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FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

JIE HAN AND YI ZHAO

ABSTRACT. For 1 < d < ¢ < k, we give a new lower bound for the minimum d-degree threshold that
guarantees a Hamilton ¢-cycle in k-uniform hypergraphs. When k£ > 4 and d < £ = k — 1, this bound is
larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a well-
known conjecture of Rodl and Rucinski. Our (simple) construction generalizes a construction of Katona and
Kierstead and the space barrier for Hamilton cycles.

1. INTRODUCTION

The study of Hamilton cycles is an important topic in graph theory. A classical result of Dirac [4] states
that every graph on n > 3 vertices with minimum degree n/2 contains a Hamilton cycle. In recent years,
researchers have worked on extending this theorem to hypergraphs — see recent surveys [106] [18] [26].

To define Hamilton cycles in hypergraphs, we need the following definitions. Given k > 2, a k-uniform
hypergraph (in short, k-graph) consists of a vertex set V and an edge set F C (‘;), where every edge is a
k-element subset of V. Given a k-graph H with a set S of d vertices (where 1 < d < k—1) we define deg (.S)
to be the number of edges containing S (the subscript H is omitted if it is clear from the context). The
minimum d-degree 4(H) of H is the minimum of degy(S) over all d-vertex sets S in H. For 1 <¢ <k —1,
a k-graph is a called an {-cycle if its vertices can be ordered cyclically such that each of its edges consists
of k consecutive vertices and every two consecutive edges (in the natural order of the edges) share exactly ¢
vertices. In k-graphs, a (k — 1)-cycle is often called a tight cycle. We say that a k-graph contains a Hamilton
{-cycle if it contains an f-cycle as a spanning subhypergraph. Note that a Hamilton ¢-cycle of a k-graph on
n vertices contains exactly n/(k — ¢) edges, implying that k — ¢ divides n.

Let 1 < d,¢ < k—1. For n € (k— ()N, we define h’(k,n) to be the smallest integer h such that every
n-vertex k-graph H satisfying d4(H) > h contains a Hamilton ¢-cycle. Note that whenever we write hf;(k, n),
we always assume that 1 < d < k — 1. Moreover, we often write hq(k,n) instead of h%~1(k,n) for simplicity.
Similarly, for n € kN, we define m4(k,n) to be the smallest integer m such that every n-vertex k-graph H
satisfying 04(H) > m contains a perfect matching. The problem of determining my(k, n) has attracted much
attention recently and the asymptotic value of mg(k,n) is conjectured as follows. Note that the o(1) term
refers to a function that tends to 0 as n — oo throughout the paper.

Conjecture 1.1. [6,[15] For 1 <d<k-—1 and k| n,

ma(k,n) = <max{%,1 - (1 - %)kd} +o(1)> (Z:S)

Conjecture [T has been confirmed [I}, [17] for min{k — 4,%k/2} < d < k — 1 (the exact values of mq(k,n)
are also known in some cases, e.g., [23, 25]). On the other hand, h%(k,n) has also been extensively studied
[2, 131, 5L [7], [8, @1 10k 11 [12], 3] 141 19, 20} 22| 24]. In particular, R6dl, Rucinski and Szemerédi [20, 22] showed
that hx_1(k,n) = (1/2 + o(1))n. The same authors proved in [2I] that mi_1(k,n) = (1/2 + o(1))n (later
they determined my_1(k,n) exactly [23]). This suggests that the values of hq(k,n) and mq(k,n) are closely
related and inspires R6dl and Ruciniski to make the following conjecture.
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Conjecture 1.2. [18 Conjecture 2.18] Let k >3 and 1 < d <k — 2. Then
ha(k,n) = mg(k,n) + o(n*~9).

By using the value of mg(k,n) from Conjecture [[J Kiithn and Osthus stated this conjecture explicitly
for the case d = 1.

Conjecture 1.3. [16, Conjecture 5.3] Let k > 3. Then

ha(k,n) = (1 - (1 - %)H + o(1)> (Z: i)

In this note we provide new lower bounds for h%(k,n) when d < .

