
ar
X

iv
:1

50
8.

05
62

3v
1 

 [
m

at
h.

C
O

] 
 2

3 
A

ug
 2

01
5

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

JIE HAN AND YI ZHAO

Abstract. For 1 ≤ d ≤ ℓ < k, we give a new lower bound for the minimum d-degree threshold that
guarantees a Hamilton ℓ-cycle in k-uniform hypergraphs. When k ≥ 4 and d < ℓ = k − 1, this bound is
larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a well-

known conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and
Kierstead and the space barrier for Hamilton cycles.

1. Introduction

The study of Hamilton cycles is an important topic in graph theory. A classical result of Dirac [4] states
that every graph on n ≥ 3 vertices with minimum degree n/2 contains a Hamilton cycle. In recent years,
researchers have worked on extending this theorem to hypergraphs – see recent surveys [16, 18, 26].

To define Hamilton cycles in hypergraphs, we need the following definitions. Given k ≥ 2, a k-uniform
hypergraph (in short, k-graph) consists of a vertex set V and an edge set E ⊆

(

V
k

)

, where every edge is a
k-element subset of V . Given a k-graph H with a set S of d vertices (where 1 ≤ d ≤ k−1) we define degH(S)
to be the number of edges containing S (the subscript H is omitted if it is clear from the context). The
minimum d-degree δd(H) of H is the minimum of degH(S) over all d-vertex sets S in H . For 1 ≤ ℓ ≤ k− 1,
a k-graph is a called an ℓ-cycle if its vertices can be ordered cyclically such that each of its edges consists
of k consecutive vertices and every two consecutive edges (in the natural order of the edges) share exactly ℓ
vertices. In k-graphs, a (k− 1)-cycle is often called a tight cycle. We say that a k-graph contains a Hamilton

ℓ-cycle if it contains an ℓ-cycle as a spanning subhypergraph. Note that a Hamilton ℓ-cycle of a k-graph on
n vertices contains exactly n/(k − ℓ) edges, implying that k − ℓ divides n.

Let 1 ≤ d, ℓ ≤ k − 1. For n ∈ (k − ℓ)N, we define hℓ
d(k, n) to be the smallest integer h such that every

n-vertex k-graph H satisfying δd(H) ≥ h contains a Hamilton ℓ-cycle. Note that whenever we write hℓ
d(k, n),

we always assume that 1 ≤ d ≤ k− 1. Moreover, we often write hd(k, n) instead of hk−1
d (k, n) for simplicity.

Similarly, for n ∈ kN, we define md(k, n) to be the smallest integer m such that every n-vertex k-graph H
satisfying δd(H) ≥ m contains a perfect matching. The problem of determining md(k, n) has attracted much
attention recently and the asymptotic value of md(k, n) is conjectured as follows. Note that the o(1) term
refers to a function that tends to 0 as n → ∞ throughout the paper.

Conjecture 1.1. [6, 15] For 1 ≤ d ≤ k − 1 and k | n,

md(k, n) =

(

max

{

1

2
, 1−

(

1− 1

k

)k−d
}

+ o(1)

)

(

n− d

k − d

)

.

Conjecture 1.1 has been confirmed [1, 17] for min{k − 4, k/2} ≤ d ≤ k − 1 (the exact values of md(k, n)
are also known in some cases, e.g., [23, 25]). On the other hand, hℓ

d(k, n) has also been extensively studied
[2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22, 24]. In particular, Rödl, Ruciński and Szemerédi [20, 22] showed
that hk−1(k, n) = (1/2 + o(1))n. The same authors proved in [21] that mk−1(k, n) = (1/2 + o(1))n (later
they determined mk−1(k, n) exactly [23]). This suggests that the values of hd(k, n) and md(k, n) are closely
related and inspires Rödl and Ruciński to make the following conjecture.
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Conjecture 1.2. [18, Conjecture 2.18] Let k ≥ 3 and 1 ≤ d ≤ k − 2. Then

hd(k, n) = md(k, n) + o(nk−d).

By using the value of md(k, n) from Conjecture 1.1, Kühn and Osthus stated this conjecture explicitly
for the case d = 1.

Conjecture 1.3. [16, Conjecture 5.3] Let k ≥ 3. Then

h1(k, n) =

(

1−
(

1− 1

k

)k−1

+ o(1)

)

(

n− 1

k − 1

)

.

