A sum form functional equation on a closed domain and its role in information theory

P. Nath and D.K. Singh (India)

ABSTRACT. This paper is devoted to finding the general solutions of the functional equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} h(p_i q_j) = \sum_{i=1}^{n} h(p_i) + \sum_{j=1}^{m} k_j(q_j) + \lambda \sum_{i=1}^{n} h(p_i) \sum_{j=1}^{m} k_j(q_j)$$

valid for all complete probability distributions (p_1, \ldots, p_n) , (q_1, \ldots, q_m) , $0 \leq p_i \leq 1, 0 \leq q_j \leq 1, i = 1, \ldots, n; j = 1, \ldots, m, \sum_{i=1}^n p_i = 1, \sum_{j=1}^m q_j = 1;$ $n \geq 3, m \geq 3$ fixed integers; $\lambda \in \mathbb{R}, \lambda \neq 0$ and the mappings $h : I \to \mathbb{R},$ $k_j : I \to \mathbb{R}, j = 1, \ldots, m; I = [0, 1], \mathbb{R}$ denoting the set of all real numbers. A special case of the above functional equation was treated earlier by L. Losonczi and Gy. Maksa.

²⁰⁰⁰ Mathematics Subject Classification. 39B52, 39B82.

Key words and phrases. sum form functional equation, additive function, multiplicative function, entropy of degree α .

P. NATH AND D.K. SINGH

1. Introduction

Let $\Gamma_n = \{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1, i = 1, \ldots, n; \sum_{i=1}^n p_i = 1\}, n = 2, 3, \ldots$ denote the set of all discrete *n*-component complete probability distributions with nonnegative elements. Let \mathbb{R} denote the set of all real numbers and

$$\Delta = \{(x, y) : 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le x + y \le 1\}, \text{ the unit triangle};$$
$$I = \{x \in \mathbb{R} : 0 \le x \le 1\} = [0, 1]; \ I_0 = \{x \in \mathbb{R} : 0 < x < 1\}.$$

A mapping $a: I \to \mathbb{R}$ is said to be additive on I if

$$a(x+y) = a(x) + a(y)$$

holds for all $(x, y) \in \Delta$. A mapping $A : \mathbb{R} \to \mathbb{R}$ is said to be additive on \mathbb{R} if

$$A(x+y) = A(x) + A(y)$$
(1.1)

holds for all $x \in \mathbb{R}, y \in \mathbb{R}$.

It is known [2] that every mapping $a : I \to \mathbb{R}$, additive on the unit triangle Δ , has a unique additive extension $A : \mathbb{R} \to \mathbb{R}$ in the sense that A satisfies the equation (1.1) for all $x \in \mathbb{R}, y \in \mathbb{R}$.

A mapping $M: I \to \mathbb{R}$ is said to be multiplicative on I if

$$M(0) = 0 \tag{1.2}$$

$$M(1) = 1 \tag{1.3}$$

and

$$M(pq) = M(p) M(q) \tag{1.4}$$

holds for all $p \in I_0, q \in I_0$.

The functional equation (see [1])

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(p_i q_j) = \sum_{i=1}^{n} f(p_i) + \sum_{j=1}^{m} f(q_j) + \lambda \sum_{i=1}^{n} f(p_i) \sum_{j=1}^{m} f(q_j)$$
(1.5)

where $f: I \to \mathbb{R}$, $(p_1, \ldots, p_n) \in \Gamma_n$, $(q_1, \ldots, q_m) \in \Gamma_m$, $\lambda = 2^{1-\alpha} - 1 \neq 0$ is useful in characterizing the entropy of degree α (see [3]) defined as

$$H_n^{\alpha}(p_1, \dots, p_n) = (1 - 2^{1-\alpha})^{-1} \left(1 - \sum_{i=1}^n p_i^{\alpha} \right),$$
(1.6)

where $H_n^{\alpha}: \Gamma_n \to \mathbb{R}, n = 2, 3, ...$ and $0^{\alpha} := 0, \alpha \neq 1, \alpha \in \mathbb{R}$. For $\lambda \in \mathbb{R}$, $\lambda \neq 0$, the general solutions of (1.5), for fixed integers $n \geq 3, m \geq 3$ and all $(p_1, \ldots, p_n) \in \Gamma_n, (q_1, \ldots, q_m) \in \Gamma_m$ have been obtained in [6]. A generalization of (1.5) is the following functional equation (see [5])

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij}(p_i q_j) = \sum_{i=1}^{n} h_i(p_i) + \sum_{j=1}^{m} k_j(q_j) + \lambda \sum_{i=1}^{n} h_i(p_i) \sum_{j=1}^{m} k_j(q_j)$$
(1.7)

