STRONG FELLER PROCESSES WITH MEASURE-VALUED DRIFTS

D. KINZEBULATOV

ABSTRACT. We construct a strong Feller process associated with $-\Delta + \sigma \cdot \nabla$, with drift σ in a wide class of measures (weakly form-bounded measures, e.g. combining weak *L d* and Kato class measure singularities), by exploiting a quantitative dependence of the smoothness of the domain of an operator realization of $-\Delta + \sigma \cdot \nabla$ generating a holomorphic *C*₀-semigroup on $L^p(\mathbb{R}^d)$, $p > d - 1$, on the value of the form-bound of σ . Our method admits extension to other types of perturbations of $-\Delta$ or $(-\Delta)^{\frac{\alpha}{2}}$, e.g. to yield new L^p -regularity results for Schrödinger operators with form-bounded measure potentials.

1. Let \mathcal{L}^d be the Lebesgue measure on \mathbb{R}^d , $L^p = L^p(\mathbb{R}^d, \mathcal{L}^d)$, $L^{p,\infty} = L^{p,\infty}(\mathbb{R}^d, \mathcal{L}^d)$ and $W^{1,p} =$ $W^{1,p}(\mathbb{R}^d, \mathcal{L}^d)$ the standard Lebesgue, weak Lebesgue and Sobolev spaces, $C^{0,\gamma} = C^{0,\gamma}(\mathbb{R}^d)$ the space of Hölder continuous functions $(0 < \gamma < 1)$, $C_b = C_b(\mathbb{R}^d)$ the space of bounded continuous functions, endowed with the sup-norm, $C_{\infty} \subset C_b$ the closed subspace of functions vanishing at infinity, $W^{s,p}$, $s > 0$, the Bessel space endowed with norm $||u||_{p,s} := ||g||_p$, $u = (1 - \Delta)^{-\frac{s}{2}}g$, $g \in L^p$, $\mathcal{W}^{-s,p}$ the dual of $\mathcal{W}^{s,p}$, and $\mathcal{S} = \mathcal{S}(\mathbb{R}^d)$ the L. Schwartz space of test functions. We denote by $\mathcal{B}(X,Y)$ the space of bounded linear operators between complex Banach spaces $X \to Y$, endowed with operator norm $\| \cdot \|_{X \to Y}$; $\mathcal{B}(X) := \mathcal{B}(X, X)$. Set $\| \cdot \|_{p \to q} := \| \cdot \|_{L^p \to L^q}$. We denote by $\stackrel{w}{\to}$ the weak convergence of \mathbb{R}^d - or \mathbb{C}^d -valued measures on \mathbb{R}^d , and the weak convergence in a given Banach space.

By $\langle u, v \rangle$ we denote the inner product in L^2 ,

$$
\langle u, v \rangle = \langle u\overline{v} \rangle := \int_{\mathbb{R}^d} u\overline{v} \mathcal{L}^d \qquad (u, v \in L^2).
$$

2. Let $d \geq 3$. The problem of constructing a Feller process having infinitesimal generator $-\Delta + b \cdot \nabla$, with singular drift $b : \mathbb{R}^d \to \mathbb{R}^d$, has been thoroughly studied in the literature (cf. [\[AKR,](#page-14-0) [KR\]](#page-14-1) and references therein), motivated by applications, as well as the search for the maximal (general) class of vector fields *b* such that the associated process exists. This search culminated in the following classes of critical drifts:

DEFINITION 1. A vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ is said to belong to \mathbf{F}_δ , the class of form-bounded vector fields, if *b* is \mathcal{L}^d -measurable and there exists $\lambda = \lambda_\delta > 0$ such that

$$
||b(\lambda - \Delta)^{-\frac{1}{2}}||_{2 \to 2} \leq \sqrt{\delta}.
$$

Department of Mathematics, University of Toronto, 40 St. George Str., Toronto, ON, M5S2E4, Canada *E-mail address*: damir.kinzebulatov@utoronto.ca.

²⁰¹⁰ *Mathematics Subject Classification.* 35J15, 47D07 (primary), 35J75 (secondary).

Key words and phrases. Feller processes, measure-valued drift, regularity of solutions, non-local operators.

Here \rightarrow stands for $\subsetneq,$ inclusion of vector spaces.

The inclusions $L^d + L^\infty \subsetneq \mathbf{F}_0 := \bigcap_{\delta > 0} \mathbf{F}_\delta$, $L^{d, \infty} + L^\infty \subsetneq \bigcup_{\delta > 0} \mathbf{F}_\delta$ follow from the Sobolev embedding theorem, and the Strichartz inequality with sharp constants [\[KPS\]](#page-14-2), respectively.

DEFINITION 2. A vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ is said to belong to the Kato class $\mathbf{K}_{\delta}^{d+1}$ if b is \mathcal{L}^d measurable and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$
||b(\lambda - \Delta)^{-\frac{1}{2}}||_{1 \to 1} \le \delta.
$$

We have:

1) $b(x) = \sqrt{\delta} \frac{d-2}{2} x |x|^{-2} \in \mathbf{F}_{\delta}$ (Hardy inequality).

2) Also, if $|b(x)| \le 1_{|x_1| < 1} |x_1|^{s-1}$, where $0 < s < 1$, $x = (x_1, \ldots, x_d)$, $1_{|x_1| < 1}$ is the characteristic function of $\{x : |x_1| < 1\}$, then $b \in \mathbf{K}_0^{d+1}$. An example of a $b \in \mathbf{K}_{\delta}^{d+1} \setminus \mathbf{K}_0^{d+1}$ can be obtained e.g. by modifying [\[AS,](#page-14-3) p. 250, Example [1](#page-1-0)]¹. Examples 1), 2) demonstrate that $\mathbf{K}_{\delta}^{d+1} \setminus \mathbf{F}_{\delta_1} \neq \emptyset$, and $\mathbf{F}_{\delta_1} \setminus \mathbf{K}_{\delta}^{d+1} \neq \varnothing.$

It is clear that

$$
b \in \mathbf{F}_{\delta} \text{ (or } \mathbf{K}_{\delta}^{d+1}) \quad \Leftrightarrow \quad \varepsilon b \in \mathbf{F}_{\varepsilon \delta} \text{ (respectively, } \mathbf{K}_{\varepsilon \delta}^{d+1}), \quad \varepsilon > 0.
$$

In particular, there exist $b \in \mathbf{F}_{\delta}$ ($\mathbf{K}_{\delta}^{d+1}$) such that $\varepsilon b \notin \mathbf{F}_0$ (\mathbf{K}_0^{d+1}) for any $\varepsilon > 0$ (cf. examples above). The vector fields in $\mathbf{F}_{\delta} \setminus \mathbf{F}_0$ and $\mathbf{K}_{\delta}^{d+1} \setminus \mathbf{K}_0^{d+1}$ have critical order singularities (i.e. sensitive to multiplication by a constant), at isolated points or along hypersurfaces, respectively.

Earlier, the Kato class $\mathbf{K}_{\delta}^{d+1}$, with $\delta > 0$ sufficiently small (but nevertheless allowed to be positive), has been recognized as 'the right one' for the existence of the Gaussian upper and lower bounds on the fundamental solution of $-\Delta + b \cdot \nabla$, see [\[S,](#page-15-0) [Zh\]](#page-15-1); the Gaussian bounds yield an operator realization of $-\Delta + b \cdot \nabla$ generating a (contraction positivity preserving) *C*₀-semigroup in C_{∞} (moreover, in *C*_{*b*}), whose integral kernel is the transition probability function of a Feller process. In turn, $b \in \mathbf{F}_{\delta}$, *δ* < 4, ensures that $-\Delta + b \cdot \nabla$ is dissipative in L^p , $p > \frac{2}{2-\sqrt{\delta}}$ [\[KS\]](#page-14-4); then, if $\delta < \min\{1, \left(\frac{2}{d-2}\right)^2\}$, the L^p -dissipativity allows to run a Moser-type iterative procedure of [\[KS\]](#page-14-4), which takes $p \to \infty$ and

¹The value of the relative bound δ plays a crucial role in the theory of $-\Delta + b \cdot \nabla$, e.g. if $\delta > 4$, then the uniqueness of solution of Cauchy problem for $\partial_t - \Delta + \sqrt{\delta} \frac{d-2}{2} x |x|^{-2} \cdot \nabla$ fails in L^p , see [\[KS,](#page-14-4) Example 7], see also comments below.

thus produces an operator realization of $-\Delta + b \cdot \nabla$ generating a C_0 -semigroup in C_∞ , hence a Feller process.

