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A sum form functional equation on a closed domain

and its role in information theory

P. Nath and D.K. Singh (India)

Abstract. This paper is devoted to finding the general solutions of the

functional equation
n
∑

i=1

m
∑

j=1

h(piqj) =

n
∑

i=1

h(pi) +

m
∑

j=1

kj(qj) + λ

n
∑

i=1

h(pi)

m
∑

j=1

kj(qj)

valid for all complete probability distributions (p1, . . . , pn), (q1, . . . , qm),

0 6 pi 6 1, 0 6 qj 6 1, i = 1, . . . , n; j = 1, . . . ,m,
n
∑

i=1

pi = 1,
m
∑

j=1

qj = 1;

n > 3, m > 3 fixed integers; λ ∈ R, λ 6= 0 and the mappings h : I → R,

kj : I → R, j = 1, . . . ,m; I = [0, 1], R denoting the set of all real numbers.

A special case of the above functional equation was treated earlier by L. Losonczi

and Gy. Maksa.
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1. Introduction

Let Γn = {(p1, . . . , pn) : 0 6 pi 6 1, i = 1, . . . , n;
n
∑

i=1

pi = 1}, n = 2, 3, . . .

denote the set of all discrete n-component complete probability distributions with

nonnegative elements. Let R denote the set of all real numbers and

∆ = {(x, y) : 0 6 x 6 1, 0 6 y 6 1, 0 6 x+ y 6 1}, the unit triangle ;

I = {x ∈ R : 0 6 x 6 1} = [0, 1] ; I0 = {x ∈ R : 0 < x < 1} .

A mapping a : I → R is said to be additive on I if

a(x+ y) = a(x) + a(y)

holds for all (x, y) ∈ ∆. A mapping A : R → R is said to be additive on R if

A(x+ y) = A(x) + A(y) (1.1)

holds for all x ∈ R, y ∈ R.

It is known [2] that every mapping a : I → R, additive on the unit triangle

∆, has a unique additive extension A : R → R in the sense that A satisfies the

equation (1.1) for all x ∈ R, y ∈ R.

A mapping M : I → R is said to be multiplicative on I if

M(0) = 0 (1.2)

M(1) = 1 (1.3)

and

M(pq) =M(p)M(q) (1.4)

holds for all p ∈ I0, q ∈ I0.

The functional equation (see [1])

n
∑

i=1

m
∑

j=1

f(piqj) =
n
∑

i=1

f(pi) +
m
∑

j=1

f(qj) + λ

n
∑

i=1

f(pi)
m
∑

j=1

f(qj) (1.5)
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where f : I → R, (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, λ = 21−α − 1 6= 0 is useful

in characterizing the entropy of degree α (see [3]) defined as

Hα
n (p1, . . . , pn) = (1− 21−α)−1

(

1−

n
∑

i=1

pαi

)

, (1.6)

where Hα
n : Γn → R, n = 2, 3, . . . and 0α := 0, α 6= 1, α ∈ R. For λ ∈ R,

λ 6= 0, the general solutions of (1.5), for fixed integers n > 3, m > 3 and all

(p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm have been obtained in [6]. A generalization

of (1.5) is the following functional equation (see [5])
n
∑

i=1

m
∑

j=1

fij(piqj) =

n
∑

i=1

hi(pi) +

m
∑

j=1

kj(qj) + λ

n
∑

i=1

hi(pi)

m
∑

j=1

kj(qj) (1.7)

with fij : I → R, hi : I → R, kj : I → R, i = 1, . . . , n; j = 1, . . . , m. For

fixed integers n > 3, m > 3 and all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, the

measurable (in the sense of Lebesgue) solutions of (1.7) have been obtained in

(see [5], Theorem 6 on p-69) but it seems that the general solutions of (1.7), for

fixed integers n > 3, m > 3 and all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm are still

not known. As mentioned in [5], equations like (1.7) arise while characterizing

measures of information concerned with two probability distributions. In this

paper, we study the equation
n
∑

i=1

m
∑

j=1

h(piqj) =

n
∑

i=1

h(pi) +

m
∑

j=1

kj(qj) + λ

n
∑

i=1

h(pi)

m
∑

j=1

kj(qj) (1.8)

where h : I → R, kj : I → R, j = 1, . . . , m; λ ∈ R, λ 6= 0 and n > 3, m > 3 are

fixed integers. The functional equation (1.8) is a special case of (1.7).