with $f_{ij} : I \to \mathbb{R}$, $h_i : I \to \mathbb{R}$, $k_j : I \to \mathbb{R}$, i = 1, ..., n; j = 1, ..., m. For fixed integers $n \ge 3$, $m \ge 3$ and all $(p_1, ..., p_n) \in \Gamma_n$, $(q_1, ..., q_m) \in \Gamma_m$, the measurable (in the sense of Lebesgue) solutions of (1.7) have been obtained in (see [5], Theorem 6 on p-69) but it seems that the general solutions of (1.7), for fixed integers $n \ge 3$, $m \ge 3$ and all $(p_1, ..., p_n) \in \Gamma_n$, $(q_1, ..., q_m) \in \Gamma_m$ are still not known. As mentioned in [5], equations like (1.7) arise while characterizing measures of information concerned with two probability distributions. In this paper, we study the equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} h(p_i q_j) = \sum_{i=1}^{n} h(p_i) + \sum_{j=1}^{m} k_j(q_j) + \lambda \sum_{i=1}^{n} h(p_i) \sum_{j=1}^{m} k_j(q_j)$$
(1.8)

where $h: I \to \mathbb{R}, k_j: I \to \mathbb{R}, j = 1, ..., m; \lambda \in \mathbb{R}, \lambda \neq 0$ and $n \ge 3, m \ge 3$ are fixed integers. The functional equation (1.8) is a special case of (1.7).

If we define $f: I \to \mathbb{R}$ and $g_j: I \to \mathbb{R}, j = 1, \dots, m$ as (with $\lambda \neq 0$)

$$f(x) = x + \lambda h(x)$$
 and $g_j(x) = x + \lambda k_j(x)$ (1.9)

for all $x \in I$, then (1.8) reduces to the functional equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(p_i q_j) = \sum_{i=1}^{n} f(p_i) \sum_{j=1}^{m} g_j(q_j).$$
(1.10)

Also, (1.9) and (1.10) yield (1.8). Thus, if the general solutions of (1.10), for fixed integers $n \ge 3$, $m \ge 3$ and all $(p_1, \ldots, p_n) \in \Gamma_n$, $(q_1, \ldots, q_m) \in \Gamma_m$ are known; the corresponding general solutions of (1.8), for fixed integers $n \ge 3$, $m \ge 3$ and all $(p_1, \ldots, p_n) \in \Gamma_n$, $(q_1, \ldots, q_m) \in \Gamma_m$ can be determined with the aid of (1.9).

We would like to mention that, on open domain, namely when $f: I_0 \to \mathbb{R}$, $h: I_0 \to \mathbb{R}, g_j: I_0 \to \mathbb{R}, k_j: I_0 \to \mathbb{R}, j = 1, \dots, m$, the general solutions of (1.8) and (1.10) for fixed integers $n \ge 3$, $m \ge 3$ and all $(p_1, \dots, p_n) \in \Gamma_n$, $(q_1, \dots, q_m) \in \Gamma_m$ have been found in [4]. The object of this paper is to determine the general solutions of (1.8) and (1.10), on the closed domain, namely when $f: I \to \mathbb{R}, h: I \to \mathbb{R}, g_j: I \to \mathbb{R}, k_j: I \to \mathbb{R}, j = 1, \dots, m$; for fixed integers $n \ge 3, m \ge 3$ and all $(p_1, \dots, p_n) \in \Gamma_n, (q_1, \dots, q_m) \in \Gamma_m$. While investigating these solutions, the functional equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi(p_i q_j) = \sum_{i=1}^{n} \varphi(p_i) \sum_{j=1}^{m} \varphi(q_j) + m(n-1) \varphi(0) \sum_{i=1}^{n} \varphi(p_i)$$
(1.11)

arises with $\varphi : I \to \mathbb{R}, n \ge 3, m \ge 3$ fixed integers and $(p_1, \ldots, p_n) \in \Gamma_n$, $(q_1, \ldots, q_m) \in \Gamma_m$.

To deal with equations (1.8), (1.10) and (1.11), we need the results and methods from [5] and [6].

2. Some preliminary results

We require the following two results in sections 3 and 4.

Result 1. [6]. Let $k \ge 3$ be a fixed integer and c be a given constant. Suppose that a mapping $\psi: I \to \mathbb{R}$ satisfies the functional equation

$$\sum_{i=1}^{k} \psi(p_i) = c \tag{2.1}$$

for all $(p_1, \ldots, p_k) \in \Gamma_k$. Then there exists an additive mapping $B : \mathbb{R} \to \mathbb{R}$ such that

$$\psi(p) = B(p) - \frac{1}{k}B(1) + \frac{c}{k}$$
(2.2)

for all $p \in I$.

Result 2. [5]. If the mappings $\psi_j : I \to \mathbb{R}, j = 1, \dots, m$ satisfy the functional equation

$$\sum_{j=1}^{m} \psi_j(q_j) = 0 \tag{2.3}$$

for an arbitrary but fixed integer $m \ge 3$ and all $(q_1, \ldots, q_m) \in \Gamma_m$, then there exists an additive mapping $A : \mathbb{R} \to \mathbb{R}$ and the constants c_j $(j = 1, \ldots, m)$ such that

$$\psi_j(p) = A(p) + c_j \tag{2.4}$$

for all $p \in I$ and $j = 1, \ldots, m$ with

$$A(1) + \sum_{j=1}^{m} c_j = 0.$$
(2.5)

3. The functional equation (1.11)

In this section, we prove:

