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STRONG FELLER PROCESSES WITH MEASURE-VALUED DRIFTS

D. KINZEBULATOV

Abstract. We construct a strong Feller process associated with −∆ + σ · ∇, with drift σ in a wide

class of measures (weakly form-bounded measures, e.g. combining weak Ld and Kato class measure

singularities), by exploiting a quantitative dependence of the smoothness of the domain of an operator

realization of −∆ + σ · ∇ generating a holomorphic C0-semigroup on Lp(Rd), p > d − 1, on the value

of the form-bound of σ. Our method admits extension to other types of perturbations of −∆ or

(−∆)
α

2 , e.g. to yield new Lp-regularity results for Schrödinger operators with form-bounded measure

potentials.

1. Let Ld be the Lebesgue measure on Rd, Lp = Lp(Rd, Ld), Lp,∞ = Lp,∞(Rd, Ld) and W 1,p =

W 1,p(Rd, Ld) the standard Lebesgue, weak Lebesgue and Sobolev spaces, C0,γ = C0,γ(Rd) the space

of Hölder continuous functions (0 < γ < 1), Cb = Cb(R
d) the space of bounded continuous functions,

endowed with the sup-norm, C∞ ⊂ Cb the closed subspace of functions vanishing at infinity, Ws,p,

s > 0, the Bessel space endowed with norm ‖u‖p,s := ‖g‖p, u = (1 − ∆)− s
2 g, g ∈ Lp, W−s,p the dual

of Ws,p, and S = S(Rd) the L. Schwartz space of test functions. We denote by B(X, Y ) the space

of bounded linear operators between complex Banach spaces X → Y , endowed with operator norm

‖ · ‖X→Y ; B(X) := B(X, X). Set ‖ · ‖p→q := ‖ · ‖Lp→Lq . We denote by
w→ the weak convergence of

Rd- or Cd-valued measures on Rd, and the weak convergence in a given Banach space.

By 〈u, v〉 we denote the inner product in L2,

〈u, v〉 = 〈uv̄〉 :=

∫

Rd
uv̄Ld (u, v ∈ L2).

2. Let d > 3. The problem of constructing a Feller process having infinitesimal generator −∆+b ·∇,

with singular drift b : Rd → Rd, has been thoroughly studied in the literature (cf. [AKR, KR] and

references therein), motivated by applications, as well as the search for the maximal (general) class

of vector fields b such that the associated process exists. This search culminated in the following

classes of critical drifts:

Definition 1. A vector field b : Rd → Rd is said to belong to Fδ, the class of form-bounded vector

fields, if b is Ld-measurable and there exists λ = λδ > 0 such that

‖b(λ − ∆)− 1

2 ‖2→2 6
√

δ.
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Lp + L∞ (p > d)

Ld + L∞
II✒✒✒✒✒✒✒✒✒

Ld + L∞

Ld,∞ + L∞
II✒✒✒✒✒✒✒✒

Ld,∞ + L∞

Fδ2

II✒✒✒✒✒✒✒✒

F0

Fδ2

UU✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱

Ld + L∞ F0
//

Lp + L∞ (p > d)

Kd+1
0
UU✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱✱

Kd+1
0

Kd+1
δ
UU✱✱✱✱✱✱✱✱

Here → stands for (, inclusion of vector spaces.

The inclusions Ld + L∞ ( F0 :=
⋂

δ>0
Fδ, Ld,∞ + L∞ (

⋃

δ>0
Fδ follow from the Sobolev embedding theorem, and

the Strichartz inequality with sharp constants [KPS], respectively.

Definition 2. A vector field b : Rd → Rd is said to belong to the Kato class Kd+1
δ if b is Ld-

measurable and there exists λ = λδ > 0 such that

‖b(λ − ∆)− 1

2 ‖1→1 6 δ.

We have:

1) b(x) =
√

δ d−2
2 x|x|−2 ∈ Fδ (Hardy inequality).

2) Also, if |b(x)| 6 1|x1|<1|x1|s−1, where 0 < s < 1, x = (x1, . . . , xd), 1|x1|<1 is the characteristic

function of {x : |x1| < 1}, then b ∈ Kd+1
0 . An example of a b ∈ Kd+1

δ \ Kd+1
0 can be obtained

e.g. by modifying [AS, p. 250, Example 1]1. Examples 1), 2) demonstrate that Kd+1
δ \ Fδ1

6= ∅, and

Fδ1
\ Kd+1

δ 6= ∅.