If we define f : I → R and gj : I → R, j = 1, . . . , m as (with λ 6= 0)

f(x) = x+ λ h(x) and gj(x) = x+ λ kj(x) (1.9)

for all x ∈ I, then (1.8) reduces to the functional equation
n
∑

i=1

m
∑

j=1

f(piqj) =
n
∑

i=1

f(pi)
m
∑

j=1

gj(qj) . (1.10)

Also, (1.9) and (1.10) yield (1.8). Thus, if the general solutions of (1.10), for fixed

integers n > 3, m > 3 and all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm are known;
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the corresponding general solutions of (1.8), for fixed integers n > 3, m > 3 and

all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm can be determined with the aid of (1.9).

We would like to mention that, on open domain, namely when f : I0 → R,

h : I0 → R, gj : I0 → R, kj : I0 → R, j = 1, . . . , m, the general solutions

of (1.8) and (1.10) for fixed integers n > 3, m > 3 and all (p1, . . . , pn) ∈ Γn,

(q1, . . . , qm) ∈ Γm have been found in [4]. The object of this paper is to determine

the general solutions of (1.8) and (1.10), on the closed domain, namely when

f : I → R, h : I → R, gj : I → R, kj : I → R, j = 1, . . . , m; for fixed integers

n > 3, m > 3 and all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. While investigating

these solutions, the functional equation
n
∑

i=1

m
∑

j=1

ϕ(piqj) =
n
∑

i=1

ϕ(pi)
m
∑

j=1

ϕ(qj) +m(n− 1)ϕ(0)
n
∑

i=1

ϕ(pi) (1.11)

arises with ϕ : I → R, n > 3, m > 3 fixed integers and (p1, . . . , pn) ∈ Γn,

(q1, . . . , qm) ∈ Γm.

To deal with equations (1.8), (1.10) and (1.11), we need the results and

methods from [5] and [6].

2. Some preliminary results

We require the following two results in sections 3 and 4.

Result 1. [6]. Let k > 3 be a fixed integer and c be a given constant.

Suppose that a mapping ψ : I → R satisfies the functional equation
k
∑

i=1

ψ(pi) = c (2.1)

for all (p1, . . . , pk) ∈ Γk. Then there exists an additive mapping B : R → R such

that

ψ(p) = B(p)−
1

k
B(1) +

c

k
(2.2)

for all p ∈ I.
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Result 2. [5]. If the mappings ψj : I → R, j = 1, . . . , m satisfy the functional

equation
m
∑

j=1

ψj(qj) = 0 (2.3)

for an arbitrary but fixed integer m > 3 and all (q1, . . . , qm) ∈ Γm, then there

exists an additive mapping A : R → R and the constants cj (j = 1, . . . , m) such

that

ψj(p) = A(p) + cj (2.4)

for all p ∈ I and j = 1, . . . , m with

A(1) +

m
∑

j=1

cj = 0 . (2.5)

3. The functional equation (1.11)

In this section, we prove:

Theorem 1. Let n > 3, m > 3 be fixed integers and ϕ : I → R be a

mapping which satisfies the functional equation (1.11) for all (p1, . . . , pn) ∈ Γn

and (q1, . . . , qm) ∈ Γm. Then ϕ is of the form

ϕ(p) = a(p) + ϕ(0) (3.1)

where a : R → R is an additive mapping with

(i) a(1) = −nmϕ(0) if ϕ(1) + (n− 1)ϕ(0) 6= 1

or

(ii) a(1) = 1− nϕ(0) if ϕ(1) + (n− 1)ϕ(0) = 1











(3.2)

or

ϕ(p) =M(p)− B(p) (3.3)

where B : R → R is an additive mapping with B(1) = 0 and M : I → R

is multiplicative on I in the sense that it satisfies (1.2), (1.3) and (1.4) for all

p ∈ I0, q ∈ I0.
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Proof. Let us put p1 = 1, p2 = . . . = pn = 0 in (1.11). We obtain

[ϕ(1) + (n− 1)ϕ(0)− 1]

[

m
∑

j=1

ϕ(qj) +m(n− 1)ϕ(0)

]

= 0 (3.4)

for all (q1, . . . , qm) ∈ Γm. We divide our discussion into two cases.

Case 1. ϕ(1) + (n− 1)ϕ(0)− 1 6= 0.

In this case, (3.4) reduces to
m
∑

j=1

ϕ(qj) = −m(n− 1)ϕ(0) (3.5)

for all (q1, . . . , qm) ∈ Γm. By Result 1, there exists an additive mapping a : R → R

such that

ϕ(p) = a(p)−
1

m
a(1)− (n− 1)ϕ(0) (3.6)

for all p ∈ I. The substitution p = 0, in (3.6), gives

a(1) = −nmϕ(0) . (3.7)

From (3.6) and (3.7), (3.1) follows. Thus, we have obtained the solution (3.1)

satisfying (i) in(3.2).

Case 2. ϕ(1) + (n− 1)ϕ(0)− 1 = 0.

Let us write (1.11) in the form
m
∑

j=1

{

n
∑

i=1

ϕ(piqj)− ϕ(qj)

n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0)qj

n
∑

i=1

ϕ(pi)

}

= 0 . (3.8)

Choose (p1, . . . , pn) ∈ Γn and fix it. Define ψ : Γn × I → R as

ψ(p1, . . . , pn; q)=

n
∑

i=1

ϕ(piq)−ϕ(q)

n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0)q

n
∑

i=1

ϕ(pi) (3.9)

for all q ∈ I. By Result 1, there exists a mapping A1 : Γn × R → R, additive in

the second variable, such that
n
∑

i=1

ϕ(piq)− ϕ(q)

n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0) q

n
∑

i=1

ϕ(pi)

= A1(p1, . . . , pn; q)−
1

m
A1(p1, . . . , pn; 1) (3.10)
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The substitution q = 0, in (3.10), gives

A1(p1, . . . , pn; 1) = mϕ(0)

[

n
∑

i=1

ϕ(pi)− n

]

(3.11)

as A1(p1, . . . , pn; 0). From (3.10) and (3.11), we obtain
n
∑

i=1

ϕ(piq)− ϕ(q)

n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0) q

n
∑

i=1

ϕ(pi)

= A1(p1, . . . , pn; q)− ϕ(0)

n
∑

i=1

ϕ(pi) + nϕ(0) . (3.12)

Since (p1, . . . , pn) ∈ Γn was chosen arbitrarily and then fixed, equation (3.12),

indeed, holds for all (p1, . . . , pn) ∈ Γn and all q ∈ I.

Let x ∈ I and (r1, . . . , rn) ∈ Γn. Putting q = xrt, t = 1, . . . , n in (3.12);

adding the resulting n equations and using the additivity of A1 in the second

variable, it follows that
n
∑

i=1

n
∑

t=1

ϕ(xpirt)−
n
∑

t=1

ϕ(xrt)
n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0) x
n
∑

i=1

ϕ(pi)

= A1(p1, . . . , pn; x)− nϕ(0)

n
∑

i=1

ϕ(pi) + n2 ϕ(0) . (3.13)

Also, if we put q = x and pi = ri, i = 1, . . . , n in (3.12), we obtain
n
∑

t=1

ϕ(xrt) = ϕ(x)
n
∑

t=1

ϕ(rt) +m(n− 1)ϕ(0) x
n
∑

t=1

ϕ(rt)