Theorem 1. Let $n \ge 3$, $m \ge 3$ be fixed integers and $\varphi : I \to \mathbb{R}$ be a mapping which satisfies the functional equation (1.11) for all $(p_1, \ldots, p_n) \in \Gamma_n$ and $(q_1, \ldots, q_m) \in \Gamma_m$. Then φ is of the form

$$\varphi(p) = a(p) + \varphi(0) \tag{3.1}$$

where $a:\mathbb{R}\rightarrow\mathbb{R}$ is an additive mapping with

(i)
$$a(1) = -nm \varphi(0)$$
 if $\varphi(1) + (n-1) \varphi(0) \neq 1$
or
(ii) $a(1) = 1 - n \varphi(0)$ if $\varphi(1) + (n-1) \varphi(0) = 1$ (3.2)

or

$$\varphi(p) = M(p) - B(p) \tag{3.3}$$

where $B : \mathbb{R} \to \mathbb{R}$ is an additive mapping with B(1) = 0 and $M : I \to \mathbb{R}$ is multiplicative on I in the sense that it satisfies (1.2), (1.3) and (1.4) for all $p \in I_0, q \in I_0$. **Proof.** Let us put $p_1 = 1, p_2 = ... = p_n = 0$ in (1.11). We obtain

$$[\varphi(1) + (n-1)\varphi(0) - 1] \left[\sum_{j=1}^{m} \varphi(q_j) + m(n-1)\varphi(0) \right] = 0$$
(3.4)

for all $(q_1, \ldots, q_m) \in \Gamma_m$. We divide our discussion into two cases.

Case 1. $\varphi(1) + (n-1)\varphi(0) - 1 \neq 0$.

In this case, (3.4) reduces to

$$\sum_{j=1}^{m} \varphi(q_j) = -m(n-1)\,\varphi(0)$$
(3.5)

for all $(q_1, \ldots, q_m) \in \Gamma_m$. By Result 1, there exists an additive mapping $a : \mathbb{R} \to \mathbb{R}$ such that

$$\varphi(p) = a(p) - \frac{1}{m} a(1) - (n-1) \varphi(0)$$
(3.6)

for all $p \in I$. The substitution p = 0, in (3.6), gives

$$a(1) = -nm\,\varphi(0)\,.\tag{3.7}$$

From (3.6) and (3.7), (3.1) follows. Thus, we have obtained the solution (3.1) satisfying (i) in(3.2).

Case 2. $\varphi(1) + (n-1)\varphi(0) - 1 = 0.$

Let us write (1.11) in the form

$$\sum_{j=1}^{m} \left\{ \sum_{i=1}^{n} \varphi(p_i q_j) - \varphi(q_j) \sum_{i=1}^{n} \varphi(p_i) - m(n-1)\varphi(0)q_j \sum_{i=1}^{n} \varphi(p_i) \right\} = 0.$$
(3.8)

Choose $(p_1, \ldots, p_n) \in \Gamma_n$ and fix it. Define $\psi : \Gamma_n \times I \to \mathbb{R}$ as

$$\psi(p_1, \dots, p_n; q) = \sum_{i=1}^n \varphi(p_i q) - \varphi(q) \sum_{i=1}^n \varphi(p_i) - m(n-1)\varphi(0)q \sum_{i=1}^n \varphi(p_i) \quad (3.9)$$

for all $q \in I$. By Result 1, there exists a mapping $A_1 : \Gamma_n \times \mathbb{R} \to \mathbb{R}$, additive in the second variable, such that

$$\sum_{i=1}^{n} \varphi(p_i q) - \varphi(q) \sum_{i=1}^{n} \varphi(p_i) - m(n-1) \varphi(0) q \sum_{i=1}^{n} \varphi(p_i)$$

= $A_1(p_1, \dots, p_n; q) - \frac{1}{m} A_1(p_1, \dots, p_n; 1)$ (3.10)

The substitution q = 0, in (3.10), gives

$$A_1(p_1, \dots, p_n; 1) = m \varphi(0) \left[\sum_{i=1}^n \varphi(p_i) - n \right]$$
 (3.11)

as $A_1(p_1, ..., p_n; 0)$. From (3.10) and (3.11), we obtain

$$\sum_{i=1}^{n} \varphi(p_i q) - \varphi(q) \sum_{i=1}^{n} \varphi(p_i) - m(n-1) \varphi(0) q \sum_{i=1}^{n} \varphi(p_i)$$

= $A_1(p_1, \dots, p_n; q) - \varphi(0) \sum_{i=1}^{n} \varphi(p_i) + n \varphi(0)$. (3.12)

Since $(p_1, \ldots, p_n) \in \Gamma_n$ was chosen arbitrarily and then fixed, equation (3.12), indeed, holds for all $(p_1, \ldots, p_n) \in \Gamma_n$ and all $q \in I$.