The natural next step toward determining the general class of drifts *b* 'responsible' for the existence of an associated Feller process is to consider $b = b_1 + b_2$, with $b_1 \in \mathbf{F}_{\delta_1}$, $b_2 \in \mathbf{K}_{\delta_2}^{d+1}$. Although it is not clear how to reconcile the dissipativity in L^p and the Gaussian bounds, it turns out that neither of these properties is responsible for the existence of the process; in fact, the process exists for any *b* in the following class [\[Ki\]](#page-14-5):

DEFINITION 3. A vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ is said to belong to $\mathbf{F}_{\delta}^{\frac{1}{2}}$, the class of *weakly* form-bounded *δ* vector fields, if *b* is \mathcal{L}^d -measurable, and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$
\||b|^{\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{4}}\|_{2\to 2}\leqslant \sqrt{\delta}.
$$

The class $\mathbf{F}_{\delta}^{\frac{1}{2}}$ has been introduced in [\[S2,](#page-15-2) Theorem 5.1]. We have

$$
\mathbf{K}_{\delta}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \mathbf{F}_{\delta^2} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}},
$$
\n
$$
b \in \mathbf{F}_{\delta_1} \text{ and } f \in \mathbf{K}_{\delta_2}^{d+1} \quad \Longrightarrow \quad b + f \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \ \sqrt{\delta} = \sqrt[4]{\delta_1} + \sqrt{\delta_2}
$$
\n
$$
(1)
$$

(see [\[Ki\]](#page-14-5)). In [\[Ki\]](#page-14-5), the construction of the process goes as follows: the starting object is an operatorvalued function $(b \in \mathbf{F}_{\delta}^{\frac{1}{2}})$

$$
\Theta_p(\zeta,b) := (\zeta - \Delta)^{-1}
$$

- $(\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \underbrace{(\zeta - \Delta)^{-\frac{1}{2q'}} |b|^{\frac{1}{p'}}}_{\in \mathcal{B}(L^p)} \underbrace{(1 + b^{\frac{1}{p}} \cdot \nabla(\zeta - \Delta)^{-1} |b|^{\frac{1}{p'}})^{-1}}_{\in \mathcal{B}(L^p)} \underbrace{\frac{1}{p} \cdot \nabla(\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2r}}}_{\in \mathcal{B}(L^p)} (\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2r}},$

where $\text{Re}\,\zeta > \frac{d}{d-1}\lambda_{\delta}$, $b^{\frac{1}{p}} := b|b|^{\frac{1}{p}-1}$, *p* is in a bounded open interval determined by the form-bound δ (and expanding to $(1, \infty)$ as $\delta \downarrow 0$), and $1 < r < p < q$. Then (see [\[Ki\]](#page-14-5) for details)

$$
\Theta_p(\zeta, b) = (\zeta + \Lambda_p(b))^{-1},
$$

where $\Lambda_p(b)$ is an operator realization of $-\Delta + b \cdot \nabla$ generating a holomorphic C_0 -semigroup $e^{-t\Lambda_p(b)}$ on L^p , and the very definition of $\Theta_p(\zeta, b)$ implies that the domain of $\Lambda_p(b)$

$$
D(\Lambda_p(b)) \subset \mathcal{W}^{1+\frac{1}{q},p}
$$
, for any $q > p$.

The information about smoothness of $D(\Lambda_p(b))$ allows us to leap, by means of the Sobolev embedding theorem, from L^p , $p > d - 1$, to C_{∞} , while moving the burden of the proof of convergence in C_{∞} (in the Trotter's approximation theorem) to L^p , a space having much weaker topology (locally). Then (see [\[Ki\]](#page-14-5)) $\Theta_p(\mu, b)|_{\mathcal{S}} = (\mu + \Lambda_{C_{\infty}}(b))^{-1}|_{\mathcal{S}}$, where $\Lambda_{C_{\infty}}(b)$ is an operator realization of $-\Delta + b \cdot \nabla$ generating a contraction positivity preserving C_0 -semigroup on C_∞ , hence a Feller process.

3. The primary goal of this note is to extend the method in [\[Ki\]](#page-14-5) to weakly form-bounded measure drifts.

The study of measure perturbations of $-\Delta$ has a long history, see e.g. [\[AM,](#page-14-6) [SV\]](#page-15-3), where the *L*^{*p*}regularity theory of $-\Delta$ (more generally, of a Dirichlet form) perturbed by a measure potential in the corresponding Kato class was developed, $1 \leq p < \infty$ (cf. Corollary [1](#page-5-0) below).

Recently, [\[BC\]](#page-14-7) constructed a strong Feller process associated with $-\Delta + \sigma \cdot \nabla$ with a \mathbb{R}^d -valued measure σ in the Kato class $\bar{\mathbf{K}}_{\delta}^{d+1}$ (see definition below), for $\delta = 0$, running perturbation-theoretic techniques in C_b , thus obtaining e.g. a Brownian motion drifting upward when penetrating certain fractal-like sets. We strengthen their result in Theorem [2](#page-6-0) below.

DEFINITION 4. A \mathbb{C}^d -valued Borel measure σ on \mathbb{R}^d is said to belong to $\bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$, the class of weakly form-bounded measures, if there exists $\lambda = \lambda_{\delta} > 0$ such that

$$
\int_{\mathbb{R}^d} \left((\lambda - \Delta)^{-\frac{1}{4}}(x, y) f(y) dy \right)^2 |\sigma|(dx) \leq \delta \|f\|_2^2, \quad f \in \mathcal{S}.
$$

where $|\sigma| := |\sigma_1| + \cdots + |\sigma_d|$ is the variation of σ . Clearly, $\mathbf{F}_{\delta}^{\frac{1}{2}} \subset \mathbf{F}_{\delta}^{\frac{1}{2}}$.

DEFINITION 5. A \mathbb{C}^d -valued Borel measure σ on \mathbb{R}^d is said to belong to the Kato class $\bar{\mathbf{K}}_{\delta}^{d+1}$ if there exists $\lambda = \lambda_{\delta} > 0$ such that

$$
\sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} (\lambda - \Delta)^{-\frac{1}{2}}(x, y) |\sigma| (dy) \leq \delta.
$$

See [\[BC\]](#page-14-7) for examples of measures in $\bar{\mathbf{K}}_0^{d+1}$.

It is clear that $\mathbf{K}_{\delta}^{d+1} \subset \bar{\mathbf{K}}_{\delta}^{d+1}$. By Lemma [1](#page-6-1) below, $\bar{\mathbf{K}}_{\delta}^{d+1} \subset \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$.

The operator-valued function $\Theta_p(\zeta, \sigma)$, $\text{Re}\,\zeta > \frac{d}{d-1}\lambda_\delta$ (see above), 'a candidate' for the resolvent of the desired operator realization of $-\Delta + \sigma \cdot \nabla$ generating a C_0 -semigroup on C_∞ , is not well defined for a σ having non-zero singular part. We modify the method in [\[Ki\]](#page-14-5). Also, in contrast to the setup of [\[Ki\]](#page-14-5), a general σ doesn't admit a monotone approximation by regular vector fields v_k (i.e. by $v_k \mathcal{L}^d$), which complicates the proof of convergence $\Theta_2(\zeta, v_k\mathcal{L}^d) \stackrel{s}{\to} \Theta_2(\zeta, \sigma)$ in L^2 , needed to carry out the method. We overcome this difficulty using an important variant of the Kato-Ponce inequality by [\[GO\]](#page-14-8) (see also [\[BL\]](#page-14-9)) (Proposition [5](#page-10-0) below).

Our method depends on the fact that the operators $-\Delta$, ∇ constituting $-\Delta + \sigma \cdot \nabla$ commute. In particular, our method admits a straightforward generalization to $(-\Delta)^{\frac{\alpha}{2}} + \sigma \cdot \nabla$, where $(-\Delta)^{\frac{\alpha}{2}}$ is the fractional Laplacian, $1 < \alpha < 2$, with measure σ weakly form-bounded with respect to $\Delta^{\alpha-1}$, i.e.

$$
\int_{\mathbb{R}^d} \left((\lambda - \Delta)^{-\frac{\alpha - 1}{4}}(x, y) f(y) dy \right)^2 |\sigma| (dx) \leq \delta ||f||_2^2, \quad f \in \mathcal{S}
$$

for some $\lambda = \lambda_{\delta} > 0$. (We note that the potential theory of operator $-\Delta^{\frac{\alpha}{2}}$ perturbed by a drift in the corresponding Kato class, as well as its associated process, attracted a lot of attention recently, see [\[BJ,](#page-14-10) [CKS,](#page-14-11) [KSo\]](#page-14-12) and references therein.)

In Theorems [1,](#page-4-0) [2](#page-6-0) (but not in Corollary [1\)](#page-5-0) we assume that σ admits an approximation by (weakly) form-bounded measures $\ll L^d$ having the same form-bound δ (in fact, $\delta + \varepsilon$, for an arbitrarily small $\varepsilon > 0$ independent of *k*). We verify this assumption for $\sigma = b\mathcal{L}^d + \nu$,

$$
b\mathcal{L}^d\in \bar{\mathbf{F}}_{\delta_1}^{\frac{1}{2}},\qquad \nu\in \bar{\mathbf{K}}_{\delta_2}^{d+1},\qquad \sqrt{\delta}:=\sqrt{\delta_1}+\sqrt{\delta_2},
$$

but do not address, in this note, the issue of constructing such an approximation for a general σ ; we also do not address the issue (we believe, related) of constructing weakly form-bounded vector fields whose singularities are principally different from those of $\mathbf{F}_{\delta_1^2} + \mathbf{K}_{\delta_2}^{d+1}$ (cf. [\(1\)](#page-2-0)).

The general classes of drifts studied in the literature in connection with operator $-\Delta + \sigma \cdot \nabla$. Here we identify $b(x)$ with $b(x)\mathcal{L}^d$.