+A1(r1, . . . , rn; x)− ϕ(0)
n
∑

t=1

ϕ(rt) + nϕ(0) . (3.14)

From (3.13) and (3.14), we can obtain the equation
n
∑

i=1

n
∑

t=1

ϕ(xpirt)− [ϕ(x) +m(n− 1)ϕ(0) x− ϕ(0)]

×

n
∑

i=1

ϕ(pi)

n
∑

t=1

ϕ(rt)− n2 ϕ(0)

= A1(p1, . . . , pn; x) +m(n− 1)ϕ(0) x

n
∑

i=1

ϕ(pi)

+A1(r1, . . . , rn; x)
n
∑

i=1

ϕ(pi) . (3.15)
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The symmetry of the left hand side of (3.15), in pi and rt, i = 1, . . . , n; t = 1, . . . , n

gives rise to the equation

A1(p1, . . . , pn; x) +m(n− 1)ϕ(0) x
n
∑

i=1

ϕ(pi) + A1(r1, . . . , rn; x)
n
∑

i=1

ϕ(pi)

= A1(r1, . . . , rn; x) +m(n− 1)ϕ(0) x

n
∑

t=1

ϕ(rt)

+A1(p1, . . . , pn; x)

n
∑

t=1

ϕ(rt)

which can be written in the form

[A1(p1, . . . , pn; x) +m(n− 1)ϕ(0) x]

[

n
∑

t=1

ϕ(rt)− 1

]

= [A1(r1, . . . , rn; x) +m(n− 1)ϕ(0) x]

[

n
∑

i=1

ϕ(pi)− 1

]

. (3.16)

Equation (3.16) holds for all (r1, . . . , rn) ∈ Γn, (p1, . . . , pn) ∈ Γn and all x ∈ I.

Subcase 2.1.
n
∑

t=1

ϕ(rt)− 1 vanishes identically on Γn.

In this case,
n
∑

t=1

ϕ(rt) = 1 (3.17)

holds for all (r1, . . . , rn) ∈ Γn. By Result 1, there exists an additive map a : R → R

such that

ϕ(p) = a(p)−
1

n
a(1) +

1

n
(3.18)

for all p ∈ I. The substitution p = 0, in (3.18), yields

a(1) = 1− nϕ(0) . (3.19)

From (3.18) and (3.19), (3.1) follows again. Thus, we have obtained the solution

(3.1) satisfying (ii) in (3.2).

Subcase 2.2.
n
∑

t=1

ϕ(rt)− 1 does not vanish identically on Γn.

Then, there exists a probability distribution (r∗
1
, . . . , r∗n) ∈ Γn such that

n
∑

t=1

ϕ(r∗t )− 1 6= 0 . (3.20)
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Setting r1 = r∗
1
, . . . , rn = r∗n in (3.16), we obtain

[A1(p1, . . . , pn; x) +m(n− 1)ϕ(0) x]

[

n
∑

t=1

ϕ(r∗t )− 1

]

= [A1(r
∗

1
, . . . , r∗n; x) +m(n− 1)ϕ(0) x]

[

n
∑

i=1

ϕ(pi)− 1

]

which gives, for all x ∈ I,

A1(p1, . . . , pn; x) = A(x)

[

n
∑

i=1

ϕ(pi)− 1

]

−m(n− 1)ϕ(0) x (3.21)

where A : R → R is defined as

A(y) =

[

n
∑

t=1

ϕ(r∗t )− 1

]

−1

[A1(r
∗

1
, . . . , r∗n; y) +m(n− 1)ϕ(0) y] (3.22)

for all y ∈ R. From (3.22), it is easy to verify that A : R → R is additive. Also,

from (3.11) (with pi = r∗i , i = 1, . . . , n) and (3.22), it is easy to derive

A(1) = mϕ(0) . (3.23)