Let $x \in I$ and $(r_1, \ldots, r_n) \in \Gamma_n$. Putting $q = xr_t, t = 1, \ldots, n$ in (3.12); adding the resulting n equations and using the additivity of A_1 in the second variable, it follows that

$$\sum_{i=1}^{n} \sum_{t=1}^{n} \varphi(xp_i r_t) - \sum_{t=1}^{n} \varphi(xr_t) \sum_{i=1}^{n} \varphi(p_i) - m(n-1) \varphi(0) x \sum_{i=1}^{n} \varphi(p_i)$$

= $A_1(p_1, \dots, p_n; x) - n \varphi(0) \sum_{i=1}^{n} \varphi(p_i) + n^2 \varphi(0).$ (3.13)

Also, if we put q = x and $p_i = r_i$, i = 1, ..., n in (3.12), we obtain

$$\sum_{t=1}^{n} \varphi(xr_t) = \varphi(x) \sum_{t=1}^{n} \varphi(r_t) + m(n-1) \varphi(0) x \sum_{t=1}^{n} \varphi(r_t) + A_1(r_1, \dots, r_n; x) - \varphi(0) \sum_{t=1}^{n} \varphi(r_t) + n \varphi(0).$$
(3.14)

From (3.13) and (3.14), we can obtain the equation

$$\sum_{i=1}^{n} \sum_{t=1}^{n} \varphi(xp_{i}r_{t}) - [\varphi(x) + m(n-1)\varphi(0)x - \varphi(0)]$$

$$\times \sum_{i=1}^{n} \varphi(p_{i}) \sum_{t=1}^{n} \varphi(r_{t}) - n^{2}\varphi(0)$$

$$= A_{1}(p_{1}, \dots, p_{n}; x) + m(n-1)\varphi(0)x \sum_{i=1}^{n} \varphi(p_{i})$$

$$+ A_{1}(r_{1}, \dots, r_{n}; x) \sum_{i=1}^{n} \varphi(p_{i}). \qquad (3.15)$$

The symmetry of the left hand side of (3.15), in p_i and r_t , i = 1, ..., n; t = 1, ..., ngives rise to the equation

$$A_{1}(p_{1},...,p_{n};x) + m(n-1)\varphi(0) x \sum_{i=1}^{n} \varphi(p_{i}) + A_{1}(r_{1},...,r_{n};x) \sum_{i=1}^{n} \varphi(p_{i})$$

= $A_{1}(r_{1},...,r_{n};x) + m(n-1)\varphi(0) x \sum_{t=1}^{n} \varphi(r_{t})$
+ $A_{1}(p_{1},...,p_{n};x) \sum_{t=1}^{n} \varphi(r_{t})$

which can be written in the form

$$[A_1(p_1, \dots, p_n; x) + m(n-1)\varphi(0)x] \left[\sum_{t=1}^n \varphi(r_t) - 1\right]$$

= $[A_1(r_1, \dots, r_n; x) + m(n-1)\varphi(0)x] \left[\sum_{i=1}^n \varphi(p_i) - 1\right].$ (3.16)

Equation (3.16) holds for all $(r_1, \ldots, r_n) \in \Gamma_n$, $(p_1, \ldots, p_n) \in \Gamma_n$ and all $x \in I$.

Subcase 2.1.
$$\sum_{t=1}^{n} \varphi(r_t) - 1$$
 vanishes identically on Γ_n .
In this case,

$$\sum_{t=1}^{n} \varphi(r_t) = 1 \tag{3.17}$$

holds for all $(r_1, \ldots, r_n) \in \Gamma_n$. By Result 1, there exists an additive map $a : \mathbb{R} \to \mathbb{R}$ such that

$$\varphi(p) = a(p) - \frac{1}{n}a(1) + \frac{1}{n}$$
(3.18)

for all $p \in I$. The substitution p = 0, in (3.18), yields

$$a(1) = 1 - n\,\varphi(0)\,. \tag{3.19}$$

From (3.18) and (3.19), (3.1) follows again. Thus, we have obtained the solution (3.1) satisfying (ii) in (3.2).

Subcase 2.2.
$$\sum_{t=1}^{n} \varphi(r_t) - 1$$
 does not vanish identically on Γ_n .
Then, there exists a probability distribution $(r_1^*, \dots, r_n^*) \in \Gamma_n$ such that
 $\sum_{t=1}^{n} \varphi(r_t^*) - 1 \neq 0$. (3.20)

8

Setting $r_1 = r_1^*, ..., r_n = r_n^*$ in (3.16), we obtain

$$[A_1(p_1, \dots, p_n; x) + m(n-1)\varphi(0) x] \left[\sum_{t=1}^n \varphi(r_t^*) - 1\right]$$

= $[A_1(r_1^*, \dots, r_n^*; x) + m(n-1)\varphi(0) x] \left[\sum_{i=1}^n \varphi(p_i) - 1\right]$

which gives, for all $x \in I$,

$$A_1(p_1, \dots, p_n; x) = A(x) \left[\sum_{i=1}^n \varphi(p_i) - 1 \right] - m(n-1) \varphi(0) x$$
 (3.21)

where $A: \mathbb{R} \to \mathbb{R}$ is defined as

$$A(y) = \left[\sum_{t=1}^{n} \varphi(r_t^*) - 1\right]^{-1} \left[A_1(r_1^*, \dots, r_n^*; y) + m(n-1)\varphi(0)y\right]$$
(3.22)

for all $y \in \mathbb{R}$. From (3.22), it is easy to verify that $A : \mathbb{R} \to \mathbb{R}$ is additive. Also, from (3.11) (with $p_i = r_i^*, i = 1, ..., n$) and (3.22), it is easy to derive

$$A(1) = m \varphi(0) . \tag{3.23}$$

From (3.12) and (3.21), it follows that

$$\sum_{i=1}^{n} \varphi(p_i q) - \varphi(q) \sum_{i=1}^{n} \varphi(p_i) - m(n-1) \varphi(0) q \sum_{i=1}^{n} \varphi(p_i)$$