4. We proceed to precise formulations of our results.

NOTATION. Let

$$
m_d := \inf_{\kappa > 0} \sup_{\substack{x \neq y, \\ \text{Re}\zeta > 0}} \frac{|\nabla(\zeta - \Delta)^{-1}(x, y)|}{\left(\kappa^{-1} \text{Re}\,\zeta - \Delta\right)^{-\frac{1}{2}}(x, y)}\tag{2}
$$

(note that m_d is bounded from above by $\pi^{\frac{1}{2}}(2e)^{-\frac{1}{2}}d^{\frac{d}{2}}(d-1)^{\frac{1-d}{2}} < \infty$, see [\[Ki,](#page-14-5) (A.1)]),

$$
\mathcal{J} := \left(1 + \frac{1}{1 + \sqrt{1 - m_d \delta}}, 1 + \frac{1}{1 - \sqrt{1 - m_d \delta}}\right).
$$

Theorem 1 (L^p -theory of $-\Delta + \sigma \cdot \nabla$). Let $d \geq 3$. Assume that σ is a \mathbb{C}^d -valued Borel measure in $\bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma = b\mathcal{L}^{d} + \nu$, where $b : \mathbb{R}^{d} \to \mathbb{C}^{d}$,

$$
b\mathcal{L}^d\in \bar{\mathbf{F}}_{\delta_1}^{\frac{1}{2}},\qquad \nu\in \bar{\mathbf{K}}_{\delta_2}^{d+1},\qquad \sqrt{\delta}:=\sqrt{\delta_1}+\sqrt{\delta_2},
$$

or, more generally (see Lemma [1](#page-6-1) below), $\sigma \in \mathbf{F}_{\delta}^{\frac{1}{2}}(\lambda)$ is such that there exist $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$, $v_k \mathcal{L}^d \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}(\lambda), v_k \mathcal{L}^d \stackrel{w}{\longrightarrow} \sigma.$

If $m_d \delta < 1$ *, then for every* $p \in \mathcal{J}$ *:*

(*i*) There exists a holomorphic C_0 -semigroup $e^{-t\Lambda_p(\sigma)}$ in L^p such that, possibly after replacing $v_k \mathcal{L}^d$'s with a sequence of their convex combinations (also weakly converging to measure σ), we have

$$
e^{-t\Lambda_p(v_k\mathcal{L}^d)} \stackrel{s}{\to} e^{-t\Lambda_p(\sigma)} \text{ in } L^p,
$$

 $as k \uparrow \infty$ *, where*

$$
\Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \quad D(\Lambda_p(v_k \mathcal{L}^d)) = W^{2,p}.
$$

(*ii*) The resolvent set $\rho(-\Lambda_p(\sigma))$ contains a half-plane $\mathcal{O} \subset \{\zeta \in \mathbb{C} : \text{Re}\,\zeta > 0\}$, and the re*solvent* $(\zeta + \Lambda_p(\sigma))^{-1}$, $\zeta \in \mathcal{O}$, admits an extension by continuity to a bounded linear operator in $\mathcal{B}\left(\mathcal{W}^{-\frac{1}{r'},p},\mathcal{W}^{1+\frac{1}{q},p}\right), \ where \ 1\leqslant r<\min\{2,p\}, \ \max\{2,p\}< q.$

(*iii*) The domain of the generator $D(\Lambda_p(\sigma)) \subset \mathcal{W}^{1+\frac{1}{q},p}$ for every $q > \max\{p, 2\}$ *.*

REMARKS. **I.** If $\sigma \ll \mathcal{L}^d$, then the interval $\mathcal{J} \ni p$ in Theorem [1](#page-4-0) can be extended, see [\[Ki\]](#page-14-5) (in [Ki] we work directly in L^p , while in the proof of Theorem [1](#page-4-0) we have to first prove our convergence results in L^2 , and then transfer them to L^p (Proposition [7\)](#page-13-0), hence the more restrictive assumptions on p).

II. A straightforward modification of the proof of Theorem [1](#page-4-0) yields:

Corollary 1 (L^p -theory of $-\Delta + \Psi$). Let $d \geq 3$. Assume that Ψ is a $\mathbb{C}\text{-}valued$ Borel measure such *that*

$$
\int_{\mathbb{R}^d}\biggl((\lambda-\Delta)^{-\frac{1}{2}}(x,y)f(y)dy\biggr)^2|\Psi|(dx)\leqslant \delta\|f\|_2^2,\quad f\in\mathcal{S},
$$

for some $\lambda = \lambda_{\delta} > 0$. We write $\Psi \in \bar{\mathbf{F}}_{\delta}(\Delta, \lambda)$. Set $V_k := \rho_k e^{\varepsilon_k \Delta} \Psi$, $\varepsilon_k \downarrow 0$, where $\rho_k \in C_0^{\infty}$, $0 \le \rho_k \le 1, \ \rho \equiv 1 \ \text{in} \ \{|x| \le k\}, \ \rho \equiv 0 \ \text{in} \ \{|x| \ge k+1\}, \ \text{so that}$

$$
V_k \mathcal{L}^d \in \bar{\mathbf{F}}_{\delta}(\Delta, \lambda) \text{ for all } k, \qquad V_k \mathcal{L}^d \stackrel{w}{\to} \Psi \text{ as } k \uparrow \infty
$$

 $(see Lemma 2 below).$ $(see Lemma 2 below).$ $(see Lemma 2 below).$ If $\delta < 1$, then for every $p \in \left(1 + \frac{1}{1 + \sqrt{1 - \delta}}, 1 + \frac{1}{1 - \sqrt{1 - \delta}}\right)$ *there exists a holomorphic* C_0 -semigroup $e^{-t\Pi_p(\Psi)}$ in L^p such that

$$
e^{-t\Pi_p(V_k\mathcal{L}^d)} \stackrel{s}{\to} e^{-t\Pi_p(\Psi)} \text{ in } L^p,
$$

where $\Pi_p(V_k\mathcal{L}^d) := -\Delta + V_k$, $D(\Pi_p(V_k\mathcal{L}^d)) = W^{2,p}$, possibly after replacing $V_k\mathcal{L}^d$'s with a se*quence of their convex combinations* (*also weakly converging to* Ψ)*, and the domain of the generator* $D(\Pi_p(\Psi)) \subset \mathcal{W}$ $\frac{1}{q}$, *p*, *for any q* > max{2, *p*}*.*

Corollary [1](#page-5-0) extends the results in [\[AM,](#page-14-6) [SV\]](#page-15-3) (applied to operator $-\Delta + \Psi$), where a real-valued Ψ is assumed to be in the Kato class $\bar{\mathbf{K}}_{\delta}^{d}$ of measures (e.g. delta-function concentrated on a hypersurface). One disadvantage of Corollary [1,](#page-5-0) compared to [\[AM,](#page-14-6) [SV\]](#page-15-3), is that it requires $|\Psi| \leq \delta(\lambda - \Delta)$ (in the sense of quadratic forms) rather than $\Psi_- \leq \delta(\lambda - \Delta + \Psi_+)$, where $\Psi = \Psi_+ - \Psi_-, \Psi_+ \Psi_- \geq 0$.

The purpose of Theorem [1](#page-4-0) is to prove

Theorem 2 (C_{∞} -theory of $-\Delta + \sigma \cdot \nabla$). Let $d \geq 3$. Assume that σ is a \mathbb{R}^d -valued Borel measure in $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma = b\mathcal{L}^{d} + \nu$, where $b : \mathbb{R}^{d} \to \mathbb{R}^{d}$,

$$
b\mathcal{L}^d \in \bar{\mathbf{F}}_{\delta_1}^{\frac{1}{2}}, \qquad \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1}, \qquad \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2},
$$

or, more generally (see Lemma [1](#page-6-1) below), $\sigma \in \mathbf{F}_{\delta}^{\frac{1}{2}}(\lambda)$ is such that there exist $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$, $v_k \mathcal{L}^d \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}(\lambda), v_k \mathcal{L}^d \stackrel{w}{\longrightarrow} \sigma.$ *If* $m_d \delta < \frac{2d-5}{(d-2)^2}$ *, then:*

(*i*) There exists a positivity preserving contraction C_0 -semigroup $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ on C_{∞} such that , p *ossibly after replacing* $v_k \mathcal{L}^d$ *'s with a sequence of their convex combinations (also weakly converging to measure σ) we have*

$$
e^{-t\Lambda_{C_{\infty}}(v_{k}\mathcal{L}^{d})} \stackrel{s}{\longrightarrow} e^{-t\Lambda_{C_{\infty}}(\sigma)} \text{ in } C_{\infty}, \quad t \geq 0,
$$

 $as k \uparrow \infty$ *, where*

$$
\Lambda_{C_{\infty}}(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \quad D(\Lambda_{C_{\infty}}(v_k \mathcal{L}^d)) = C^2 \cap C_{\infty}.
$$

(*ii*) [*Strong Feller property*] $(\mu + \Lambda_{C_{\infty}}(\sigma))^{-1} |_{S}$ *can be extended by continuity to a bounded linear operator in* $\mathcal{B}(L^p, C^{0,\gamma}), \gamma < 1 - \frac{d-1}{p}$, for every $d-1 < p < 1 + \frac{1}{1-\sqrt{1-m_d\delta}}$.

(*iii*) The integral kernel $e^{-t\Lambda_{C_{\infty}}(\sigma)}(x, y)$ ($x, y \in \mathbb{R}^d$) of $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ determines the (sub-Markov) *transition probability function of a Feller process.*

REMARK. If $\sigma \ll \mathcal{L}^d$, then the constraint on δ in Theorem [2](#page-6-0) can be relaxed, see [\[Ki\]](#page-14-5), cf. Remark I above.