From (3.12) and (3.21), it follows that

n
∑

i=1

ϕ(piq)− ϕ(q)
n
∑

i=1

ϕ(pi)−m(n− 1)ϕ(0) q
n
∑

i=1

ϕ(pi)

= A(q)

n
∑

i=1

ϕ(pi)− A(q)−m(n− 1)ϕ(0) q − ϕ(0)

n
∑

i=1

ϕ(pi) + nϕ(0)

which, upon using (3.23), gives

n
∑

i=1

[ϕ(piq) + A(piq) +m(n− 1)ϕ(0) piq − ϕ(0)]

− [ϕ(q) + A(q) +m(n− 1)ϕ(0) q − ϕ(0)]

×
n
∑

i=1

[ϕ(pi) + A(pi) +m(n− 1)ϕ(0) pi − ϕ(0)]

+ [ϕ(q) + A(q) +m(n− 1)ϕ(0) q − ϕ(0)]n(m− 1)ϕ(0) = 0 . (3.24)

Define a mapping B : R → R as

B(x) = A(x) +m(n− 1)ϕ(0) x (3.25)
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for all x ∈ R. Then, B : R → R is additive. Moreover, from (3.23) and (3.25), it

follows that

B(1) = mnϕ(0) . (3.26)

With the help of (3.25), equation (3.24) can be written in the form

n
∑

i=1

[ϕ(piq) +B(piq)− ϕ(0)]− [ϕ(q) +B(q)− ϕ(0)]

×

n
∑

i=1

[ϕ(pi) +B(pi)− ϕ(0)] + n(m− 1)ϕ(0) [ϕ(q) +B(q)− ϕ(0)]

= 0 . (3.27)

Define a mapping M : I → R as

M(x) = ϕ(x) +B(x)− ϕ(0) (3.28)

for all x ∈ I. Notice that though B : R → R but, in (3.28), we are restricting its

use only for all x ∈ I.

From (3.28), it is easy to see that (1.2) follows as B(0) = 0. Also, from (3.26),

(3.28) and the fact that ϕ(1) + (n− 1)ϕ(0) = 1, it follows that

M(1) = 1 + n(m− 1)ϕ(0) . (3.29)

Moreover, from (3.27) and (3.28), we get (for all q ∈ I)

n
∑

i=1

M(piq)−M(q)

n
∑

i=1

M(pi) + n(m− 1)ϕ(0)M(q) = 0 (3.30)

which can be written in the form

n
∑

i=1

[M(piq)−M(q)M(pi) + n(m− 1)ϕ(0)M(q) pi] = 0 . (3.31)

By Result 1, there exists a mapping E : R× I → R, additive in the first variable,

such that

M(pq)−M(p)M(q) + n(m− 1)ϕ(0)M(q) p = E(p, q)−
1

n
E(1, q) (3.31a)
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for all p ∈ I, q ∈ I. The substitution p = 0 in (3.31a) and the use of (1.2) gives

E(1, q) = 0 for all q ∈ I. Consequently, (3.31a) reduces to the equation

M(pq)−M(p)M(q) + n(m− 1)ϕ(0)M(q) p = E(p, q) (3.32)

for all p ∈ I, q ∈ I.

Now we prove that n(m− 1)ϕ(0) 6= 0 is not possible.

If possible, suppose n(m−1)ϕ(0) 6= 0. Then, (3.29) givesM(1) 6= 1. Putting

q = 1 in (3.30), using (3.29) and the fact that M(1)− 1 6= 0, we get

n
∑

i=1

M(pi) =M(1)

for all (p1, . . . , pn) ∈ Γn. By Result 1, there exists an additive mapping A2 : R → R

such that

M(p) = A2(p)−
1

n
A2(1) +

1

n
M(1) (3.33)

for all p ∈ I. The substitution p = 0, in (3.33), gives A2(1) =M(1) as A2(0) = 0

and M(0) = 0. Hence

M(p) = A2(p)

for all p ∈ I. Thus M is additive on I. Now, from (3.20), (3.26), (3.28), (3.29)

and the additivity of M on I, we have

1 6=

n
∑

t=1

ϕ(r∗t ) = M(1)− B(1) + nϕ(0)

= 1 + n(m− 1)ϕ(0)− nmϕ(0) + nϕ(0) = 1

a contradiction.