In this note we provide new lower bounds for hℓ
d(k, n) when d ≤ ℓ.

Theorem 1.4. Let 1 ≤ d ≤ k − 1 and t = k − d, then

hd(k, n) ≥
(

1−
(

t

⌊t/2⌋

)⌈t/2⌉⌈t/2⌉(⌊t/2⌋+ 1)⌊t/2⌋

(t+ 1)t
+ o(1)

)

(

n

t

)

.

Theorem 1.5. Let 1 ≤ d ≤ ℓ ≤ k − 1 and t = k − d. Then

hℓ
d(k, n) ≥

(

1− bt,k−ℓ2
−t + o(1)

)

(

n

t

)

,

where bt,k−ℓ equals the largest sum of the k − ℓ consecutive binomial coefficients from
(

t
0

)

, . . . ,
(

t
t

)

.

Theorem 1.4 disproves both Conjectures 1.2 and 1.3.

Corollary 1.6. For all k,

hk−2(k, n) ≥
(

5

9
+ o(1)

)(

n

2

)

, hk−3(k, n) ≥
(

5

8
+ o(1)

)(

n

3

)

, hk−4(k, n) ≥
(

409

625
+ o(1)

)(

n

4

)

and in general, for any 1 ≤ d ≤ k − 1,

hd(k, n) >

(

1− 1
√

3(k − d)/2 + 1

)

(

n

k − d

)

.(1.1)

These bounds imply that Conjecture 1.2 is false when k ≥ 4 and min{k − 4, k/2} ≤ d ≤ k − 2, and Conjec-

ture 1.3 is false whenever k ≥ 4.

We will prove Theorem 1.4, Theorem 1.5, and Corollary 1.6 in the next section.

We believe that Conjecture 1.2 is false whenever k ≥ 4 but due to our limited knowledge on md(k, n), we
can only disprove Conjecture 1.2 for the cases when md(k, n) is known.

This bound hk−2(k, n) ≥ (59 + o(1))
(

n
2

)

coincides with the value of m1(3, n) – it was shown in [6] that

m1(3, n) = (5/9 + o(1))
(

n
2

)

, and it was widely believed that h1(3, n) = (5/9 + o(1))
(

n
2

)

, e.g., see [19]. On

the other hand, it is known [17] that m2(4, n) = (12 + o(1))
(

n
2

)

, which is smaller than 5
9

(

n
2

)

. Therefore
k = 4 and d = 2 is the smallest case when Theorem 1.4 disproves Conjecture 1.2. More importantly, (1.1)
shows that hd(k, n)/

(

n
k−d

)

tends to one as k − d tends to ∞. For example, as k becomes sufficiently large,

hk−ln k(k, n) is close to
(

n−d
k−d

)

, the trivial upper bound. In contrast, Conjecture 1.1 suggests that there

exists c > 0 independent of k and d (c = 1/e, where e = 2.718..., if Conjecture 1.1 is true) such that

md(k, n) ≤ (1 − c)
(

n−d
k−d

)

.

Similarly, by Theorem 1.5, if k − ℓ = o(
√
t), hℓ

d(k, n)/
(

n
t

)

tends to one as t tends to ∞ because

1− bt,k−ℓ2
−t ≥ 1− k − ℓ

2t

(

t

⌊t/2⌋

)

≈ 1− o(
√
t)

√

πt/2
.

Theorem 1.5 also implies the following special case: suppose k is odd and ℓ = d = k − 2. Then t = 2
and bt,k−ℓ = b2,2 = 3, and consequently hk−2

k−2(k, n) ≥
(

1
4 + o(1)

) (

n
2

)

. Previously it was only known that

hk−2
k−2(k, n) ≥ (1 − ( k

k+1 )
2 + o(1))

(

n
2

)

from (2.1) (where a = ⌈k/(k − ℓ)⌉ = (k + 1)/2). When k is large, the
bound provided by Theorem 1.5 is much better.

2



Finally, we do not know if Theorems 1.4 and 1.5 are best possible. Glebov, Person, and Weps [5] gave a
general upper bound (far away from our lower bounds)

hℓ
d(k, n) ≤

(

1− 1

ck3k−3

)(

n− d

k − d

)

,

where c is a constant independent of d, ℓ, k, n.

2. The proofs

Before proving our results, it is instructive to recall the so-called space barrier.