Theorem 1.4. Let 1 <d<k—1andt =%k —d, then

halk.m) > <1 - ( t ) [t/211/21([t/2]) 4+ 1)1/ +O(1)> (?)

[t/2] (t+1)
Theorem 1.5. Let 1 <d</<k—-1andt=k—d. Then

_ n
h(k,m) > (1= by p—e2™" +0(1)) (t)
where by ¢ equals the largest sum of the k — £ consecutive binomial coefficients from (8), e

Theorem [[4] disproves both Conjectures and
Corollary 1.6. For all k,

hia (k) > (g +o(1)) (;‘) T (k) > (g +o(1)) (Z) ha(kyn) > (% +o(1)) (Z)

and in general, for any 1 <d <k —1,

1 n
(1.1) ha(k,n) > (1— 3(k—d)/2+1> (k—d>'

These bounds imply that Conjecture L2 is false when k > 4 and min{k — 4,k/2} < d < k — 2, and Conjec-
ture [I.3 is false whenever k > 4.

We will prove Theorem [[L4] Theorem [[L5] and Corollary in the next section.

We believe that Conjecture [[L2]is false whenever k£ > 4 but due to our limited knowledge on mq(k,n), we
can only disprove Conjecture for the cases when mg(k,n) is known.

This bound hig—2(k,n) > (3 + 0(1))(5) coincides with the value of my(3,n) — it was shown in [6] that
mi(3,n) = (5/9+ o(1))(}), and it was widely believed that h1(3,n) = (5/9 + o(1))(}), e.g., see [19]. On
the other hand, it is known [17] that ma(4,n) = (3 + o(1))(5), which is smaller than 3(%). Therefore
k =4 and d = 2 is the smallest case when Theorem [[.4] disproves Conjecture More importantly, (L))
shows that hg(k, n)/(kfd) tends to one as k — d tends to co. For example, as k becomes sufficiently large,
hi—ink(k,m) is close to (Z:Z), the trivial upper bound. In contrast, Conjecture [[.1] suggests that there
exists ¢ > 0 independent of k and d (¢ = 1/e, where e = 2.718..., if Conjecture [[.1] is true) such that
ma(k,n) < (1—c)(3-9).

Similarly, by Theorem [ if k — ¢ = o(v/t), hfy(k,n)/(7}) tends to one as ¢ tends to co because

L k—( t \ . o)
L= buie? 21‘T<Lt/2J)N1‘W'

Theorem also implies the following special case: suppose k is odd and ¢ = d = k — 2. Then t = 2
and by ¢ = bao = 3, and consequently hﬁ:g(k,n) > (% + 0(1)) (g) Previously it was only known that

A2 (k,n) > (1 — (k—_kH)2 +0(1))(3) from @) (where a = [k/(k — ¢)] = (k+ 1)/2). When k is large, the

bound provided by Theorem is much better.
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Finally, we do not know if Theorems [[.4] and are best possible. Glebov, Person, and Weps [5] gave a
general upper bound (far away from our lower bounds)

1 n—d
¢
e )

where c is a constant independent of d, ¢, k, n.

2. THE PROOFS

Before proving our results, it is instructive to recall the so-called space barrier.

Proposition 2.1. [13] Let H = (V, E) be an n-vertex k-graph such that V.= XUY [ and E = {e € (Z) :
enNX #£(}. Suppose | X| < mn, where a := [k/(k — £)], then H does not contain a Hamilton {-cycle.

A proof of Proposition [Z] can be found in [I3] Proposition 2.2] and is actually included in our proof of
Proposition below. It is not hard to see that Proposition 2] shows that

(2.1) .k, n) > <1 - (1 - ﬁ)k_d+o(1)> (Z:Z)

Now we state our construction for Hamilton cycles — it generalizes the one given by Katona and Kierstead
[11, Theorem 3] (where j = |k/2]) and the space barrier (where j = £ + 1 — k) simultaneously. The special
case of k=3, =2,5 =1, and |X| = n/3 appears in [I9, Construction 2].