So, the only possibility is that n(m − 1)ϕ(0) = 0. Since n > 3, m > 3 are

fixed integers, it follows that ϕ(0) = 0 and hence ϕ(1) = 1. From this and (3.29),

(1.3) follows. Since ϕ(0) = 0, equation (3.32) reduces to the equation

M(pq)−M(p)M(q) = E(p, q) (3.34)
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for all p ∈ I, q ∈ I. The left hand side of (3.34) is symmetric in p and q. Hence

E(p, q) = E(q, p) for all p ∈ I, q ∈ I. Consequently, E is also additive on I in the

second variable. We may assume that E(p, ·) has been extended additively to the

whole of R.

Let p ∈ I, q ∈ I, r ∈ I. From (3.34), we have

E(pq, r) +M(r)E(p, q) = M(pqr)−M(p)M(q)M(r)

= E(qr, p) +M(p)E(q, r) . (3.35)

Now we prove that E(p, q) = 0 for all p ∈ I, q ∈ I. If possible, suppose there

exists a p∗ ∈ I and a q∗ ∈ I such that E(p∗, q∗) 6= 0. Then, from (3.35)

M(r) = [E(p∗, q∗)]−1{E(q∗r, p∗) +M(p∗)E(q∗, r)−E(p∗q∗, r)}

from which it follows that M is additive on I. Now, making use of (3.20), (3.26),

(3.28), (1.3), the additivity of M and the fact that ϕ(0) = 0, we obtain

1 6=

n
∑

t=1

ϕ(r∗t ) =M(1)− B(1) + nϕ(0) = 1−mnϕ(0) + nϕ(0) = 1

a contradiction. Hence E(p, q) = 0 for all p ∈ I, q ∈ I. Now, (3.34) reduces to

the equation

M(pq) =M(p)M(q) (3.36)

for all p ∈ I, q ∈ I. From (3.36), (1.4) follows immediately for all p ∈ I0, q ∈ I0.

Also, since ϕ(0) = 0, (3.28) reduces to (3.3) and (3.26) gives B(1) = 0. This

completes the proof of Theorem 1. �

4. The functional equation (1.10)

In this section, we prove:

Theorem 2. Let n > 3, m > 3 be fixed integers and f : I → R, gj : I → R,

j = 1, . . . , m be mappings which satisfy the functional equation (1.10) for all
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(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Then, any general solution of (1.10) is

of the form

f(p) = b(p) , gj any arbitrary real-valued mapping (4.1)

where b : R → R is an additive mapping with b(1) = 0 or

f(p) = [f(1) + (n− 1) f(0)] a(p) + f(0)

gj(p) = a(p) + A∗(p) + gj(0)

}

(4.2)

for all j = 1, . . . , m; with a : R → R, A∗ : R → R being additive maps and

a(1) = 1−
n f(0)

f(1) + (n− 1) f(0)
, f(1) + (n− 1) f(0) 6= 0

A∗(1) = −
m
∑

j=1

gj(0) +
nmf(0)

f(1) + (n− 1) f(0)
, f(1) + (n− 1) f(0) 6= 0



















(4.3)

or

f(p) = f(1)[M(p)−B(p)] , f(1) 6= 0

gj(p) =M(p)−B(p) + A∗(p) + gj(0)

}

(4.4)

for all j = 1, . . . , m; with B : R → R, A∗ : R → R being additive maps, B(1) = 0,

A∗(1) = −
m
∑

j=1

gj(0) and M : I → R a multiplicative function in the sense that it

satisfies (1.2), (1.3) and (1.4) for all p ∈ I0, q ∈ I0.