= $A(q) \sum_{i=1}^{n} \varphi(p_i) - A(q) - m(n-1) \varphi(0) q - \varphi(0) \sum_{i=1}^{n} \varphi(p_i) + n \varphi(0)$

which, upon using (3.23), gives

$$\sum_{i=1}^{n} [\varphi(p_i q) + A(p_i q) + m(n-1) \varphi(0) p_i q - \varphi(0)] - [\varphi(q) + A(q) + m(n-1) \varphi(0) q - \varphi(0)] \times \sum_{i=1}^{n} [\varphi(p_i) + A(p_i) + m(n-1) \varphi(0) p_i - \varphi(0)] + [\varphi(q) + A(q) + m(n-1) \varphi(0) q - \varphi(0)] n(m-1) \varphi(0) = 0.$$
(3.24)

Define a mapping $B : \mathbb{R} \to \mathbb{R}$ as

$$B(x) = A(x) + m(n-1)\varphi(0)x$$
(3.25)

for all $x \in \mathbb{R}$. Then, $B : \mathbb{R} \to \mathbb{R}$ is additive. Moreover, from (3.23) and (3.25), it follows that

$$B(1) = mn\,\varphi(0)\,. \tag{3.26}$$

With the help of (3.25), equation (3.24) can be written in the form

$$\sum_{i=1}^{n} [\varphi(p_i q) + B(p_i q) - \varphi(0)] - [\varphi(q) + B(q) - \varphi(0)] \\ \times \sum_{i=1}^{n} [\varphi(p_i) + B(p_i) - \varphi(0)] + n(m-1)\varphi(0) [\varphi(q) + B(q) - \varphi(0)] \\ = 0.$$
(3.27)

Define a mapping $M: I \to \mathbb{R}$ as

$$M(x) = \varphi(x) + B(x) - \varphi(0) \tag{3.28}$$

for all $x \in I$. Notice that though $B : \mathbb{R} \to \mathbb{R}$ but, in (3.28), we are restricting its use only for all $x \in I$.

From (3.28), it is easy to see that (1.2) follows as B(0) = 0. Also, from (3.26), (3.28) and the fact that $\varphi(1) + (n-1)\varphi(0) = 1$, it follows that

$$M(1) = 1 + n(m-1)\varphi(0).$$
(3.29)

Moreover, from (3.27) and (3.28), we get (for all $q \in I$)

$$\sum_{i=1}^{n} M(p_i q) - M(q) \sum_{i=1}^{n} M(p_i) + n(m-1) \varphi(0) M(q) = 0$$
(3.30)

which can be written in the form

$$\sum_{i=1}^{n} [M(p_i q) - M(q)M(p_i) + n(m-1)\varphi(0) M(q) p_i] = 0.$$
(3.31)

By Result 1, there exists a mapping $E : \mathbb{R} \times I \to \mathbb{R}$, additive in the first variable, such that

$$M(pq) - M(p)M(q) + n(m-1)\varphi(0) M(q) p = E(p,q) - \frac{1}{n}E(1,q)$$
(3.31a)

for all $p \in I$, $q \in I$. The substitution p = 0 in (3.31a) and the use of (1.2) gives E(1,q) = 0 for all $q \in I$. Consequently, (3.31a) reduces to the equation

$$M(pq) - M(p)M(q) + n(m-1)\varphi(0) M(q) p = E(p,q)$$
(3.32)

for all $p \in I$, $q \in I$.

Now we prove that $n(m-1)\varphi(0) \neq 0$ is not possible.

If possible, suppose $n(m-1)\varphi(0) \neq 0$. Then, (3.29) gives $M(1) \neq 1$. Putting q = 1 in (3.30), using (3.29) and the fact that $M(1) - 1 \neq 0$, we get

$$\sum_{i=1}^{n} M(p_i) = M(1)$$

for all $(p_1, \ldots, p_n) \in \Gamma_n$. By Result 1, there exists an additive mapping $A_2 : \mathbb{R} \to \mathbb{R}$ such that

$$M(p) = A_2(p) - \frac{1}{n} A_2(1) + \frac{1}{n} M(1)$$
(3.33)

for all $p \in I$. The substitution p = 0, in (3.33), gives $A_2(1) = M(1)$ as $A_2(0) = 0$ and M(0) = 0. Hence

$$M(p) = A_2(p)$$

for all $p \in I$. Thus M is additive on I. Now, from (3.20), (3.26), (3.28), (3.29) and the additivity of M on I, we have

$$\begin{split} 1 \neq \sum_{t=1}^{n} \varphi(r_t^*) &= M(1) - B(1) + n \, \varphi(0) \\ &= 1 + n(m-1) \, \varphi(0) - nm \, \varphi(0) + n \, \varphi(0) = 1 \end{split}$$

a contradiction.

