ON THE q-AMPLENESS OF THE TENSOR PRODUCT OF TWO LINE BUNDLES

MIHAI HALIC, ROSHAN TAJAROD

ABSTRACT. We prove that the tensor product of two line bundles, one being q-ample and the other with sufficiently low-dimensional base locus, is still q-ample.

The result

The goal of this note is to prove the following property of the *q*-ample cone of a projective variety.

Theorem A. Let X be a normal, irreducible projective variety defined over an algebraically closed field of characteristic zero. Consider $\mathcal{A}, \mathcal{L} \in \text{Pic}(X)$ and denote the stable base locus of \mathcal{A} by $\text{sb}(\mathcal{A})$. We assume that \mathcal{L} is q-ample and

$$q \ge \dim(\operatorname{sb}(\mathcal{A})). \tag{(\star)}$$

Then $\mathcal{A} \otimes \mathcal{L}$ is q-ample too.

The classes of the q-ample line bundles form an open cone in the vector space

$$N^1(X)_{\mathbb{R}} := (\operatorname{Pic}(X) / \sim_{\operatorname{num}}) \otimes_{\mathbb{Z}} \mathbb{R},$$

generated by invertible sheaves (line bundles) on X modulo numerical equivalence (cf. [1, 3]). The tensor product of two q-ample line bundles is not q-ample in general (cf. [8, Theorem 8.3]), and therefore the q-ample cone is, usually, not convex.

This situation contrasts the classical case of ample line bundles, corresponding to q = 0, which generate a convex cone. Actually, it is well-known that the ample cone of a projective variety is stable under the addition of a numerically effective (nef) term.

Moreover, Sommese proved in [7, Corollary 1.10.2] that the tensor product of two globally generated, q-ample line bundles is still q-ample. However, the concept of q-ampleness used in *loc. cit.* is defined geometrically and it is based on the global generation of the line bundles.

For this reason, it is natural to ask whether the q-ample cone is stable under the addition of suitable terms; by abuse of language, we call such a feature a 'convexity property'. The theorem stated above can be viewed as an answer to this question.

1. NOTATION AND PROOF

Definition 1. (cf. [8, §6]) Let X be a projective variety defined over an algebraically closed field k of characteristic zero. A line bundle $\mathcal{L} \in \text{Pic}(X)$ is called *q-ample* if, for all coherent sheaves \mathcal{F} on X, holds:

$$\exists m_{\mathcal{F}} \text{ such that } \forall m \ge m_{\mathcal{F}} \forall t > q, \quad H^t(X, \mathcal{F} \otimes \mathcal{L}^m) = 0.$$
(1)

¹⁹⁹¹ Mathematics Subject Classification. 14F17, 14C20.

Key words and phrases. tensor product, q-ample line bundle.

Since any coherent sheaf admits a finite resolution by locally free sheaves, it is enough to check the condition (1) for \mathcal{F} locally free.

The definition is closely related to the notions of q-positivity in [1] and of geometric q-ampleness in [7]. These concepts are compared in [6].

Clearly, if \mathcal{L} is q-ample, then it is q'-ample, for all $q' \ge q$; the larger the value of q, the weaker the restriction on \mathcal{L} . Any line bundle on X is dim X-ample; the first interesting case is $q = \dim X - 1$. In [8, Theorem 9.1], Totaro proved that the $(\dim X - 1)$ -ample cone is the complement in $N^1(X)_{\mathbb{R}}$ of the negative of the closed effective cone.

Notation 2. For $\mathcal{A} \in \operatorname{Pic}(X)$, we denote:

(i) $\mathfrak{b}(\mathcal{A})$ the base locus of \mathcal{A} ; it is the zero locus of the 'universal section':

$$\mathcal{O}_X \to H^0(X,\mathcal{A})^{\vee} \otimes \mathcal{A}, \quad (x,1) \longmapsto \sum_{s \in \text{basis of } H^0(X,\mathcal{A})} s^{\vee} \otimes s(x), \quad \forall x \in X,$$

where (c^{\vee}) is the dual basis

where $(s^{\vee})_{s \in \text{basis of } H^0(X,\mathcal{A})}$ is the dual basis.

