A note on the Erdős-Faber-Lovász Conjecture: quasigroups and complete digraphs*

Gabriela Araujo-Pardo † Christian Rubio-Montiel †‡
Adrián Vázquez-Ávila §

May 14, 2022

Abstract

A decomposition of a simple graph G is a pair (G, P) where P is a set of subgraphs of G, which partitions the edges of G in the sense that every edge of G belongs to exactly one subgraph in P. If the elements of P are induced subgraphs then the decomposition is denoted by [G, P].

A k-P-coloring of a decomposition (G, P) is a surjective function that assigns to the edges of G a color from a k-set of colors, such that all edges of $H \in P$ have the same color, and, if $H_1, H_2 \in P$ with $V(H_1) \cap V(H_2) \neq \emptyset$ then $E(H_1)$ and $E(H_2)$ have different colors. The chromatic index $\chi'((G, P))$ of a decomposition (G, P) is the smallest number k for which there exists a k-P-coloring of (G, P).

The well-known Erdős-Faber-Lovász Conjecture states that any decomposition $[K_n, P]$ satisfies $\chi'([K_n, P]) \leq n$. We use quasigroups and complete digraphs to give a new family of decompositions that satisfy the conjecture.

1 Introduction

Erdős, Faber and Lovász, in 1972, conjectured the following (see [2]): "if $|A_i| = n$, $1 \le i \le n$, and $|A_i \cap A_j| \le 1$, for $1 \le i < j \le n$, then one can color the elements of the union $\bigcup_{i=1}^n A_i$ by n colors, so that every set has elements of all the colors." This conjecture is called the Erdős-Faber-Lovász Conjecture (for short EFL), and this can be set in terms of decompositions (see [1, 3]).

^{*}Research supported by: G. A-P. partially supported by CONACyT-México under Projects 166306, 178395 and PAPIIT-México under Project IN101912. C. R-M. partially supported by a CONACyT-México Postdoctoral fellowship and by the National scholarship programme of the Slovak republic. A. V-Á. partially supported by SNI of CONACyT-México.

[†]Instituto de Matemáticas, Universidad Nacional Autónoma de México, 04510 México City, Mexico, [garaujo|christian]@matem.unam.mx.

[‡]Department of Algebra, Comenius University, 842 48 Bratislava, Slovakia, christian.rubio@fmph.uniba.sk.

[§]Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, 76270 Querétaro, Mexico, adrian.vazquez@unaq.edu.mx.

Conjecture 1.1. If $[K_n, P]$ is a decomposition, then $\chi'([K_n, P]) \leq n$.

In the following section we give a family of decompositions using finite quasigroups and complete digraphs satisfying Conjecture 1.1; this is a generalization of a previous result given in [1] and it is related with a result given in [3].

2 Quasigroups and digraphs

To begin with, we introduce definitions related to quasigroups, complete digraphs and linear-factorizations. A digraph D is a finite, non-empty set V (the vertices of D) together with a set A of ordered pairs of elements of V (the arcs of D). We denote by |V| the order and by |A| the size of D respectively.

A digraph D is called *symmetric* if whenever (u,v) is an arc of D then (v,u) is an arc of D –every graph can be interpreted as a symmetric digraph—. A directed cycle or a d-gon is a subdigraph with set of vertices $\{v_1,v_2,\ldots,v_d\}$, such that their arcs are (v_d,v_1) and (v_i,v_{i+1}) for $i\in\{1,\ldots,d-1\}$ and $d\geq 2$. A loop or a 1-gon is an arc joining a vertex with itself.

The complete digraph \overrightarrow{K}_n^* has order n and size n^2 (n loops and $\binom{n}{2}$ 2-gons). A linear-factor of the complete digraph \overrightarrow{K}_n^* is a subdigraph of order n and size n, such that it is a set of pairwise vertex-disjoint d-gons. A linear-factorization of \overrightarrow{K}_n^* is a set of pairwise arc-disjoint linear-factors, such that these linear-factors induce a partition of the arcs, see Figure 1: c).

A quasigroup (\mathcal{Q}_n, \cdot) is a set \mathcal{Q} of n elements with a binary operation \cdot , such that for each x and y in \mathcal{Q} there exist unique elements a and b in \mathcal{Q} with $x \cdot a = y$ and $b \cdot x = y$.

Let (\mathcal{Q}_n,\cdot) be a quasigroup and the complete digraph \overrightarrow{K}_n^* , such that its vertices are the elements of \mathcal{Q}_n . Afterwards, we color the arcs of \overrightarrow{K}_n^* by n colors which are in a one-to-one correspondence with the elements of \mathcal{Q}_n so that for any two vertices x and y in \mathcal{Q}_n the arc (x,y) obtains the color corresponding to $a \in \mathcal{Q}_n$ for which $x \cdot a = y$ holds true. Then the resulting graph with the described coloring of arcs is called the *Cayley color graph* $C(\mathcal{Q}_n)$ of \mathcal{Q}_n . The Cayley color graph of a quasigroup is described in [4].