Proposition 2.2. Given an integer j such that {+1—k < j <k, let H = (V,E) be an n -vertex k-graph such
that V.= XUY and E = {e € (Z) dlenX| ¢{j,7+1,...,5+k—£—1}. Suppose ,(k e)n< |X| < J?}f eg
where a' := |k/(k —£)| and a := [k/(k —£)], then H does not contain a Hamilton £-cycle.

Proof. Suppose instead, that H contains a Hamilton ¢-cycle C. Then all edges e of C satisfy |e N X| ¢
{j,7+1,...,5+k—£—1}. We claim that either all edges e of C satisfy |[e N X| < j — 1 or all edges e
of C satisfy |en X| > j 4+ k — £. Otherwise, there must be two consecutive edges e, e in C such that
lerNX| <j—1and |eaNX| > j+ k— £ However, since |e; Nea| = ¢, we have ||e; N X| —|eaNX|| < k— ¢,
a contradiction.

Observe that every vertex of H is contained in either a or a’ edges of C' and C contains ™ edges. This
implies that

adlX| < Z|eﬁX| <alX|.

ecC
On the other hand, we have > e N X]| < (] — 1) or > colenN X[ > (j+k—£)z%. In either case,
we get a contradiction with the assumption — ( yn < |X| <2 ak é§ O

Note that by reducing the lower and upper bounds for |X| by small constants, we can conclude that H
actually contains no Hamilton £-path.

To prove Theorems [[.4] and [[L5] we apply Proposition with appropriate j and |X|. We need the
following fact.
Fact 2.3. Let k,d,t,j be integers such that 1 < d < k—1andt =%k —d. If % < 2l o L then
Jj—d<[t/2] <.
Proof. Since j— < 2l o ]+1 , we get

)
k[t/2] . k[t/2]
t+1 1<]<t+1+1'
We need to show that [t/2] < j < [t/2] + d. First,
Eft/2] (k—t—1)[t/2]
t+1 t+1

because [t/2] < ¢+ 1 and k — ¢ =d. Second, j > kgi—/lﬂ—lz [t/2] —1lask>t+ 1,807 > [t/2]. O

+1=1Tt/2]+ +1<t/2] +d,

1Throughout the paper, we write XUY for X UY when sets X, Y are disjoint.
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In the proofs of Theorems [[.4] and [[L3], we will consider binomial coefficients ( ) with ¢ < 0 — in this case

(5) = 0. We will conveniently write |X| = zn, where 0 < z < 1, instead of |X| = |xn| — this does not affect
our calculations as n is sufficiently large.

) = (0,1) and 1/3 < X221 < 1/2, there
(V, E) be an n-vertex k-graph such that
In < |X| < Zln, H contains no tight

exists an integer j € [k — 1] such that It < Tttfﬂ < I Tet

V =XUY, |X|=2nand EF = {e € (Z) tlen X| 75]}. Since
Hamilton cycle by Proposition

Now let us compute 04(H). For 0 < i < d, let S; be any d-vertex subset of V' that contains exactly i
vertices in X. By the definition of H,

n—d | X| =4\ (Y| - (d—1)
d Si) = — .
e (%) < t > <j—z‘)< t-j+i
Note that this holds for i > j or i < j — t trivially. So we have
—d X[ =\ /|Y|-(d—1
g (1) (3 ()
0<i<d t j—i t—j+i
_(n X1\ (Y] ¢
- (1) A () () o0
Write | X| = zn and |Y| = yn. When 0 < ¢’ <¢, we have

(Y1) = Gy (Yot (7)ot

When i’ < 0 or ¢/ > t, we have (‘X|) (tIYZ\) 0= ( ):E gt (") In all cases, we have

da(H) = (?) T jagi< { (zt’) xzytl} (?) +o(n’).