The scheme structure of $\mathfrak{b}(\mathcal{A})$ is defined by the following sheaf of ideals:

$$H^{0}(X,\mathcal{A}) \otimes \mathcal{A}^{-1} \twoheadrightarrow \mathfrak{I}_{\mathfrak{b}(\mathcal{A})} \subset \mathfrak{O}_{X}.$$
 (2)

The stable base locus of \mathcal{A} is the closed subset of X obtained as the set-theoretical intersection $\operatorname{sb}(\mathcal{A}) := \bigcap_{a \ge 1} \mathfrak{b}(\mathcal{A}^a)_{\operatorname{red}}$; when a is sufficiently large and divisible, $\operatorname{sb}(\mathcal{A}) = \mathfrak{b}(\mathcal{A}^a)_{\operatorname{red}}$.

(ii) $\kappa(\mathcal{A})$ the Kodaira-Iitaka dimension of \mathcal{A} ; it is defined as:

$$\begin{aligned} \kappa(\mathcal{A}) &:= \text{transcend.} \deg_{\mathbb{k}} \Big(\bigoplus_{a \ge 0} H^0(X, \mathcal{A}^a) \Big) - 1 \\ &= \max_{a \ge 1} \dim \Big(\text{Image}(X \dashrightarrow |\mathcal{A}^a|) \Big). \end{aligned}$$

The set $\{a \ge 1 \mid H^0(X, \mathcal{A}^a) \ne 0\}$ is a semi-group under addition and consists, when a is sufficiently large, of the multiples of a certain integer. Moreover, for $a \gg 0$ in the set, the images of the rational maps $X \dashrightarrow |\mathcal{A}^a|$ are birational to each other; in particular, their dimension is $\kappa(\mathcal{A})$.

For details, see [5, Definition 2.1.3, Proposition 2.1.21, Theorem 2.1.33].

Remark 3. Related to our result, consider for instance the case $\dim(sb(\mathcal{A})) = 0$, that is a power of \mathcal{A} is globally generated by its sections (\mathcal{A} is semi-ample); the 0-ample cone is stable under the addition of a semi-ample term.

At the other end of the scale, Totaro's result [8, Theorem 9.1] shows that the $(\dim X - 1)$ ample cone is stable under the addition of line bundles $\mathcal{A} = \mathcal{O}_X(D)$, where D is an effective
divisor, that is those line bundles which admit a non-trivial section; clearly, in this case $\dim(\mathrm{sb}(\mathcal{A})) \leq \dim X - 1$.

Lemma 4. Assume that the image of $X \dashrightarrow |\mathcal{A}|$ is $\kappa(\mathcal{A})$ -dimensional and $\mathfrak{b}(\mathcal{A}) \neq \emptyset$. Then holds: $\kappa(\mathcal{A}) \ge \operatorname{codim}_X(\mathfrak{b}(\mathcal{A})) - 1$.

Proof. The equation (2) implies that the blow-up $\operatorname{Bl}_{\mathfrak{I}}(X)$ of the ideal $\mathfrak{I} := \mathfrak{I}_{\mathfrak{b}(\mathcal{A})}$ is a closed subscheme the product $X \times \mathbb{P}(H^0(X, \mathcal{A})^{\vee})$; let (σ, f) denote the inclusion morphism. For general $x \in \mathfrak{b}(\mathcal{A}), \sigma^{-1}(x)$ is at least $(\operatorname{codim}_X (\mathfrak{b}(\mathcal{A})) - 1)$ -dimensional and it is also contained in $f(\operatorname{Bl}_{\mathfrak{I}}(X))$, which is $\kappa(\mathcal{A})$ -dimensional.

Now we start proving the theorem A.

Proof. We observe that the statement is invariant after replacing \mathcal{A} by some power \mathcal{A}^a : indeed, $(\mathcal{A} \otimes \mathcal{L})^a = \mathcal{A}^a \otimes \mathcal{L}^a$ and the inequality (*) is preserved. Thus, henceforth, we may assume the following:

$$\operatorname{sb}(\mathcal{A}) = \mathfrak{b}(\mathcal{A})_{\operatorname{red}}, \quad \operatorname{Image}(X \dashrightarrow |\mathcal{A}|) \text{ is } \kappa(\mathcal{A}) \text{-dimensional.}$$