1. Approximating measures

1. In Theorems [1](#page-4-0) and [2.](#page-6-0) Suppose $\sigma = b\mathcal{L}^d + \nu$, where $b : \mathbb{R}^d \to \mathbb{C}^d$, $b\mathcal{L}^d \in \bar{\mathbf{F}}^{\frac{1}{2}}_{\delta_1}(\lambda)$, and $\nu \in \bar{\mathbf{K}}^{d+1}_{\delta_2}(\lambda)$. The following statement is a part of Theorems [1](#page-4-0) and [2.](#page-6-0)

Lemma 1. *There exist vector fields* $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$, $k = 1, 2, \ldots$ *such that* (1) $v_k \mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}(\lambda)$, $\sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2}$, for every *k*, and (2) $v_k \mathcal{L}^d \stackrel{w}{\longrightarrow} \sigma$ *as* $k \uparrow \infty$ *.*

Proof. We fix functions $\rho_k \in C_0^{\infty}$, $0 \le \rho_k \le 1$, $\rho \equiv 1$ in $\{|x| \le k\}$, $\rho \equiv 0$ in $\{|x| \ge k+1\}$, and define $v_k \mathcal{L}^d := b_k \mathcal{L}^d + \nu_k,$

where, for some fixed $\varepsilon_k \downarrow 0$,

$$
\nu_k := \rho_k e^{\varepsilon_k \Delta} \nu, \quad b_k := \rho_k e^{\varepsilon_k \Delta} b.
$$

It is clear that $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ and $v_k \mathcal{L}^d \longrightarrow \sigma$ as $k \uparrow \infty$. Let us show that $v_k \in \bar{\mathbf{K}}_{\delta_2}^{d+1}(\lambda)$ for every k. Indeed, we have the following pointwise (a.e.) estimates on \mathbb{R}^d :

$$
(\lambda - \Delta)^{-\frac{1}{2}}|\nu_k| \leq (\lambda - \Delta)^{-\frac{1}{2}}|e^{\varepsilon_k \Delta} \nu| \leq (\lambda - \Delta)^{-\frac{1}{2}}e^{\varepsilon_k \Delta}|\nu| = e^{\varepsilon_k \Delta}(\lambda - \Delta)^{-\frac{1}{2}}|\nu|.
$$

 $\text{Since } \|e^{\varepsilon_k \Delta} (\lambda - \Delta)^{-\frac{1}{2}} |\nu||_{\infty} \leqslant \|(\lambda - \Delta)^{-\frac{1}{2}} |\nu||_{\infty} \text{ and, in turn, } \|(\lambda - \Delta)^{-\frac{1}{2}} |\nu||_{\infty} \leqslant \delta_2 \ (\Leftrightarrow \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1}(\lambda)),$ we have $\nu_k \in \bar{\mathbf{K}}_{\delta_2}^{d+1}(\lambda)$. By interpolation, $\nu_k \in \bar{\mathbf{F}}_{\delta_1}^{\frac{1}{2}}(\lambda)$. A similar argument yields $b_k \mathcal{L}^d \in \bar{\mathbf{F}}_{\delta_1}^{\frac{1}{2}}(\lambda)$. Thus, $v_k \mathcal{L}^d \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}(\lambda)$, for every *k*.

2. **In Corollary [1.](#page-5-0)** Suppose $\Psi \in \mathbf{F}_{\delta}(\Delta, \lambda)$. Select $\rho_k \in C_0^{\infty}$, $0 \leq \rho_k \leq 1$, $\rho \equiv 1$ in $\{|x| \leq k\}$, $\rho \equiv 0$ in $\{|x| \geq k+1\}$. Fix some $\varepsilon_k \downarrow 0$.

Lemma 2. *We have* $V_k := \rho_k e^{\varepsilon_k \Delta} \Psi \in C_0^{\infty}(\mathbb{R}^d)$, and (1) $V_k \mathcal{L}^d \in \mathbf{F}_\delta(\Delta, \lambda)$ *for every k*, (2) $V_k \mathcal{L}^d \stackrel{w}{\rightarrow} \Psi$ *as* $k \uparrow \infty$.

Proof. Assertion (2) is immediate. Let us prove (1). It is clear that $V_k \mathcal{L}^d \in \bar{\mathbf{F}}_{\delta}(\Delta, \lambda)$ if and only if

$$
\langle |V_k|\varphi,\varphi\rangle \leq \delta \langle (\lambda-\Delta)^{\frac{1}{2}}\varphi,(\lambda-\Delta)^{\frac{1}{2}}\varphi\rangle, \qquad \varphi \in \mathcal{S}.
$$

We have $|V_k| = \rho_k e^{\varepsilon_k \Delta} |\Psi| \leqslant e^{\varepsilon_k \Delta} |\Psi|$, so

$$
\langle |V_k|\varphi, \varphi \rangle \leq \langle e^{\varepsilon_k \Delta} |\Psi|\varphi, \varphi \rangle = \langle |\Psi|, e^{\varepsilon_k \Delta} (\varphi^2) \rangle \qquad \left(\text{since } \Psi \in \bar{\mathbf{F}}_{\delta}(\Delta) \right)
$$

\n
$$
\leq \delta \left\langle \left((\lambda - \Delta)^{\frac{1}{2}} [e^{\varepsilon_k \Delta} (\varphi^2)]^{\frac{1}{2}} \right)^2 \right\rangle = \delta \left\langle (\lambda - \Delta) [e^{\varepsilon_k \Delta} (\varphi^2)]^{\frac{1}{2}}, [e^{\varepsilon_k \Delta} (\varphi^2)]^{\frac{1}{2}} \right\rangle
$$

\n
$$
= \delta \langle e^{\varepsilon_k \Delta} \varphi^2 \rangle + \delta \langle \nabla [e^{\varepsilon_k \Delta} (\varphi^2)]^{\frac{1}{2}}, \nabla [e^{\varepsilon_k \Delta} (\varphi^2)]^{\frac{1}{2}} \rangle \qquad \left(\text{we are using } \langle e^{\varepsilon_k \Delta} \varphi^2 \rangle = \langle \varphi^2 \rangle \right)
$$

\n
$$
= \delta \langle \varphi^2 \rangle + \delta \langle (e^{\varepsilon_k \Delta} \varphi^2)^{-1} (e^{\varepsilon_k \Delta} \varphi \nabla \varphi)^2 \rangle \qquad \left(\text{by Hölder inequality} \right)
$$

\n
$$
\leq \delta \langle \varphi^2 \rangle + \delta \langle e^{\varepsilon_k \Delta} (\nabla \varphi)^2 \rangle = \langle (\lambda - \Delta)^{\frac{1}{2}} \varphi, (\lambda - \Delta)^{\frac{1}{2}} \varphi \rangle,
$$

as needed. \Box

2. Proof of Theorem [1](#page-4-0)

Preliminaries. 1. By Lemma [1,](#page-6-1) there exist vector fields $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$, $k = 1, 2, ...,$ such that $v_k \mathcal{L}^d \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}(\lambda), \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2}, \text{ and } v_k \mathcal{L}^d \stackrel{w}{\longrightarrow} \sigma \text{ as } k \uparrow \infty.$

2. Due to the strict inequality $m_d\delta < 1$, we may assume that the infimum m_d (cf. [\(2\)](#page-4-1)) is attained, i.e. there is $\kappa_d > 0$

$$
|\nabla(\zeta - \Delta)^{-1}(x, y)| \le m_d \left(\kappa_d^{-1} \text{Re}\,\zeta - \Delta\right)^{-\frac{1}{2}} (x, y), \quad x, y \in \mathbb{R}^d, \ x \ne y, \ \text{Re}\,\zeta > 0.
$$

3. Set $\mathcal{O} := \{ \zeta \in \mathbb{C} : \text{Re } \zeta \geq \kappa_d \lambda_{\delta} \},\$

The method of proof. We modify the method of [\[Ki\]](#page-14-5). Fix some $p \in \mathcal{J}$, and some r, q satisfying $1 \leq r < \min\{2, p\} \leq \max\{2, p\} < q$. Our starting object is an operator-valued function

$$
\Theta_p(\zeta,\sigma) := (\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \Omega_p(\zeta,\sigma,q,r) (\zeta - \Delta)^{-\frac{1}{2r'}} \in \mathcal{B}(L^p), \quad \zeta \in \mathcal{O},
$$

which is 'a candidate' for the resolvent of the desired operator realization $\Lambda_p(\sigma)$ of $-\Delta + \sigma \cdot \nabla$ on *L p* . Here

$$
\Omega_p(\zeta,\sigma,q,r) := \left(\Omega_2(\zeta,\sigma,q,r)\bigg|_{L^p \cap L^2}\right)_{L^p}^{\text{clos}} \in \mathcal{B}(L^p),\tag{3}
$$

where, on L^2 ,

$$
\Omega_2(\zeta,\sigma,q,r):=(\zeta-\Delta)^{-\frac{1}{2}(\frac{1}{2}-\frac{1}{q})}(1+Z_2(\zeta,\sigma))^{-1}(\zeta-\Delta)^{-\frac{1}{2}(\frac{1}{2}-\frac{1}{r'})}\in\mathcal{B}(L^2),
$$

$$
Z_2(\zeta,\sigma)h(x) := (\zeta - \Delta)^{-\frac{1}{4}}\sigma \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}h(x)
$$

=
$$
\int_{\mathbb{R}^d} (\zeta - \Delta)^{-\frac{1}{4}}(x,y) \left(\int_{\mathbb{R}^d} \nabla(\zeta - \Delta)^{-\frac{3}{4}}(y,z)h(z)dz \right) \cdot \sigma(y)dy, \quad x \in \mathbb{R}^d, \quad h \in \mathcal{S},
$$

and $\|Z_2\|_{2\to 2} < 1$ $\|Z_2\|_{2\to 2} < 1$, so $\Omega_2(\zeta, \sigma, q, r) \in \mathcal{B}(L^2)$, see Proposition 1 below. We prove that $\Omega_p(\zeta, \sigma, q, r) \in$ $\mathcal{B}(L^p)$ in Proposition [6](#page-13-1) below.