Proof. Put p1 = 1, p2 = . . . = pn = 0 in (1.10). We obtain

m
∑

j=1

[f(qj) + (n− 1)f(0)] = [f(1) + (n− 1) f(0)]

m
∑

j=1

gj(qj) (4.5)

for all (q1, . . . , qm) ∈ Γm.

Case 1.

f(1) + (n− 1) f(0) = 0 . (4.6)

Then, (4.5) reduces to the equation

m
∑

j=1

f(qj) = −m(n− 1) f(0) (4.7)
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valid for all (q1, . . . , qm) ∈ Γm. By Result 1, there exists an additive mapping

b : R → R such that

f(p) = b(p)−
1

m
b(1)− (n− 1) f(0) (4.8)

for all p ∈ I. The substitution p = 0, in (4.8), gives

b(1) = −nmf(0) . (4.9)

From (4.8) and (4.9), it follows that

f(p) = b(p) + f(0) (4.10)

for all p ∈ I. From (4.6), (4.9) and (4.10), using the fact that n > 3, m > 3 are

fixed integers, it follows that

f(0) = 0 . (4.11)

From (4.9) and (4.11), it follows that

b(1) = 0 . (4.12)

Also, (4.10) and (4.11) give

f(p) = b(p) (4.13)

for all p ∈ I. Also, from (1.10), (4.12), (4.13) and the additivity of b : R → R, it

follows that gj can be any arbitrary real-valued mapping. Thus, we have obtained

the solution (4.1) in which b satisfies (4.12).

Case 2. f(1) + (n− 1) f(0) 6= 0.

In this case, (4.5) gives

m
∑

j=1

gj(qj) = [f(1) + (n− 1) f(0)]−1

m
∑

j=1

[f(qj) + (n− 1) f(0)] (4.14)
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which can be written in the form

m
∑

j=1

{

gj(qj)− [f(1) + (n− 1) f(0)]−1[f(qj) + (n− 1) f(0)]
}

= 0 . (4.15)

This holds for all (q1, . . . , qm) ∈ Γm. By Result 2, there exists an additive mapping

A∗ : R → R and constants cj (j = 1, . . . , m) such that

gj(p)− [f(1) + (n− 1) f(0)]−1[f(p) + (n− 1) f(0)] = A∗(p) + cj (4.16)

with

A∗(1) +

m
∑

j=1

cj = 0 . (4.17)

The substitution p = 0, in (4.16), gives

cj = gj(0)− [f(1) + (n− 1)f(0)]−1 nf(0) (4.18)

for j = 1, . . . , m. From (4.17) and (4.18), we get A∗(1) as mentioned in (4.3).

Also, from (4.16) and (4.18),

gj(p) = [f(1) + (n− 1) f(0)]−1[f(p)− f(0)] + A∗(p) + gj(0) (4.19)

for j = 1, . . . , m. Equation (4.19) tells us that if f is known, then the

corresponding form of gj(p), j = 1, . . . , m, can be determined. To determine f ,

we eliminate
m
∑

j=1

gj(qj) from equations (1.10) and (4.14). We obtain the equation

n
∑

i=1

m
∑

j=1

f(piqj) = [f(1) + (n− 1) f(0)]−1

n
∑

i=1

f(pi)
m
∑

j=1

f(qj)

+ [f(1) + (n− 1) f(0)]−1m(n− 1) f(0)

n
∑

i=1

f(pi)(4.20)

valid for all (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm.

Define a mapping ϕ : I → R as

ϕ(x) = [f(1) + (n− 1) f(0)]−1 f(x) (4.21)



16 P. NATH AND D.K. SINGH

for all x ∈ I. Then (4.20) reduces to the functional (1.11) which also holds for all

(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Moreover, ϕ satisfies the condition

ϕ(1) + (n− 1)ϕ(0) = 1 . (4.22)

Also, from (4.21),

f(p) = [f(1) + (n− 1) f(0)]ϕ(p) (4.23)

for all p ∈ I with f(1) + (n− 1) f(0) 6= 0 and

ϕ(0) =
f(0)

f(1) + (n− 1) f(0)
. (4.24)

From, (4.19), (4.23), (4.24), (3.1) and (ii) in (3.2), the forms of f(p), gj(p) and

a(1), as mentioned in (4.2) and (4.3), follow. Thus, we have obtained the solution

(4.2), of (1.10), subject to a(1) and A∗(1) as mentioned in (4.3).