Let a; := ()xzyt ‘. Since x = [t/2]/(t+ 1) and y = 1 — z, it is easy to see that maxo<i<¢ a; = afy/2)
(e.g., do=4. 1 for 0 < i < t). Moreover, by Fact 23] we have j —d < [t/2] < j. Together

Proof of Theorem[I]] Let x = [t/2]/(t + 1). Since U (i, %
1

x

with = = [t/2]/(t + ll), this implies that

e o} = arua =

t o\ [t/21121((t/2) + 1)1/
<W2W) (t+ 1)t

and thus the proof is complete. |

Now we turn to the proof of Theorem [[L5] in which we assume that | X| = n/2, though a further improve-
ment of the lower bound may be possible by considering other values of | X|.

Proof of Theorem[I.A The proof is similar to the one of Theorem [[4l Let H = (V| E) be an n-vertex
k-graph such that V = XUY, |X|=n/2 and £ = {e € (‘]g) dlenX| ¢ {[¢/2],...,[¢/2] + k —£—1}}. Note
that

a’(k—e)_hw (k=) >k—(k—f—1)=£+1>2([¢/2] - 1), and
a(k—():hké-‘(k O <k+(k—t—1)<20k—[£/2]) = 2([/2] + k- 0).
So we have
s <=3 < g

n
2

Thus, H contains no Hamilton ¢-cycle by Proposition
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Fix1<d<k-—1andlet t =k —d. Now we compute d4(H). For 0 < i < d, let S; be any d-vertex subset
of V that contains exactly ¢ vertices in X. It is easy to see that

dogyy (1) = @ N (@) (t|flp> T o(nt).

p=i
where ¢’ = [£/2] —i. Using | X| = |Y| = n/2 and the similar calculations in the proof of Theorem [[4] we get

)= ()= () (1) oo

p=1'
By the definition of b ¢, we have

. n _ifn
dqa(H) = OrélilgddegH(Si) > (t) — by -2 t<t> +o(n'). O

Corollary follows from Theorem [[.4] via simple calculations.
Proof of Corollary [0 Let t = k — d and
t t/211t21(|t/2] + 1)Lt/
e Ly L2

[t/2] (t+ 1)t
Theorem [ states that hx—¢(k,n) > (1 — f(t) + o(1))(}) for any 1 <t < k — 1. Since
4 3 216
f(2):§7 f(3):§a and f(4):@,

the bounds for hg_t(k,n), t = 2,3,4, are immediate. To see ([I1J), it suffices to show that for ¢ > 1,

(2:2) 1—f(t)>1— L

V3241

When ¢ is odd, 12 (L2 1/2% when t is even, [t/2]1%/21(|t/2] + 1)[#/2) < (1)t Thus, for

(t+1)°
all ¢, we have
o< (505
= \lt2)) 2

where a strict inequality holds for all even t. Now we use the fact (277’?) < 22™/\/3m + 1, which holds for all
integers m > 1. Thus, for all even ¢, we have f(t) < 1/4/3t/2 + 1; for all odd ¢,

t N1 1/ t+1 \1 1 1
ft) < (Lt/2J>§_ §(W2J+1>§ = V3E+1)/2+1 = VBt2+ 1

Hence f(t) < 1/4/3t/2+ 1 for all t > 1. Moreover, by the computation above, regardless of the parity of ¢,
the strict inequality always holds and thus (2.2)) is proved.

We next show that whenever £k >4 and 2 <t<k-—1,

e e

This implies that Conjecture fails for k > 4, and Conjecture fails for k¥ > 4 and min{k — 4, k/2} <
d <k — 2 (because ma(k,n)/(,",) = maX{%,l - (1- %)k_d} + o(1) in this case). It suffices to show that
fork>4and2<t<k-—1,
N
f(t) <1/2 and f(t) < (1 - E) .

The first inequality immediately follows from ([2:2]) and 1/1/3t/2+ 1 < 1/2. For the second inequality, note
that

f(t)<\/ﬁ<%<<l—%)klg<l—%)t
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for all ¢t > 5. For t = 2,3 and all k > 4, one can verify f(t) < (3/4)" < (1— %)t easily. Also, for t = 4 and
all k> 5, we have f(4) < (4/5)* < (1 — +)%. O
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