So, the only possibility is that $n(m-1)\varphi(0) = 0$. Since $n \ge 3$, $m \ge 3$ are fixed integers, it follows that $\varphi(0) = 0$ and hence $\varphi(1) = 1$. From this and (3.29), (1.3) follows. Since $\varphi(0) = 0$, equation (3.32) reduces to the equation

$$M(pq) - M(p) M(q) = E(p,q)$$
(3.34)

for all $p \in I$, $q \in I$. The left hand side of (3.34) is symmetric in p and q. Hence E(p,q) = E(q,p) for all $p \in I$, $q \in I$. Consequently, E is also additive on I in the second variable. We may assume that $E(p, \cdot)$ has been extended additively to the whole of \mathbb{R} .

Let $p \in I$, $q \in I$, $r \in I$. From (3.34), we have

$$E(pq,r) + M(r) E(p,q) = M(pqr) - M(p) M(q) M(r)$$

= $E(qr,p) + M(p) E(q,r).$ (3.35)

Now we prove that E(p,q) = 0 for all $p \in I$, $q \in I$. If possible, suppose there exists a $p^* \in I$ and a $q^* \in I$ such that $E(p^*, q^*) \neq 0$. Then, from (3.35)

$$M(r) = [E(p^*, q^*)]^{-1} \{ E(q^*r, p^*) + M(p^*)E(q^*, r) - E(p^*q^*, r) \}$$

from which it follows that M is additive on I. Now, making use of (3.20), (3.26), (3.28), (1.3), the additivity of M and the fact that $\varphi(0) = 0$, we obtain

$$1 \neq \sum_{t=1}^{n} \varphi(r_t^*) = M(1) - B(1) + n \varphi(0) = 1 - mn \varphi(0) + n \varphi(0) = 1$$

a contradiction. Hence E(p,q) = 0 for all $p \in I$, $q \in I$. Now, (3.34) reduces to the equation

$$M(pq) = M(p) M(q) \tag{3.36}$$

for all $p \in I$, $q \in I$. From (3.36), (1.4) follows immediately for all $p \in I_0$, $q \in I_0$. Also, since $\varphi(0) = 0$, (3.28) reduces to (3.3) and (3.26) gives B(1) = 0. This completes the proof of Theorem 1.

4. The functional equation (1.10)

In this section, we prove:

Theorem 2. Let $n \ge 3$, $m \ge 3$ be fixed integers and $f : I \to \mathbb{R}$, $g_j : I \to \mathbb{R}$, $j = 1, \ldots, m$ be mappings which satisfy the functional equation (1.10) for all $(p_1, \ldots, p_n) \in \Gamma_n$ and $(q_1, \ldots, q_m) \in \Gamma_m$. Then, any general solution of (1.10) is of the form

$$f(p) = b(p), \quad g_j \text{ any arbitrary real-valued mapping}$$
 (4.1)

where $b : \mathbb{R} \to \mathbb{R}$ is an additive mapping with b(1) = 0 or

$$\left. \begin{array}{l} f(p) = [f(1) + (n-1) f(0)] a(p) + f(0) \\ g_j(p) = a(p) + A^*(p) + g_j(0) \end{array} \right\}$$
(4.2)

for all j = 1, ..., m; with $a : \mathbb{R} \to \mathbb{R}$, $A^* : \mathbb{R} \to \mathbb{R}$ being additive maps and

$$a(1) = 1 - \frac{n f(0)}{f(1) + (n-1) f(0)}, \qquad f(1) + (n-1) f(0) \neq 0$$

$$A^*(1) = -\sum_{j=1}^m g_j(0) + \frac{nm f(0)}{f(1) + (n-1) f(0)}, \quad f(1) + (n-1) f(0) \neq 0$$

$$\left. \right\}$$
(4.3)

or

$$\begin{cases} f(p) = f(1)[M(p) - B(p)], & f(1) \neq 0 \\ g_j(p) = M(p) - B(p) + A^*(p) + g_j(0) \end{cases}$$

$$(4.4)$$

for all j = 1, ..., m; with $B : \mathbb{R} \to \mathbb{R}$, $A^* : \mathbb{R} \to \mathbb{R}$ being additive maps, B(1) = 0, $A^*(1) = -\sum_{j=1}^m g_j(0)$ and $M : I \to \mathbb{R}$ a multiplicative function in the sense that it satisfies (1.2), (1.3) and (1.4) for all $p \in I_0$, $q \in I_0$.

Proof. Put $p_1 = 1, p_2 = \ldots = p_n = 0$ in (1.10). We obtain

$$\sum_{j=1}^{m} [f(q_j) + (n-1)f(0)] = [f(1) + (n-1)f(0)] \sum_{j=1}^{m} g_j(q_j)$$
(4.5)

for all $(q_1, \ldots, q_m) \in \Gamma_m$.