We show that $\Theta_p(\zeta,\sigma)$ is the resolvent of $\Lambda_p(\sigma)$ (assertion (*i*) of Theorem [1\)](#page-4-0) by verifying conditions of the Trotter approximation theorem:

1) $\Theta_p(\zeta, v_k \mathcal{L}^d) = (\zeta + \Lambda_p(v_k \mathcal{L}^d))^{-1}, \zeta \in \mathcal{O}, \text{ where } \Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, D(\Lambda_p(v_k \mathcal{L}^d)) = W^{2,p}.$ $2) \sup_{n\geqslant 1} ||\Theta_p(\zeta, v_k \mathcal{L}^d)||_{p\to p} \leqslant C_p |\zeta|^{-1}, \, \zeta \in \mathcal{O}.$

3) $\mu \Theta_p(\zeta, v_k \mathcal{L}^d) \stackrel{s}{\rightarrow} 1$ in L^p as $\mu \uparrow \infty$ uniformly in *k*.

 $(4) \Theta_p(\zeta, v_k \mathcal{L}^d) \stackrel{s}{\rightarrow} \Theta_p(\zeta, \sigma)$ in L^p for some $\zeta \in \mathcal{O}$ as $k \uparrow \infty$ (possibly after replacing $v_k \mathcal{L}^d$'s with a sequence of their convex combinations, also weakly converging to measure σ), see Propositions [2](#page-9-0) - [7](#page-13-0) below for details.

We note that a priori in 1) the set of ζ 's for which $\Theta_p(\zeta, v_k\mathcal{L}^d) = (\zeta + \Lambda_p(v_k\mathcal{L}^d))^{-1}$ may depend on *k*; the fact that it actually does not is the content of Proposition [3.](#page-10-1)

The proofs of 2), 3), contained in Proposition [2](#page-9-0) and [4,](#page-10-2) are based on an explicit representation of $\Omega_p(\zeta, v_k \mathcal{L}^d, q, r)$, $k = 1, 2, \ldots$, see formula [\(4\)](#page-9-1) below. (The representation [\(4\)](#page-9-1) doesn't exist if σ has a non-zero singular part; we have to take a detour via L^2 , (cf. (3)), which requires us to put somewhat more restrictive assumptions on δ (compared to [\[Ki\]](#page-14-5), where the case of a σ having zero singular part is treated).)

Next, 4) follows from $\Theta_2(\zeta, v_k \mathcal{L}^d) \stackrel{s}{\rightarrow} \Theta_2(\zeta, \sigma)$, combined with $\sup_n ||\Theta_p(\zeta, v_k \mathcal{L}^d)||_{2(p-1)\rightarrow 2(p-1)} < \infty$ $(\Leftarrow 2)$) and Hölder inequality, see Proposition [7.](#page-13-0) Our proof of $\Theta_2(\zeta, v_k\mathcal{L}^d) \stackrel{s}{\rightarrow} \Theta_2(\zeta, \sigma)$ (Proposition [5\)](#page-10-0) uses the Kato-Ponce inequality by [\[GO\]](#page-14-8).

Finally, we note that the very definition of the operator-valued function $\Theta_p(\zeta,\sigma)$ ensures smoothing properties $\Theta_p(\zeta,\sigma) \in \mathcal{B}(\mathcal{W}^{-\frac{1}{r'},p},\mathcal{W}^{1+\frac{1}{q},p}) \Rightarrow \text{assertion } (ii)$. Assertion (*iii*) is immediate from (*ii*).

Now, we proceed to formulating and proving Propositions [1](#page-8-0) - [7.](#page-13-0)

Proposition 1. We have for every $\zeta \in \mathcal{O}$

- (1) $||Z_2(\zeta, v_k \mathcal{L}^d)||_{2 \to 2} \leq \delta$ *for all k.*
- (2) $||Z_2(\zeta, \sigma)f||_2 \leq \delta ||f||_2$, for all $f \in \mathcal{S}$, all k .

Proof. (1) Define $H := |v_k|^{\frac{1}{2}} (\zeta - \Delta)^{-\frac{1}{4}}$, $S := v_k^{\frac{1}{2}} \nabla (\zeta - \Delta)^{-\frac{3}{4}}$ where $v_k^{\frac{1}{2}} := |v_k|^{-\frac{1}{2}} v_k$. Then $Z_2(\zeta, v_k \mathcal{L}^d) =$ *H*∗*S,* and we have

 $||Z_2(\zeta, v_k \mathcal{L}^d)||_{2 \to 2} \le ||H||_{2 \to 2} ||S||_{2 \to 2} \le ||H||_{2 \to 2}^2 ||\nabla (\zeta - \Delta)^{-\frac{1}{2}}||_{2 \to 2} \le \delta,$

where $\|\nabla(\zeta - \Delta)^{-\frac{1}{2}}\|_{2 \to 2} = 1$, and $\|H\|_{2 \to 2}^2 \le \delta$ (cf. Lemma [1\(](#page-6-1)1)).

(2) We have, for every $f, g \in \mathcal{S}$,

$$
\langle g, Z_2(\zeta, \sigma) f \rangle = \langle (\zeta - \Delta)^{-\frac{1}{4}} g, \sigma \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} f \rangle
$$

(here we are using $v_k \mathcal{L}^d \stackrel{w}{\to} \sigma$)

$$
= \lim_k \langle (\zeta - \Delta)^{-\frac{1}{4}} g, v_k \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} f \rangle
$$

(here we are using assertion (1))
 $\leq \delta ||g||_2 ||f||_2$,

i.e. $\|Z_2(\zeta,\sigma)f\|_2 \le \delta \|f\|_2$, as needed.

The natural extension of $Z_2(\zeta,\sigma)|_{\mathcal{S}}$ (by continuity) to $\mathcal{B}(L^2)$ will be denoted again by $Z_2(\zeta,\sigma)$. Since $||Z_2(\zeta, v_k \mathcal{L}^d)||_{2\to 2}, ||Z_2(\zeta, \sigma)||_{2\to 2} \leq \delta < 1$, we have $\Omega_2(\zeta, v_k \mathcal{L}^d, q, r), \Omega_2(\zeta, \sigma, q, r) \in \mathcal{B}(L^2)$.

Set

$$
\mathcal{I} := \left(\frac{2}{1 + \sqrt{1 - m_d \delta}}, \frac{2}{1 - \sqrt{1 - m_d \delta}}\right).
$$

In the next few propositions, given a $p \in \mathcal{I}$, we assume r, q satisfy $1 \leq r < \min\{2, p\} \leq \max\{2, p\} < q$.

The following proposition plays a principal role:

Proposition 2. *Let* $p \in \mathcal{I}$ *. There exist constants* C_p *,* $C_{p,q,r} < \infty$ *such that for every* $\zeta \in \mathcal{O}$

 (1) $\|\Omega_p(\zeta, v_k\mathcal{L}^d, q, r)\|_{p\to p} \leq C_{p,q,r}$ for all k , $(2) \|\Omega_p(\zeta, v_k\mathcal{L}^d, \infty, 1)\|_{p\to p} \leqslant C_p|\zeta|^{-\frac{1}{2}}$ *for all k.*

Proof. Denote *v* $\frac{1}{p}$:= $|v_k|^{\frac{1}{p}-1}v_k$. Set:

$$
\tilde{\Omega}_p(\zeta, v\mathcal{L}^d, q, r) := Q_p(q)(1 + T_p)^{-1} G_p(r), \quad \zeta \in \mathcal{O},\tag{4}
$$

where

$$
Q_p(q) := (\zeta - \Delta)^{-\frac{1}{2q'}} |v_k|^{\frac{1}{p'}}, \quad T_p := v_k^{\frac{1}{p}} \cdot \nabla (\zeta - \Delta)^{-1} |v|^{\frac{1}{p'}}, \quad G_p(r) := v_k^{\frac{1}{p}} \cdot \nabla (\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2r}},
$$

are uniformly (in *k*) bounded in $\mathcal{B}(L^p)$, and, in particular, $||T_p||_{p\to p} \leq \frac{pp'}{4} m_d \delta$ (see the proof of [\[Ki,](#page-14-5) Prop. 1(*i*)), and $\frac{pp'}{4}m_d\delta < 1$ since $p \in \mathcal{I}$. It follows that $C_{p,q,r} := \sup_k ||\tilde{\Omega}_p(\zeta, v\mathcal{L}^d, q, r)||_{p \to p} < \infty$. Now, $\tilde{\Omega}_p|_{L^2 \cap L^p} = \Omega_2|_{L^2 \cap L^p}$ (by expanding $(1+T_p)^{-1}$, $(1+Z_2)^{-1}$ in the K. Neumann series in L^p and in L^2 , respectively). Therefore, $\tilde{\Omega}_p = \Omega_p \Rightarrow$ assertion (1). The proof of assertion (2) follows closely the proof of [\[Ki,](#page-14-5) Prop. $1(ii)$].