It is not hard to prove that the arcs colored by the same color in $C(\mathcal{Q}_n)$ induce a linear-factor of this digraph. An arc colored by the color corresponding color to some $a \in \mathcal{Q}_n$ outgoing from the vertex x leads into $x \cdot a$ in $C(\mathcal{Q}_n)$. The element $x \cdot a$ is exactly one for any x and any a of \mathcal{Q}_n .

Consequently, the Cayley color graph $C(\mathcal{Q}_n)$ can be considered as a linear-factorization \mathcal{F} of \overrightarrow{K}_n^* of n linear-factors. In [4] it was proved that any linear-factorization \mathcal{F} of the complete digraph \overrightarrow{K}_n^* and any one-to-one mapping of the vertex set of \overrightarrow{K}_n^* onto the set of linear-factors of \mathcal{F} determines a quasigroup \mathcal{Q}_n , such that the Cayley color graph $C(\mathcal{Q}_n)$ of \mathcal{Q}_n can be considered $(\overrightarrow{K}_n^*, \mathcal{F})$, as described above.

Following, we relate the previous concepts with decompositions of complete graphs. Let $[K_n, P]$ be a decomposition P of K_n and let \overline{K}_n be the symmetric

Figure 1: a) Two elements p and q of a decomposition of K_{13} into triangle arising from the cyclic Steiner System STS(13). b) K_{13} as a symmetric digraph c) A linear-factor F for n=13. The mapping $i \mapsto i+1$ produces a linear-factorization. d) The restriction of F onto p and q.

complete digraph (without loops). We consider the decomposition $[\overrightarrow{K}_n, P]$ induced by $[K_n, P]$, that is, P is a set of subdigraphs of \overrightarrow{K}_n , which partitions the arcs of \overrightarrow{K}_n in the sense that every arc of \overrightarrow{K}_n belongs to exactly one subdigraph in P and every element of P is a symmetric complete subdigraph. The digraph \overrightarrow{K}_n^* is \overrightarrow{K}_n with the set L of n loops.

Now, we state and prove the main theorem:

Theorem 2.1. Let $[\overrightarrow{K}_n, P]$ be a decomposition P of \overrightarrow{K}_n arising from $[K_n, P]$ and let $(\overrightarrow{K}_n^*, \mathcal{F})$ be a linear-factorization \mathcal{F} of \overrightarrow{K}_n^* . If there exists a function $h: P \to \mathcal{F}$, such that for any $p \in P$, $(A(p) \cup L) \cap A(h(p))$ is a linear-factor F_p of p^* $\neg p$ with loops— and for any $p, q \in P$, $A(F_p) \cap A(F_q) = \emptyset$ then $\chi'([K_n, P]) \leq n$.

Proof. Color the edges of an element p of P with f(h(p)) where f is a one-to-one mapping of a quasigroup \mathcal{Q} onto the set of linear-factors of \mathcal{F} . The n-coloring is well-defined due to the fact that for any $p, q \in P$, $A(F_p) \cap A(F_q) = \emptyset$ and the result follows.

We can explain Theorem 2.1 as following:

Let $(\overrightarrow{K}_n^*, \mathcal{F})$ be a linear-factorization \mathcal{F} of \overrightarrow{K}_n^* . Then every decomposition P formed by complete subdigraphs obtained via some linear-factor f_0 of \mathcal{F} , meaning, the intersection of the arcs of $p \in P$ with the arcs of f_0 is a linear factor of p has a consequence that $\chi'([K_n, P]) \leq n$. Figure 1 illustrates Theorem 2.1 with an example for p = 1.

References

[1] G. Araujo-Pardo and A. Vázquez-Ávila, A note on Erdős-Faber-Lovász conjecture and edge coloring of complete graphs, Ars Combin. (accepted).

- [2] P. Erdős, Problems and results in graph theory and combinatorial analysis, Proc. Fifth Brit. Comb. Conf. (Univ. Aberdeen, Aberdeen, 1975) (Winnipeg, Man.), Utilitas Math., 1976, pp. 169–192. Cong. Num., No. XV.
- [3] D. Romero and A. Sánchez-Arroyo, Adding evidence to the Erdős-Faber-Lovász conjecture, Ars Combin. 85 (2007), 71–84.
- [4] B. Zelinka, Quasigroups and factorisation of complete digraphs, Mat. Časopis Sloven. Akad. Vied 23 (1973), 333–341.