If $\kappa(\mathcal{A}) \ge 1$, Bertini's theorem (cf. [2] [4, Théorème 6.3]) implies that we have the exact sequences:

$$0 \to \mathcal{A}^{-1} \otimes \mathcal{O}_{X_{l-1}} \to \mathcal{O}_{X_{l-1}} \to \mathcal{O}_{X_l} \to 0, \quad l = 1, \dots, \kappa(\mathcal{A}), \tag{3}$$

where

$$X =: X_0 \supset X_1 \supset \cdots \supset X_{\kappa(\mathcal{A})}, \quad \dim X_l = \dim X - l,$$

$$X_l \in \left| \operatorname{Image} \left(H^0(\mathcal{A}) \to H^0(\mathcal{A} \otimes \mathcal{O}_{X_{l-1}}) \right) \right| \text{ are very general}, \qquad (4)$$

$$\kappa \left(\mathcal{A} \otimes \mathcal{O}_{X_{\kappa(\mathcal{A})}} \right) = 0.$$

We distinguish two cases, whether $sb(\mathcal{A})$ is empty or not.

<u>Case sb(\mathcal{A}) = \emptyset </u> In this case, \mathcal{A} is globally generated and the image of $X \to |\mathcal{A}|$ is $\kappa(\mathcal{A})$ -dimensional. For shorthand, we denote $\kappa := \kappa(\mathcal{A})$.

We argue by descending induction on q. We will prove the following stronger statement: for all locally free sheaves \mathcal{F} on X,

$$\exists m_{\mathfrak{F}} \,\forall m \ge m_{\mathfrak{F}} \,\forall 0 \leqslant j \leqslant m \,\forall t > q, \quad H^t(X, \mathfrak{F} \otimes \mathcal{A}^j \otimes \mathfrak{F}^m) = 0.$$
⁽⁵⁾

We fix such an \mathcal{F} . If $\kappa = 0$, then $\mathcal{A} \cong \mathcal{O}_X$ because it is globally generated, and there is nothing to prove. Thus we may assume $\kappa \ge 1$.

Let $q = \dim X - 1$. We tensor the exact sequence (3), with l = 1, by $\mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m$ and obtain, for $j = 1, \ldots, m$:

$$H^{\dim X}(X, \mathcal{F} \otimes \mathcal{A}^{j-1} \otimes \mathcal{L}^m) \to H^{\dim X}(X, \mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m) \to 0.$$

Thus $H^{\dim X}(X, \mathcal{F} \otimes \mathcal{L}^m) \to H^{\dim X}(X, \mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m)$ is surjective, and (5) follows.

Suppose now that (5) holds for q, for some $m_{\mathcal{F}}^{(q)}$, and let us prove it for q-1. So, if \mathcal{L} is (q-1)-ample (so it is q-ample), we must show that the $H^q(\cdot)$ -term vanishes. The definition of the (q-1)-ampleness implies that there is $m_{\mathcal{F}}^{(q-1)} \ge m_{\mathcal{F}}^{(q)}$ such that

$$H^{q}(X, \mathcal{F} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{l}}) = 0, \ \forall l = 0, \dots, \kappa, \ \forall m \ge m_{\mathcal{F}}^{(q-1)}.$$
(6)

We observe that $\mathcal{A} \otimes \mathcal{O}_{X_{\kappa}} \cong \mathcal{O}_{X_{\kappa}}$, because $\kappa(\mathcal{A} \otimes \mathcal{O}_{X_{\kappa}}) = 0$ and $\mathcal{A} \otimes \mathcal{O}_{X_{\kappa}}$ is globally generated, which implies:

$$H^{q}(X, \mathcal{F} \otimes \mathcal{A}^{j} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{\kappa}}) = 0, \text{ for } 0 \leq j \leq m.$$

$$\tag{7}$$

Now assume that X_l satisfies $H^q(X, \mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m \otimes \mathcal{O}_{X_l}) = 0$, for $0 \leq j \leq m$, and we prove the same for X_{l-1} . The sequence (3) tensored by $\mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m$, $j = 1, \ldots, m$, yields:

$$H^{q}(X, \mathcal{F} \otimes \mathcal{A}^{j-1} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{l-1}}) \to H^{q}(X, \mathcal{F} \otimes \mathcal{A}^{j} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{l-1}}) \to 0, \ \forall \, m \geqslant m_{\mathcal{F}}^{(q-1)}.$$

The equation (6) implies $H^q(X, \mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m \otimes \mathcal{O}_{X_{l-1}}) = 0$, for $0 \leq j \leq m$. Recursively, after κ steps, we find that (5) holds for $X = X_0$ and t = q. This completes the inductive argument.