Case 1.

$$f(1) + (n-1) f(0) = 0.$$
(4.6)

Then, (4.5) reduces to the equation

$$\sum_{j=1}^{m} f(q_j) = -m(n-1) f(0)$$
(4.7)

13

valid for all $(q_1, \ldots, q_m) \in \Gamma_m$. By Result 1, there exists an additive mapping $b : \mathbb{R} \to \mathbb{R}$ such that

$$f(p) = b(p) - \frac{1}{m}b(1) - (n-1)f(0)$$
(4.8)

for all $p \in I$. The substitution p = 0, in (4.8), gives

$$b(1) = -nm f(0). (4.9)$$

From (4.8) and (4.9), it follows that

$$f(p) = b(p) + f(0)$$
(4.10)

for all $p \in I$. From (4.6), (4.9) and (4.10), using the fact that $n \ge 3$, $m \ge 3$ are fixed integers, it follows that

$$f(0) = 0. (4.11)$$

From (4.9) and (4.11), it follows that

$$b(1) = 0. (4.12)$$

Also, (4.10) and (4.11) give

$$f(p) = b(p) \tag{4.13}$$

for all $p \in I$. Also, from (1.10), (4.12), (4.13) and the additivity of $b : \mathbb{R} \to \mathbb{R}$, it follows that g_j can be any arbitrary real-valued mapping. Thus, we have obtained the solution (4.1) in which b satisfies (4.12).

Case 2. $f(1) + (n-1) f(0) \neq 0$.

In this case, (4.5) gives

$$\sum_{j=1}^{m} g_j(q_j) = [f(1) + (n-1) f(0)]^{-1} \sum_{j=1}^{m} [f(q_j) + (n-1) f(0)]$$
(4.14)

which can be written in the form

$$\sum_{j=1}^{m} \left\{ g_j(q_j) - [f(1) + (n-1)f(0)]^{-1} [f(q_j) + (n-1)f(0)] \right\} = 0.$$
 (4.15)

This holds for all $(q_1, \ldots, q_m) \in \Gamma_m$. By Result 2, there exists an additive mapping $A^* : \mathbb{R} \to \mathbb{R}$ and constants c_j $(j = 1, \ldots, m)$ such that

$$g_j(p) - [f(1) + (n-1)f(0)]^{-1}[f(p) + (n-1)f(0)] = A^*(p) + c_j \qquad (4.16)$$

with

$$A^*(1) + \sum_{j=1}^m c_j = 0.$$
(4.17)

The substitution p = 0, in (4.16), gives

$$c_j = g_j(0) - [f(1) + (n-1)f(0)]^{-1} n f(0)$$
(4.18)

for j = 1, ..., m. From (4.17) and (4.18), we get $A^*(1)$ as mentioned in (4.3).

Also, from (4.16) and (4.18),

$$g_j(p) = [f(1) + (n-1)f(0)]^{-1}[f(p) - f(0)] + A^*(p) + g_j(0)$$
(4.19)

for j = 1, ..., m. Equation (4.19) tells us that if f is known, then the corresponding form of $g_j(p)$, j = 1, ..., m, can be determined. To determine f, we eliminate $\sum_{j=1}^{m} g_j(q_j)$ from equations (1.10) and (4.14). We obtain the equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(p_i q_j) = [f(1) + (n-1) f(0)]^{-1} \sum_{i=1}^{n} f(p_i) \sum_{j=1}^{m} f(q_j) + [f(1) + (n-1) f(0)]^{-1} m(n-1) f(0) \sum_{i=1}^{n} f(p_i) (4.20)$$

valid for all $(p_1, \ldots, p_n) \in \Gamma_n$ and $(q_1, \ldots, q_m) \in \Gamma_m$.

Define a mapping $\varphi: I \to \mathbb{R}$ as

$$\varphi(x) = [f(1) + (n-1)f(0)]^{-1}f(x)$$
(4.21)

for all $x \in I$. Then (4.20) reduces to the functional (1.11) which also holds for all $(p_1, \ldots, p_n) \in \Gamma_n$ and $(q_1, \ldots, q_m) \in \Gamma_m$. Moreover, φ satisfies the condition

$$\varphi(1) + (n-1)\,\varphi(0) = 1\,. \tag{4.22}$$

Also, from (4.21),

$$f(p) = [f(1) + (n-1)f(0)]\varphi(p)$$
(4.23)

for all $p \in I$ with $f(1) + (n-1) f(0) \neq 0$ and

$$\varphi(0) = \frac{f(0)}{f(1) + (n-1)f(0)}.$$
(4.24)

From, (4.19), (4.23), (4.24), (3.1) and (ii) in (3.2), the forms of f(p), $g_j(p)$ and a(1), as mentioned in (4.2) and (4.3), follow. Thus, we have obtained the solution (4.2), of (1.10), subject to a(1) and $A^*(1)$ as mentioned in (4.3).

The form of φ , given by (3.3), with B(1) = 0, is also acceptable as in this case, $\varphi(0) = 0$, $\varphi(1) = 1$ and hence $\varphi(1) + (n-1)\varphi(0) = 1$. Now, from (4.24), f(0) = 0. The solution (4.4), of (1.10), follows from (4.23), (4.19), (3.3), (1.2), (1.3), (1.4) and the fact that f(0) = 0, B(1) = 0, $A^*(1) = -\sum_{j=1}^m g_j(0)$. This completes the proof of Theorem 2.