The form of ϕ, given by (3.3), with B(1) = 0, is also acceptable as in this

case, ϕ(0) = 0, ϕ(1) = 1 and hence ϕ(1) + (n − 1)ϕ(0) = 1. Now, from (4.24),

f(0) = 0. The solution (4.4), of (1.10), follows from (4.23), (4.19), (3.3), (1.2),

(1.3), (1.4) and the fact that f(0) = 0, B(1) = 0, A∗(1) = −
m
∑

j=1

gj(0). This

completes the proof of Theorem 2. �

5. The functional equation (1.8)

In this section, we prove:

Theorem 3. Let n > 3, m > 3 be fixed integers and h : I → R, kj : I → R,

j = 1, . . . , m be mappings which satisfy the functional equation (1.8) for all

(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm and λ 6= 0. Then, any general solution of

(1.8) is of the form

h(p) =
1

λ
[b(p)− p], kj any arbitrary real-valued mapping (5.1)
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where b : R → R is an additive mapping with b(1) = 0 or

h(p) =
1

λ

{

[λ(h(1) + (n− 1) h(0)) + 1] a(p) + λ h(0)− p
}

kj(p) =
1

λ

{

a(p) + A∗(p) + λ kj(0)− p
}











(5.2)

for all j = 1, . . . , m; with a : R → R, A∗ : R → R being additive maps and

a(1) = 1−
nλ h(0)

λ(h(1) + (n− 1) h(0)) + 1
,

λ(h(1) + (n− 1) h(0)) + 1 6= 0

A∗(1) = −λ
m
∑

j=1

kj(0) +
nmλh(0)

λ(h(1) + (n− 1) h(0)) + 1
,

λ(h(1) + (n− 1) h(0)) + 1 6= 0 .















































(5.3)

or

h(p) =
1

λ

{

[λ h(1) + 1][M(p)− B(p)]− p
}

, [λ h(1) + 1] 6= 0

kj(p) =
1

λ

{

M(p)− B(p) + A∗(p) + λ kj(0)− p
}















(5.4)

with B : R → R, A∗ : R → R being additive maps such that

B(1) = 0 , A∗(1) = −λ

m
∑

j=1

kj(0) (5.5)

and M : I → R a multiplicative function in the sense that it satisfies (1.2), (1.3)

and (1.4) for all p ∈ I0, q ∈ I0.

Proof. Let us write (1.8) in the form

n
∑

i=1

m
∑

j=1

[λ h(piqj) + piqj ] =

n
∑

i=1

[λ h(pi) + pi]

m
∑

j=1

[λ kj(qj) + qj ] . (5.6)

Define the mappings f : I → R and gj : I → R, j = 1, . . . , m (with λ 6= 0), as

in (1.9), for all x ∈ I. Then, (5.6) reduces to the functional equation (1.10) whose

respective solutions are given by (4.1); (4.2) subject to the condition (4.3); and

(4.4) subject to B(1) = 0, A∗(1) = −
m
∑

j=1

gj(0); in which b : R → R, a : R → R,

A∗ : R → R, B : R → R are all additive functions and M : [0, 1] → R is a
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multiplicative function. Now, making use of (1.9) along with (4.1); (4.2) subject to

(4.3); and (4.4) subject to B(1) = 0 and A∗(1) = −
m
∑

j=1

gj(0); the required solutions

(5.1); (5.2) subject to (5.3); and (5.4) subject to (5.5); follow respectively. �
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