Proposition 2.1. [13] Let H = (V,E) be an n-vertex k-graph such that V = X∪̇Y 1 and E = {e ∈
(

V
k

)

:

e ∩X 6= ∅}. Suppose |X | < 1
a(k−ℓ)n, where a := ⌈k/(k − ℓ)⌉, then H does not contain a Hamilton ℓ-cycle.

A proof of Proposition 2.1 can be found in [13, Proposition 2.2] and is actually included in our proof of
Proposition 2.2 below. It is not hard to see that Proposition 2.1 shows that

(2.1) hℓ
d(k, n) ≥

(

1−
(

1− 1

a(k − ℓ)

)k−d

+ o(1)

)

(

n− d

k − d

)

.

Now we state our construction for Hamilton cycles – it generalizes the one given by Katona and Kierstead
[11, Theorem 3] (where j = ⌊k/2⌋) and the space barrier (where j = ℓ+ 1− k) simultaneously. The special
case of k = 3, ℓ = 2, j = 1, and |X | = n/3 appears in [19, Construction 2].

Proposition 2.2. Given an integer j such that ℓ+1−k ≤ j ≤ k, let H = (V,E) be an n-vertex k-graph such

that V = X∪̇Y and E = {e ∈
(

V
k

)

: |e∩X | /∈ {j, j+1, . . . , j+ k− ℓ− 1}. Suppose j−1
a′(k−ℓ)n < |X | < j+k−ℓ

a(k−ℓ)n,

where a′ := ⌊k/(k − ℓ)⌋ and a := ⌈k/(k − ℓ)⌉, then H does not contain a Hamilton ℓ-cycle.

Proof. Suppose instead, that H contains a Hamilton ℓ-cycle C. Then all edges e of C satisfy |e ∩ X | /∈
{j, j + 1, . . . , j + k − ℓ − 1}. We claim that either all edges e of C satisfy |e ∩ X | ≤ j − 1 or all edges e
of C satisfy |e ∩ X | ≥ j + k − ℓ. Otherwise, there must be two consecutive edges e1, e2 in C such that
|e1 ∩X | ≤ j − 1 and |e2 ∩X | ≥ j + k− ℓ. However, since |e1 ∩ e2| = ℓ, we have ||e1 ∩X | − |e2 ∩X || ≤ k− ℓ,
a contradiction.

Observe that every vertex of H is contained in either a or a′ edges of C and C contains n
k−ℓ edges. This

implies that

a′|X | ≤
∑

e∈C

|e ∩X | ≤ a|X |.

On the other hand, we have
∑

e∈C |e ∩X | < (j − 1) n
k−ℓ or

∑

e∈C |e ∩X | > (j + k − ℓ) n
k−ℓ . In either case,

we get a contradiction with the assumption j−1
a′(k−ℓ)n < |X | < j+k−ℓ

a(k−ℓ)n. �

Note that by reducing the lower and upper bounds for |X | by small constants, we can conclude that H
actually contains no Hamilton ℓ-path.

To prove Theorems 1.4 and 1.5, we apply Proposition 2.2 with appropriate j and |X |. We need the
following fact.

Fact 2.3. Let k, d, t, j be integers such that 1 ≤ d ≤ k − 1 and t = k − d. If j−1
k < ⌈t/2⌉

t+1 < j+1
k , then

j − d ≤ ⌈t/2⌉ ≤ j.

Proof. Since j−1
k < ⌈t/2⌉

t+1 < j+1
k , we get

k⌈t/2⌉
t+ 1

− 1 < j <
k⌈t/2⌉
t+ 1

+ 1.

We need to show that ⌈t/2⌉ ≤ j ≤ ⌈t/2⌉+ d. First,

j <
k⌈t/2⌉
t+ 1

+ 1 = ⌈t/2⌉+ (k − t− 1)⌈t/2⌉
t+ 1

+ 1 ≤ ⌈t/2⌉+ d,

because ⌈t/2⌉ ≤ t+ 1 and k − t = d. Second, j > k⌈t/2⌉
t+1 − 1 ≥ ⌈t/2⌉ − 1 as k ≥ t+ 1, so j ≥ ⌈t/2⌉. �

1Throughout the paper, we write X∪̇Y for X ∪ Y when sets X, Y are disjoint.
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In the proofs of Theorems 1.4 and 1.5, we will consider binomial coefficients
(

p
q

)

with q < 0 – in this case
(

p
q

)

= 0. We will conveniently write |X | = xn, where 0 < x < 1, instead of |X | = ⌊xn⌋ – this does not affect

our calculations as n is sufficiently large.