Clearly, $\Theta_p(\zeta, v_k \mathcal{L}^d)$ does not depend on *q*, *r*. Taking $q = \infty$, $r = 1$, we obtain from Proposition [2:](#page-9-0)

$$
\|\Theta_p(\zeta, v_k \mathcal{L}^d)\|_{p \to p} \leqslant C_p |\zeta|^{-1}, \quad \zeta \in \mathcal{O}.\tag{5}
$$

Proposition 3. Let $p \in \mathcal{I}$. For every $k = 1, 2, \ldots$ $\mathcal{O} \subset \rho(-\Lambda_p(v_k\mathcal{L}^d))$, the resolvent set of $-\Lambda_p(v_k\mathcal{L}^d)$ *, and*

$$
\Theta_p(\zeta, v_k \mathcal{L}^d) = (\zeta + \Lambda_p(v_k \mathcal{L}^d))^{-1}, \quad \zeta \in \mathcal{O},
$$

 $where \ \Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \ D(\Lambda_{C_\infty}(v_k \mathcal{L}^d)) = W^{2,p}.$

Proof. The proof repeats the proof of [\[Ki,](#page-14-5) Prop. 4].

Proposition 4. For $p \in \mathcal{I}$, $\mu \Theta_p(\mu, v_k \mathcal{L}^d) \stackrel{s}{\rightarrow} 1$ in L^p as $\mu \uparrow \infty$ uniformly in k.

Proof. The proof repeats the proof of [\[Ki,](#page-14-5) Prop. 3]. \Box

Proposition 5. *There exists a sequence* $\{\hat{v}_n\} \subset \text{conv}\{v_k\} \subset C_0^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ *such that*

$$
\hat{v}_n \mathcal{L}^d \xrightarrow{w} \sigma \text{ as } n \uparrow \infty,
$$
\n⁽⁶⁾

and

 $\Omega_2(\zeta, \hat{v}_n \mathcal{L}^d, q, r) \stackrel{s}{\rightarrow} \Omega_2(\zeta, \sigma, q, r) \text{ in } L^2, \quad \zeta \in \mathcal{O}.$ (7)

Proof. To prove [\(7\)](#page-10-3), it suffices to establish convergence $Z_2(\zeta, \hat{v}_n \mathcal{L}^d) \stackrel{s}{\rightarrow} Z_2(\zeta, \sigma)$ in L^2 , $\zeta \in \mathcal{O}$. Let $\eta_r \in C_0^{\infty}$, $0 \leq \eta_r \leq 1$, $\eta_r \equiv 1$ on $\{x \in \mathbb{R}^d : |x| \leq r\}$ and $\eta_r \equiv 0$ on $\{x \in \mathbb{R}^d : |x| \geq r + 1\}$.

Claim 1*. We have*

 $(j) \Vert (\zeta - \Delta)^{-\frac{1}{4}} |v_k| (\zeta - \Delta)^{-\frac{1}{4}} ||_{2 \to 2} \leq \delta \text{ for all } k.$ $(jj) \Vert (\zeta - \Delta)^{-\frac{1}{4}} |\sigma| (\zeta - \Delta)^{-\frac{1}{4}} f \Vert_2 \leq \delta \Vert f \Vert_2$, for all $f \in S$.

Proof. Define $H := |v_k|^{\frac{1}{2}}(\zeta - \Delta)^{-\frac{1}{4}}$. We have $\|(\zeta - \Delta)^{-\frac{1}{4}}|v_k|(\zeta - \Delta)^{-\frac{1}{4}}\|_{2\to 2} = \|H^*H\|_{2\to 2} =$ $||H||_{2\to 2}^2 \le \delta$, where $||H||_{2\to 2}^2 \le \delta (\Leftrightarrow v_k \mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}(\lambda)$, cf. Lemma [1\(](#page-6-1)1)), i.e. we have proved (*j*). An argument similar to the one in the proof of Proposition [1,](#page-8-0) but using assertion (j) , yields (jj) . \Box

Claim 2*. There exists a sequence* $\{\hat{v}_n\} \subset \text{conv}\{v_k\}$ *such that* [\(6\)](#page-10-4) *holds, and for every* $r \geq 1$

$$
(\zeta - \Delta)^{-\frac{1}{4}} \eta_r(\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2, \quad \text{Re}\,\zeta \geq \lambda.
$$

(*here and below we use shorthand* $\hat{v}_n - \sigma := \hat{v}_n \mathcal{L}^d - \sigma$).

Proof of Claim [2.](#page-10-5) In view of Claim [1\(](#page-10-6)*j*), (*jj*), it suffices to establish this convergence over S. Let $c(x) = e^{-x^2}$, so that $c \in S$, $|(\zeta - \Delta)^{-\frac{1}{4}}c| > 0$ on \mathbb{R}^d .

Step 1. Let $r = 1$, so $\eta_r = \eta_1$. Let us show that there exists a sequence $\{v_{\ell_1}^1\} \subset \text{conv}\{v_k\}$ such that

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_1}^1 - \sigma) \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2 \text{ as } \ell_1 \uparrow \infty. \tag{8}
$$

First, we show that

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_k - \sigma) (\lambda - \Delta)^{-\frac{1}{4}} c \stackrel{w}{\to} 0 \text{ in } L^2.
$$
 (9)

Indeed, by Claim [1\(](#page-10-6)*j*), (*jj*), $\|(\lambda - \Delta)^{-\frac{1}{4}}\eta_1(v_k - \sigma)(\lambda - \Delta)^{-\frac{1}{4}}c\|_2 \leq 2\delta \|c\|_2$ for all *k*. Hence, there exists a subsequence of $\{v_k\}$ (without loss of generality, it is $\{v_k\}$ itself) such that $(\lambda - \Delta)^{-\frac{1}{4}}\eta_1(v_k -$

 σ)($\lambda - \Delta$)^{- $\frac{1}{4}$}c $\stackrel{w}{\rightarrow}$ *h* for some $h \in L^2$. Therefore, given any $f \in S$, we have $\langle f, (\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_k - \sigma) (\lambda - \Delta)^{-\frac{1}{4}} \eta_1$ $\Delta)^{-\frac{1}{4}}c\rangle \rightarrow \langle f, h \rangle$. Along with that, since $v_k \mathcal{L}^d \stackrel{w}{\rightarrow} \sigma$, we also have

$$
\langle f, (\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_k - \sigma) (\lambda - \Delta)^{-\frac{1}{4}} c \rangle = \langle (\lambda - \Delta)^{-\frac{1}{4}} f, \eta_1 (v_k - \sigma) (\lambda - \Delta)^{-\frac{1}{4}} c \rangle \to 0,
$$

i.e. $\langle f, h \rangle = 0$. Since $f \in \mathcal{S}$ was arbitrary, we have $h = 0$, which yields [\(9\)](#page-10-7).

Now, in view of [\(9\)](#page-10-7), by Mazur's Theorem, there exists a sequence $\{v_{\ell_1}^1\} \subset \text{conv}\{v_k\}$ such that

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_1}^1 - \sigma) (\lambda - \Delta)^{-\frac{1}{4}} c \stackrel{s}{\to} 0 \text{ in } L^2.
$$
 (10)

We may assume without loss of generality that each $v_{\ell_1}^1 \in \text{conv}\{v_n\}_{n \geq \ell_1}$.

Next, set $\ell := \ell_1$, $\varphi_{\ell} := \eta_1(v_{\ell}^1 - \sigma)$, $\Phi := (\lambda - \Delta)^{-\frac{1}{4}}c$, fix some $u \in \mathcal{S}$. We estimate:

$$
\begin{split}\n\|(\lambda - \Delta)^{-\frac{1}{4}} \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u\|_{2}^{2} \\
&= \left\langle \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u, (\lambda - \Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \right\rangle \\
\left(\text{since } \varphi_{\ell} \equiv 0 \text{ on } \{|x| \geq 2\}, \text{ in the left multiple } \varphi_{\ell} = \varphi_{\ell} \Phi \frac{\eta_{2}}{\Phi}\right) \\
&= \left\langle \varphi_{\ell} \Phi \frac{\eta_{2}}{\Phi} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u, (\lambda - \Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \right\rangle \\
&= \left\langle \varphi_{\ell} \Phi, \frac{\eta_{2}}{\Phi} \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \left[(\lambda - \Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \right] \right\rangle \\
\text{(here we are using in the left multiple that } \varphi_{\ell} = (\lambda - \Delta)^{\frac{1}{4}} (\lambda - \Delta)^{-\frac{1}{4}} \varphi_{\ell}\n\end{split}
$$

$$
= \left\langle (\lambda - \Delta)^{-\frac{1}{4}} \varphi_{\ell} \Phi, (\lambda - \Delta)^{\frac{1}{4}} (fg_{\ell}) \right\rangle
$$

where we set $f := \frac{\eta_2}{\Phi} \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \in C_0^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$, $g_{\ell} := (\lambda - \Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} u \in (\lambda - \Delta)^{-\frac{1}{4}} L^2$ (in view of Claim $1(j)$, (jj)). Thus, in view of the above estimates,

$$
\|(\lambda-\Delta)^{-\frac{1}{4}}\varphi_{\ell}\cdot\nabla(\lambda-\Delta)^{-\frac{3}{4}}u\|_2^2 \leqslant \|(\lambda-\Delta)^{-\frac{1}{4}}\varphi_{\ell}\Phi\|_2\|(\lambda-\Delta)^{\frac{3}{4}}(fg_{\ell})\|_2.
$$