<u>Case $\operatorname{sb}(\mathcal{A}) \neq \emptyset$ </u> The key is again the exact sequences (3). Let

$$\kappa := \operatorname{codim} \left(\mathfrak{b}(\mathcal{A}) \right) - 1.$$

The lemma 4 implies that we have the inequality: $\kappa(\mathcal{A}) \ge \kappa \ge \dim X - q - 1$. The term X_{κ} in (3), has the following properties:

- $\kappa(\mathcal{A} \otimes \mathcal{O}_{X_{\kappa}}) \geq 0;$
- dim X_{κ} = dim $X \kappa$ = dim $(\mathfrak{b}(\mathcal{A})) + 1$, $\mathfrak{b}(\mathcal{A})_{\mathrm{red}} \subset (X_{\kappa})_{\mathrm{red}}$.

Since the base locus is non-empty, there is a section in \mathcal{A} which vanishes along a (non-trivial) divisor $X_{\kappa+1} \subset X_{\kappa}$. (Otherwise, a component of X_{κ} must be contained in $\mathfrak{b}(\mathcal{A})$.) This yields one more exact sequence:

$$0 \to \mathcal{A}^{-1} \otimes \mathcal{O}_{X_{\kappa}} \to \mathcal{O}_{X_{\kappa}} \to \mathcal{O}_{X_{\kappa+1}} \to 0, \quad \dim X_{\kappa+1} = \dim X - (\kappa+1) \leqslant q.$$

We tensor it by $\mathcal{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m$ and deduce, for t > q:

$$H^{t}(X, \mathfrak{F} \otimes \mathcal{A}^{j-1} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{\kappa}}) \to H^{t}(X, \mathfrak{F} \otimes \mathcal{A}^{j} \otimes \mathcal{L}^{m} \otimes \mathcal{O}_{X_{\kappa}}) \to 0.$$

Since \mathcal{L} is q-ample, it follows that for t > q holds:

$$H^t(X, \mathfrak{F} \otimes \mathcal{A}^j \otimes \mathcal{L}^m \otimes \mathcal{O}_{X_{\kappa}}) = 0, \quad \text{for } m \gg 0, \ 0 \leq j \leq m.$$

This is the vanishing (7), necessary for the induction step. Hence we can repeat the proof of the previous case. \Box

- **Remark 5.** (i) The proof of Sommese's result [7, Corrollary 1.10.2] about the convexity of the cone generated by the geometrically *q*-ample line bundles does not carry over to our setting because it essentially uses their global generation.
 - (ii) It is not clear to us whether the theorem remains valid if, instead of q-ample line bundles, one considers q-positive line bundles (cf. [1]).

References

- Demailly J.-P., Peternell T., Schneider, M.: Holomorphic line bundles with partially vanishing cohomology. In 'Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry' (M. Teicher (ed.)), pp. 165–198. Bar-Ilan Univ., Ramat Gan (1996).
- [2] Diaz S., Harbater D.: Strong Bertini theorems. Trans. Amer. Math. Soc. **324**, 73–86 (1991).
- [3] Greb D., Küronya A.: Partial positivity: geometry and cohomology of q-ample line bundles. In 'Proceedings in honor of Rob Lazarsfeld's 60th birthday', pp. 207–239. London Math. Soc. Lecture Note Series 417, Cambridge Univ. Press (2015).
- [4] Jouanolou J.-P.: Théorèmes de Bertini et Applications. Birkhäuser (1983).
- [5] Lazarsfeld R.: Positivity in Algebraic Geometry I. Springer-Verlag (2004).
- [6] Matsumura S.: Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces. Ann. Inst. Fourier 63, 2199–2221 (2013).
- [7] Sommese A.: Submanifolds of abelian varieties. Math. Ann. 233, 229–256 (1978).
- [8] Totaro B.: Line bundles with partially vanishing cohomology. J. Eur. Math. Soc. 15, 731–754 (2013).