5. The functional equation (1.8)

In this section, we prove:

Theorem 3. Let $n \ge 3$, $m \ge 3$ be fixed integers and $h: I \to \mathbb{R}$, $k_j: I \to \mathbb{R}$, $j = 1, \ldots, m$ be mappings which satisfy the functional equation (1.8) for all $(p_1, \ldots, p_n) \in \Gamma_n$ and $(q_1, \ldots, q_m) \in \Gamma_m$ and $\lambda \ne 0$. Then, any general solution of (1.8) is of the form

$$h(p) = \frac{1}{\lambda} [b(p) - p], \ k_j \ any \ arbitrary \ real-valued \ mapping$$
(5.1)

where $b : \mathbb{R} \to \mathbb{R}$ is an additive mapping with b(1) = 0 or

$$h(p) = \frac{1}{\lambda} \left\{ \left[\lambda(h(1) + (n-1)h(0)) + 1 \right] a(p) + \lambda h(0) - p \right\}$$

$$k_j(p) = \frac{1}{\lambda} \left\{ a(p) + A^*(p) + \lambda k_j(0) - p \right\}$$
(5.2)

for all j = 1, ..., m; with $a : \mathbb{R} \to \mathbb{R}$, $A^* : \mathbb{R} \to \mathbb{R}$ being additive maps and

$$a(1) = 1 - \frac{n\lambda h(0)}{\lambda (h(1) + (n-1) h(0)) + 1},$$

$$\lambda (h(1) + (n-1) h(0)) + 1 \neq 0$$

$$A^*(1) = -\lambda \sum_{j=1}^m k_j(0) + \frac{nm\lambda h(0)}{\lambda (h(1) + (n-1) h(0)) + 1},$$

$$\lambda (h(1) + (n-1) h(0)) + 1 \neq 0.$$
(5.3)

or

$$h(p) = \frac{1}{\lambda} \left\{ [\lambda h(1) + 1] [M(p) - B(p)] - p \right\}, \quad [\lambda h(1) + 1] \neq 0$$

$$k_j(p) = \frac{1}{\lambda} \left\{ M(p) - B(p) + A^*(p) + \lambda k_j(0) - p \right\}$$
(5.4)

with $B: \mathbb{R} \to \mathbb{R}, A^*: \mathbb{R} \to \mathbb{R}$ being additive maps such that

$$B(1) = 0, \quad A^*(1) = -\lambda \sum_{j=1}^m k_j(0)$$
(5.5)

and $M: I \to \mathbb{R}$ a multiplicative function in the sense that it satisfies (1.2), (1.3) and (1.4) for all $p \in I_0$, $q \in I_0$.

Proof. Let us write (1.8) in the form

$$\sum_{i=1}^{n} \sum_{j=1}^{m} [\lambda h(p_i q_j) + p_i q_j] = \sum_{i=1}^{n} [\lambda h(p_i) + p_i] \sum_{j=1}^{m} [\lambda k_j(q_j) + q_j].$$
(5.6)

Define the mappings $f: I \to \mathbb{R}$ and $g_j: I \to \mathbb{R}$, j = 1, ..., m (with $\lambda \neq 0$), as in (1.9), for all $x \in I$. Then, (5.6) reduces to the functional equation (1.10) whose respective solutions are given by (4.1); (4.2) subject to the condition (4.3); and (4.4) subject to B(1) = 0, $A^*(1) = -\sum_{j=1}^m g_j(0)$; in which $b: \mathbb{R} \to \mathbb{R}$, $a: \mathbb{R} \to \mathbb{R}$, $A^*: \mathbb{R} \to \mathbb{R}$, $B: \mathbb{R} \to \mathbb{R}$ are all additive functions and $M: [0,1] \to \mathbb{R}$ is a multiplicative function. Now, making use of (1.9) along with (4.1); (4.2) subject to (4.3); and (4.4) subject to B(1) = 0 and $A^*(1) = -\sum_{j=1}^m g_j(0)$; the required solutions (5.1); (5.2) subject to (5.3); and (5.4) subject to (5.5); follow respectively. \Box

REFERENCES

- M. Behara and P. Nath. Additive and non-additive entropies of finite measurable partitions, *Probability and Information Theory II*, Lecture Notes in Math., 296, Berlin-Heidelberg-New York, 1973, 102–138.
- [2] Z. Daróczy and L. Losonczi. Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. (Debrecen), 14 (1967), 239–245.
- [3] J. Havrda and F. Charvat. Quantification method of classification process, concept of structural α-entropy, *Kybernetika* (Prague), 3 (1967), 30–35.
- [4] PL. Kannappan and P.K. Sahoo. On the general solution of a functional equation connected to sum from information measures on open domain-VI, *Radovi Matematicki*, 8 (1992), 231–239.
- [5] L. Losonczi. Functional equations of sum form, Publ. Math. (Debrecen), 32 (1985), 57–71.
- [6] L. Losonczi and Gy. Maksa. On some functional equations of the information theory, Acta Math. Acad. Sci. Hung., 39 (1982), 73–82.

Prem Nath

Department of Mathematics University of Delhi Delhi 110 007 India E-mail: pnathmaths@gmail.com

Dhiraj Kumar Singh

Department of Mathematics Zakir Husain Delhi College (University of Delhi) Jawaharlal Nehru Marg Delhi 110 002 India E-mail: dhiraj426@rediffmail.com