Proof of Theorem 1.4. Let x = ⌈t/2⌉/(t+ 1). Since
⋃k−1

j=1 (
j−1
k , j+1

k ) = (0, 1) and 1/3 ≤ ⌈t/2⌉
t+1 ≤ 1/2, there

exists an integer j ∈ [k − 1] such that j−1
k < ⌈t/2⌉

t+1 < j+1
k . Let H = (V,E) be an n-vertex k-graph such that

V = X∪̇Y , |X | = xn and E = {e ∈
(

V
k

)

: |e ∩ X | 6= j}. Since j−1
k n < |X | < j+1

k n, H contains no tight
Hamilton cycle by Proposition 2.2.

Now let us compute δd(H). For 0 ≤ i ≤ d, let Si be any d-vertex subset of V that contains exactly i
vertices in X . By the definition of H ,

degH(Si) =

(

n− d

t

)

−
(|X | − i

j − i

)(|Y | − (d− i)

t− j + i

)

.

Note that this holds for i > j or i < j − t trivially. So we have

δd(H) = min
0≤i≤d

{(

n− d

t

)

−
(|X | − i

j − i

)(|Y | − (d− i)

t− j + i

)}

=

(

n

t

)

− max
j−d≤i′≤j

{(|X |
i′

)( |Y |
t− i′

)}

+ o(nt).

Write |X | = xn and |Y | = yn. When 0 ≤ i′ ≤ t, we have

(|X |
i′

)( |Y |
t− i′

)

=
(xn)i

′

(yn)t−i′

i′!(t− i′)!
+ o(nt) =

(

t

i′

)

xi′yt−i′
(

n

t

)

+ o(nt).

When i′ < 0 or i′ > t, we have
(

|X|
i′

)(

|Y |
t−i′

)

= 0 =
(

t
i′

)

xi′yt−i′
(

n
t

)

. In all cases, we have

δd(H) =

(

n

t

)

− max
j−d≤i′≤j

{(

t

i′

)

xi′yt−i′
}(

n

t

)

+ o(nt).

Let ai :=
(

t
i

)

xiyt−i. Since x = ⌈t/2⌉/(t + 1) and y = 1 − x, it is easy to see that max0≤i≤t ai = a⌈t/2⌉
(e.g., by observing ai

ai+1
= y

x · i+1
t−i for 0 ≤ i < t). Moreover, by Fact 2.3, we have j− d ≤ ⌈t/2⌉ ≤ j. Together

with x = ⌈t/2⌉/(t+ 1), this implies that

max
j−d≤i≤j

{ai} = a⌈t/2⌉ =

(

t

⌈t/2⌉

)⌈t/2⌉⌈t/2⌉(⌊t/2⌋+ 1)⌊t/2⌋

(t+ 1)t

and thus the proof is complete. �

Now we turn to the proof of Theorem 1.5, in which we assume that |X | = n/2, though a further improve-
ment of the lower bound may be possible by considering other values of |X |.

Proof of Theorem 1.5. The proof is similar to the one of Theorem 1.4. Let H = (V,E) be an n-vertex

k-graph such that V = X∪̇Y , |X | = n/2 and E = {e ∈
(

V
k

)

: |e ∩X | /∈ {⌈ℓ/2⌉, . . . , ⌈ℓ/2⌉+ k − ℓ− 1}}. Note
that

a′(k − ℓ) =

⌊

k

k − ℓ

⌋

(k − ℓ) ≥ k − (k − ℓ − 1) = ℓ+ 1 > 2(⌈ℓ/2⌉ − 1), and

a(k − ℓ) =

⌈

k

k − ℓ

⌉

(k − ℓ) ≤ k + (k − ℓ − 1) < 2(k − ⌊ℓ/2⌋) = 2(⌈ℓ/2⌉+ k − ℓ).

So we have
⌈ℓ/2⌉ − 1

a′(k − ℓ)
n < |X | = n

2
<

⌈ℓ/2⌉+ k − ℓ

a(k − ℓ)
n.

