The proof of Sommese’s result [7, Corrollary 1.10.2] about the convexity
of the cone generated by the geometrically q-ample line bundles does not carry over
to our setting because it essentially uses their global generation.

(ii) It is not clear to us whether the theorem remains valid if, instead of q-ample line
bundles, one considers q-positive line bundles (cf. [1]).
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