By the Kato-Ponce inequality of [\[GO,](#page-14-8) Theorem 1],

$$
\|(\lambda - \Delta)^{\frac{1}{4}} (fg_{\ell})\|_2 \leq C \bigg(\|f\|_{\infty} \|(\lambda - \Delta)^{\frac{1}{4}} g_{\ell}\|_2 + \|(\lambda - \Delta)^{\frac{1}{4}} f\|_{\infty} \|g_{\ell}\|_2\bigg),
$$

for some $C = C(d) < \infty$. Clearly, $||f||_{\infty}$, $||(\lambda - \Delta)^{\frac{1}{4}}f||_{\infty} < \infty$, and $||(\lambda - \Delta)^{\frac{1}{4}}g_{\ell}||_2$, $||g_{\ell}||_2$ are uniformly (in ℓ) bounded from above according to Claim [1\(](#page-10-6)*j*), (*jj*). Thus, in view of [\(10\)](#page-11-0), we obtain [\(8\)](#page-10-8) (recalling that $\ell_1 = \ell$, and $\varphi_{\ell_1} = \eta_1(v_{\ell_1}^1 - \sigma)$).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence $\{v_{\ell_1}^1\}$ in place of ${v_l}$, thus obtaining a sequence ${v_{\ell_2}^2} \subset \text{conv}\{v_{\ell_1}^1\}$ such that

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_2 (v_{\ell_2}^2 - \sigma) \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2 \text{ as } \ell_2 \uparrow \infty.
$$

We may assume without loss of generality that each $v_{\ell_2}^2 \in \text{conv}\{v_{\ell_1}^1\}_{\ell_1 \geq \ell_2}$. Therefore, we also have

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_2}^2 - \sigma) \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2 \text{ as } \ell_2 \uparrow \infty.
$$

Repeating this procedure $n-2$ times, we obtain a sequence $\{v_{\ell_n}^n\} \subset \text{conv}\{v_{\ell_{n-1}}^{n-1}\}$ ($\subset \text{conv}\{v_k\}$) such that

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_i (v_{\ell_n}^n - \sigma) \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2 \text{ as } \ell_n \uparrow \infty, \quad 1 \leq i \leq n.
$$

Step 3. We set $\hat{v}_n := v_{\ell_n}^n$, $n \ge 1$, so for every $r \ge 1$

$$
(\lambda - \Delta)^{-\frac{1}{4}} \eta_r (\hat{v}_n - \sigma) \cdot \nabla (\lambda - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2.
$$
 (11)

 $\text{Since } v^n_{\ell_n} \in \text{conv}\{v^{n-1}_{\ell_{n-1}}\}_{\ell_{n-1} \geqslant \ell_n}, v^{n-1}_{\ell_{n-1}} \in \text{conv}\{v^{n-2}_{\ell_{n-2}}\}_{\ell_{n-2} \geqslant \ell_{n-1}}, \text{etc, we obtain that } v^n_{\ell_n} \in \text{conv}\{v_k\}_{k \geqslant \ell_n},$ i.e. we also have [\(6\)](#page-10-4). Finally, [\(11\)](#page-12-0) combined with the resolvent identity yield

$$
(\zeta - \Delta)^{-\frac{1}{4}} \eta_r(\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2, \quad \text{Re}\,\zeta \geq \lambda.
$$

i.e. we have proved Claim [2.](#page-10-5)

We are in a position to complete the proof of Proposition [5.](#page-10-0) Let us show that, for every $\zeta \in \mathcal{O}$

$$
Z_2(\zeta, \hat{v}_n \mathcal{L}^d)g - Z_2(\zeta, \sigma)g = (\zeta - \Delta)^{-\frac{1}{4}}(\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}g \stackrel{s}{\to} 0 \text{ in } L^2, \quad g \in \mathcal{S}.
$$

Let us fix some $g \in \mathcal{S}$. We have

$$
(\zeta - \Delta)^{-\frac{1}{4}}(\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}g = (\zeta - \Delta)^{-\frac{1}{4}}(\hat{v}_n - \eta_r \hat{v}_n) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}g + (\zeta - \Delta)^{-\frac{1}{4}}(\eta_r \hat{v}_n - \eta_r \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}g + (\zeta - \Delta)^{-\frac{1}{4}}(\eta_r \sigma - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}g =: I_{1,r,n} + I_{2,r,n} + I_{3,r}.
$$

Claim 3*. Given any* $\varepsilon > 0$ *, there exists r such that* $||I_{3,r}||_2$ *,* $||I_{1,r,n}||_2 < \varepsilon$ *, for all* $n, \zeta \in \mathcal{O}$ *.*

Proof of Claim [3.](#page-12-1) It suffices to prove $||I_{1,r,n}||_2 < \varepsilon$ for all *n*. We will need the following elementary estimate: $|\nabla (\zeta - \Delta)^{-\frac{3}{4}}(x, y)| \le M_d(\kappa_d^{-1} \text{Re }\zeta - \Delta)^{-\frac{1}{4}}(x, y), x, y \in \mathbb{R}^d, x \ne y$. We have

$$
||I_{1,r,n}||_2 = ||(\text{Re}\,\zeta - \Delta)^{-\frac{1}{4}}(1 - \eta_r)\hat{v}_n \cdot \nabla(\text{Re}\,\zeta - \Delta)^{-\frac{3}{4}}g||_2
$$

\$\leqslant c_d M_d ||(\text{Re}\,\zeta - \Delta)^{-\frac{1}{4}}(1 - \eta_r)|\hat{v}_n|(\kappa_d^{-1}\text{Re}\,\zeta - \Delta)^{-\frac{1}{4}}g||_2\$
\$\leqslant c_d M_d ||(\text{Re}\,\zeta - \Delta)^{-\frac{1}{4}}|\hat{v}_n|^{\frac{1}{2}}||_{2 \to 2} ||(1 - \eta_r)|\hat{v}_n|^{\frac{1}{2}}(\kappa_d^{-1}\text{Re}\,\zeta - \Delta)^{-\frac{1}{4}}g||_2\$

We have $\|(\text{Re }\zeta - \Delta)^{-\frac{1}{4}}|\hat{v}_n|^{\frac{1}{2}}\|_{2\to 2} \leq \delta$ in view of Lemma [1\(](#page-6-1)1). In turn,

$$
(1 - \eta_r)|\hat{v}_n|^{\frac{1}{2}} (\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{-\frac{1}{4}} g
$$

= $|\hat{v}_n|^{\frac{1}{2}} (\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{-\frac{1}{4}} (\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{\frac{1}{4}} (1 - \eta_r) (\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{-\frac{1}{4}} g,$

so

$$
\left\|(1-\eta_r)|\hat{v}_n|^{\frac{1}{2}}(\kappa_d^{-1}\text{Re}\,\zeta-\Delta)^{-\frac{1}{4}}g\right\|_2\leq \delta\|(\kappa_d^{-1}\text{Re}\,\zeta-\Delta)^{\frac{1}{4}}(1-\eta_r)(\kappa_d^{-1}\text{Re}\,\zeta-\Delta)^{-\frac{1}{4}}g\|_2,
$$

where $\delta \|(\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{\frac{1}{4}} (1 - \eta_r)(\kappa_d^{-1} \text{Re}\,\zeta - \Delta)^{-\frac{1}{4}} g\|_2 \to 0$ as $r \uparrow \infty$. The proof of Claim [3](#page-12-1) is completed. \Box

$$
\Box
$$

Claim [2,](#page-10-5) which yields convergence $||I_{2,r,n}||_2 \to 0$ as $n \uparrow \infty$ for every *r*, and Claim [3,](#page-12-1) imply that

$$
Z_2(\zeta, \hat{v}_n \mathcal{L}^d)g - Z_2(\zeta, \sigma)g \stackrel{s}{\to} 0 \text{ in } L^2, \quad g \in \mathcal{S}, \quad \zeta \in \mathcal{O},
$$

which, in view of Claim [1\(](#page-10-6)*j*), (*jj*), yields $Z_2(\zeta, \hat{v}_n\mathcal{L}^d) - Z_2(\zeta, \sigma) \stackrel{s}{\rightarrow} 0, \zeta \in \mathcal{O}$, in $L^2 \Rightarrow (\zeta(7))$ $L^2 \Rightarrow (\zeta(7))$ $L^2 \Rightarrow (\zeta(7))$. By Claim [2,](#page-10-5) we also have [\(6\)](#page-10-4). This completes the proof of Proposition [5.](#page-10-0) \Box

Proposition 6. *Let* $p \in \mathcal{I}$ *. There exist constants* C_p *,* $C_{p,q,r} < \infty$ *such that for every* $\zeta \in \mathcal{O}$

- (1) $\|\Omega_p(\zeta, \sigma, q, r)\|_{p\to p} \leq C_{p,q,r}$ *for all k,*
- $(2) \|\Omega_p(\zeta, \sigma, \infty, 1)\|_{p\to p} \leq C_p |\zeta|^{-\frac{1}{2}},$ *for all k.*

Proof. Immediate from Proposition [2](#page-9-0) and Proposition [5.](#page-10-0) □

Now, we assume that $p \in \mathcal{J} \subseteq \mathcal{I}$.