Thus, H contains no Hamilton ℓ-cycle by Proposition 2.2.
4



Fix 1 ≤ d ≤ k− 1 and let t = k− d. Now we compute δd(H). For 0 ≤ i ≤ d, let Si be any d-vertex subset
of V that contains exactly i vertices in X . It is easy to see that

degH(Si) =

(

n

t

)

−
i′+k−ℓ−1
∑

p=i′

(|X |
p

)( |Y |
t− p

)

+ o(nt),

where i′ = ⌈ℓ/2⌉− i. Using |X | = |Y | = n/2 and the similar calculations in the proof of Theorem 1.4, we get

degH(Si) =

(

n

t

)

−
i′+k−ℓ−1
∑

p=i′

(

t

p

)

1

2t

(

n

t

)

+ o(nt).

By the definition of bt,k−ℓ, we have

δd(H) = min
0≤i≤d

degH(Si) ≥
(

n

t

)

− bt,k−ℓ2
−t

(

n

t

)

+ o(nt). �

Corollary 1.6 follows from Theorem 1.4 via simple calculations.

Proof of Corollary 1.6. Let t = k − d and

f(t) :=

(

t

⌊t/2⌋

)⌈t/2⌉⌈t/2⌉(⌊t/2⌋+ 1)⌊t/2⌋

(t+ 1)t
.

Theorem 1.4 states that hk−t(k, n) ≥ (1− f(t) + o(1))
(

n
t

)

for any 1 ≤ t ≤ k − 1. Since

f(2) =
4

9
, f(3) =

3

8
, and f(4) =

216

625
,

the bounds for hk−t(k, n), t = 2, 3, 4, are immediate. To see (1.1), it suffices to show that for t ≥ 1,

1− f(t) > 1− 1
√

3t/2 + 1
.(2.2)

When t is odd, ⌈t/2⌉⌈t/2⌉(⌊t/2⌋+1)⌊t/2⌋

(t+1)t = 1/2t; when t is even, ⌈t/2⌉⌈t/2⌉(⌊t/2⌋+ 1)⌊t/2⌋ < ( t+1
2 )t. Thus, for

all t, we have

f(t) ≤
(

t

⌊t/2⌋

)

1

2t
,

where a strict inequality holds for all even t. Now we use the fact
(

2m
m

)

≤ 22m/
√
3m+ 1, which holds for all

integers m ≥ 1. Thus, for all even t, we have f(t) ≤ 1/
√

3t/2 + 1; for all odd t,

f(t) ≤
(

t

⌊t/2⌋

)

1

2t
=

1

2

(

t+ 1

⌊t/2⌋+ 1

)

1

2t
≤ 1
√

3(t+ 1)/2 + 1
<

1
√

3t/2 + 1
.

Hence f(t) ≤ 1/
√

3t/2 + 1 for all t ≥ 1. Moreover, by the computation above, regardless of the parity of t,
the strict inequality always holds and thus (2.2) is proved.

We next show that whenever k ≥ 4 and 2 ≤ t ≤ k − 1,

1− f(t) > max

{

1

2
, 1−

(

1− 1

k

)t
}

.

This implies that Conjecture 1.3 fails for k ≥ 4, and Conjecture 1.2 fails for k ≥ 4 and min{k − 4, k/2} ≤
d ≤ k − 2 (because md(k, n)/

(

n
k−d

)

= max
{

1
2 , 1−

(

1− 1
k

)k−d
}

+ o(1) in this case). It suffices to show that

for k ≥ 4 and 2 ≤ t ≤ k − 1,

f(t) < 1/2 and f(t) <

(

1− 1

k

)t

.

The first inequality immediately follows from (2.2) and 1/
√

3t/2 + 1 ≤ 1/2. For the second inequality, note
that

f(t) <
1

√

3t/2 + 1
<

1

e
<

(

1− 1

k

)k−1

≤
(

1− 1

k

)t

5



for all t ≥ 5. For t = 2, 3 and all k ≥ 4, one can verify f(t) < (3/4)t ≤
(

1− 1
k

)t
easily. Also, for t = 4 and

all k ≥ 5, we have f(4) < (4/5)4 ≤ (1− 1
k )

4. �
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13. D. Kühn, R. Mycroft, and D. Osthus, Hamilton ℓ-cycles in uniform hypergraphs, Journal of Combinatorial Theory. Series

A 117 (2010), no. 7, 910–927.
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