Proposition 7. Let $\{\hat{v}_n\}$ be the sequence in Proposition [5.](#page-10-0) For any $p \in \mathcal{J}$,

 $\Omega_p(\zeta, \hat{v}_n \mathcal{L}^d, q, r) \stackrel{s}{\rightarrow} \Omega_p(\zeta, \sigma, q, r)$ *in* L^p , $\zeta \in \mathcal{O}$.

Proof. Set $\Omega_p \equiv \Omega_p(\zeta, \sigma, q, r)$, $\Omega_p^n \equiv \Omega_p(\zeta, \hat{v}_n \mathcal{L}^d, q, r)$. Recall that since $p \in \mathcal{J}$, we have $2(p-1) \in \mathcal{I}$. Since Ω_p , $\Omega_p^n \in \mathcal{B}(L^p)$, it suffices to prove convergence on S. We have $(f \in \mathcal{S})$:

$$
\|\Omega_p f - \Omega_p^n f\|_p^p \le \|\Omega_p f - \Omega_p^n f\|_{2(p-1)}^{p-1} \|\Omega_p f - \Omega_p^n f\|_2. \tag{12}
$$

Let us estimate the right-hand side in [\(12\)](#page-13-2):

1) $\Omega_p f - \Omega_p^n f$ (= $\Omega_{2(p-1)} f - \Omega_{2(p-1)}^n f$) is uniformly bounded in $L^{2(p-1)}$ by Proposition [2](#page-9-0) and Proposition [6,](#page-13-1)

2) $\Omega_p f - \Omega_p^n f = \Omega_2 f - \Omega_2^n f \stackrel{s}{\to} 0$ in L^2 as $k \uparrow \infty$ by Proposition [5.](#page-10-0)

Therefore, by [\(12\)](#page-13-2), $\Omega_p^n f \stackrel{s}{\rightarrow} \Omega_p f$ in L^p , as needed.

This completes the proof of assertion (*i*), and thus the proof of Theorem [1.](#page-4-0)

3. Proof of Theorem [2](#page-6-0)

(*i*) The approximating vector fields *v^k* were constructed in Section [1.](#page-6-2) The proof repeats the proof of [\[Ki,](#page-14-5) Theorem 2]. Namely, we verify conditions of the Trotter approximation theorem for $\Lambda_{C_{\infty}}(v_k) := -\Delta + v_k \cdot \nabla, D(\Lambda_{C_{\infty}}(v_k)) = C^2 \cap C_{\infty}$

- 1°) sup_n $\|(\mu + \Lambda_{C_{\infty}}(v_k))^{-1}\|_{\infty \to \infty} \leq \mu^{-1}, \mu \geq \kappa_d \lambda_{\delta}.$
- 2°) $\mu(\mu + \Lambda_{C_{\infty}}(v_k))^{-1} \to 1$ in C_{∞} as $\mu \uparrow \infty$ uniformly in *n*.
- 3°) There exists s - C_{∞} $\lim_{n} (\mu + \Lambda_{C_{\infty}}(v_k))^{-1}$ for some $\mu \geq \kappa_d \lambda$.

^{1°}) is immediate. Let us verify ^{2°}) and ^{3°}). Fix some $p \in \mathcal{J}$, $p > d - 1$ (such p exists since $m_d\delta < \frac{2d-5}{(d-2)^2}$, and let

$$
\Theta_p(\mu,\sigma) := (\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \Omega_p(\mu,\sigma,q,1) \in \mathcal{B}(L^p), \quad \mu \geq \kappa_d \lambda,
$$
\n(13)

where max $\{2, p\} < q$, see the proof of Theorem [1.](#page-4-0) We will be using the properties of $\Theta_p(\mu, \sigma)$ established there. Without loss of generality, we may assume that $\{v_k\}$ is the sequence constructed in Proposition [7,](#page-13-0) that is, $v_k \stackrel{w}{\rightarrow} \sigma$, and $\Omega_p(\mu, v_k \mathcal{L}^d, q, 1) \stackrel{s}{\rightarrow} \Omega_p(\mu, \sigma, q, 1)$ in L^p as $k \uparrow \infty$.

Given any $\gamma < 1 - \frac{d-1}{p}$ we can select *q* sufficiently close to *p* so that by the Sobolev embedding theorem,

$$
(\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} [L^p] \subset C^{0,\gamma} \cap L^p, \quad \text{and} \quad (\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \in \mathcal{B}(L^p, C_{\infty}).
$$

Then Proposition [7](#page-13-0) yields $\Theta_p(\mu, \hat{v}_n \mathcal{L}^d) f \stackrel{s}{\rightarrow} \Theta_p(\mu, \sigma) f$ in $C_{\infty}, f \in \mathcal{S}$, as $n \uparrow \infty$. The latter, combined with the next proposition and 1°), verifies condition 3°):

Proposition 8. *For every* $k = 1, 2, ..., \Theta_p(\mu, v_k \mathcal{L}^d) \mathcal{S} \subset \mathcal{S}$, and

$$
(\mu + \Lambda_{C_{\infty}}(v_k \mathcal{L}^d))^{-1} |_{\mathcal{S}} = \Theta_p(\mu, v_k \mathcal{L}^d) |_{\mathcal{S}}, \quad \mu \geq \kappa_d \lambda.
$$

Proof. The proof repeats the proof of [\[Ki,](#page-14-5) Prop. 6].

Proposition 9. $\mu \Theta_p(\mu, v_k) \stackrel{s}{\rightarrow} 1$ *in* C_{∞} *as* $\mu \uparrow \infty$ *uniformly in k.*

Proof. The proof repeats the proof of [\[Ki,](#page-14-5) Prop. 8].

The last two proposition yield 2◦). This completes the proof of assertion (*i*).

(*ii*) follows from the equality $\Theta_p(\mu, \sigma)|_{\mathcal{S}} = (\mu + \Lambda_{C_{\infty}}(C_{\infty}))^{-1}|\mathcal{S}|$ (by construction), representation [\(13\)](#page-13-3), and the Sobolev embedding theorem.

(*iii*) It follows from (*i*) that $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ is positivity preserving. The latter, 1[°]) and the Riesz-Markov-Kakutani representation theorem imply (*iii*).

REFERENCES

- [AS] M. Aizenman, B. Simon. Brownian motion and Harnack inequality for Schrödinger operators. *Comm. Pure. Appl. Math.*, 35 (1982), p. 209-273.
- [AKR] S. Albeverio, Y. G. Kondratiev, M. Röckner. Stong Feller properties for distorted Brownian motion and applications to finite particle systems with singular interactions. *Contemp. Math.*, 317 (2003).
- [AM] S. Albeverio, Z. Ma. Perturbation of Dirichlet forms – lower semiboundedness, closability, and form cores. *J. Funct. Anal.*, 99 (1991), p. 332-356.
- [BC] R. Bass, Z.-Q. Chen. Brownian motion with singular drift. *Ann. Prob.*, 31 (2003), p. 791-817.
- [BJ] K. Bogdan, T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. *Comm. Math. Phys.*, 271 (2007), p. 179-198.
- [BL] J. Bourgain, D. Li. On an end-point Kato-Ponce inequality. *Diff. Integr. Equ.*, 27 (2014), p. 1037-1072.
- [CKS] Z.-Q. Chen, P. Kim, R. Song. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. *Ann. Prob.*, 40 (2012), p. 2483-2538.
- [GO] L. Grafakos, S. Oh. The Kato-Ponce inequality. *Comm. Partial Diff. Equ.*, 39 (2014), p. 1128-1157.
- [KSo] P. Kim, R. Song. Stable process with singular drift. *Stoc. Proc. Appl.*, 124 (2014), p. 2479-2516.
- [Ki] D. Kinzebulatov. A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts. *Preprint, [arXiv:1502.07286](http://arxiv.org/abs/1502.07286)* (2015), 18 p.
- [KPS] V.F. Kovalenko, M.A. Perelmuter, Yu.A. Semenov. Schrödinger operators with $L_W^{1/2}(R^l)$ -potentials. *J. Math. Phys.*, 22, 1981, p. 1033-1044.
- [KS] V. F. Kovalenko, Yu.A. Semenov. C_0 -semigroups in $L^p(\mathbb{R}^d)$ and $C_\infty(\mathbb{R}^d)$ spaces generated by differential expression ∆ +*b* · ∇. (Russian) *Teor. Veroyatnost. i Primenen.*, 35 (1990), p. 449-458; English transl. in *Theory Probab. Appl.* 35 (1991), p. 443-453.
- [KR] N.V. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time dependent drift. *Probab. Theory Related Fields*, 131 (2005), p. 154-196.

- [S] Yu.A. Semenov. On perturbation theory for linear elliptic and parabolic operators; the method of Nash. *Contemp. Math.*, 221 (1999), p. 217-284.
- [S2] Yu.A. Semenov. Regularity theorems for parabolic equations. *J. Funct. Anal.*, 231 (2006), p. 375-417.
- [SV] P. Stollmann, J. Voigt. Perturbation of Dirichlet forms by measures. *Potential Anal.*, 5 (1996), p. 109-138.
- [Zh] Q. S. Zhang. Gaussian bounds for the fundamental solutions of $\nabla (A\nabla u) + B\nabla u - u_t = 0$. *Manuscripta Math.*, 93 (1997), p. 381-390.