It is clear that

b ∈ Fδ (or Kd+1
δ ) ⇔ εb ∈ Fεδ (respectively, Kd+1

εδ ), ε > 0.

In particular, there exist b ∈ Fδ (Kd+1
δ ) such that εb 6∈ F0 (Kd+1

0 ) for any ε > 0 (cf. examples

above). The vector fields in Fδ \ F0 and Kd+1
δ \ Kd+1

0 have critical order singularities (i.e. sensitive

to multiplication by a constant), at isolated points or along hypersurfaces, respectively.

Earlier, the Kato class Kd+1
δ , with δ > 0 sufficiently small (but nevertheless allowed to be positive),

has been recognized as ‘the right one’ for the existence of the Gaussian upper and lower bounds on

the fundamental solution of −∆+b ·∇, see [S, Zh]; the Gaussian bounds yield an operator realization

of −∆+ b ·∇ generating a (contraction positivity preserving) C0-semigroup in C∞ (moreover, in Cb),

whose integral kernel is the transition probability function of a Feller process. In turn, b ∈ Fδ,

δ < 4, ensures that −∆ + b · ∇ is dissipative in Lp, p > 2
2−

√
δ

[KS]; then, if δ < min{1,
(

2
d−2

)2},

the Lp-dissipativity allows to run a Moser-type iterative procedure of [KS], which takes p → ∞ and

1The value of the relative bound δ plays a crucial role in the theory of −∆ + b · ∇, e.g. if δ > 4, then the uniqueness

of solution of Cauchy problem for ∂t − ∆ +
√

δ d−2

2
x|x|−2 · ∇ fails in Lp, see [KS, Example 7], see also comments below.
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thus produces an operator realization of −∆ + b · ∇ generating a C0-semigroup in C∞, hence a Feller

process.

The natural next step toward determining the general class of drifts b ‘responsible’ for the existence

of an associated Feller process is to consider b = b1 + b2, with b1 ∈ Fδ1
, b2 ∈ Kd+1

δ2
. Although it is

not clear how to reconcile the dissipativity in Lp and the Gaussian bounds, it turns out that neither

of these properties is responsible for the existence of the process; in fact, the process exists for any b

in the following class [Ki]:

Definition 3. A vector field b : Rd → Rd is said to belong to F
1

2

δ , the class of weakly form-bounded

vector fields, if b is Ld-measurable, and there exists λ = λδ > 0 such that

‖|b| 1

2 (λ − ∆)− 1

4 ‖2→2 6
√

δ.

The class F
1

2

δ has been introduced in [S2, Theorem 5.1]. We have

Kd+1
δ ( F

1

2

δ , Fδ2 ( F
1

2

δ ,

b ∈ Fδ1
and f ∈ Kd+1

δ2
=⇒ b + f ∈ F

1

2

δ ,
√

δ = 4
√

δ1 +
√

δ2 (1)

(see [Ki]). In [Ki], the construction of the process goes as follows: the starting object is an operator-

valued function (b ∈ F
1

2

δ )

Θp(ζ, b) := (ζ − ∆)−1

− (ζ − ∆)
− 1

2
− 1

2q (ζ − ∆)
− 1

2q′ |b|
1

p′

︸ ︷︷ ︸

∈B(Lp)

(

1 + b
1

p · ∇(ζ − ∆)−1|b|
1

p′

)−1

︸ ︷︷ ︸

∈B(Lp)

b
1

p · ∇(ζ − ∆)− 1

2
− 1

2r

︸ ︷︷ ︸

∈B(Lp)

(ζ − ∆)− 1

2r′ ,

where Re ζ > d
d−1λδ, b

1

p := b|b|
1

p
−1, p is in a bounded open interval determined by the form-bound δ

(and expanding to (1, ∞) as δ ↓ 0), and 1 < r < p < q. Then (see [Ki] for details)

Θp(ζ, b) = (ζ + Λp(b))−1,

where Λp(b) is an operator realization of −∆ + b · ∇ generating a holomorphic C0-semigroup e−tΛp(b)

on Lp, and the very definition of Θp(ζ, b) implies that the domain of Λp(b)

D(Λp(b)) ⊂ W1+ 1

q
,p

, for any q > p.

The information about smoothness of D(Λp(b)) allows us to leap, by means of the Sobolev embedding

theorem, from Lp, p > d − 1, to C∞, while moving the burden of the proof of convergence in C∞ (in

the Trotter’s approximation theorem) to Lp, a space having much weaker topology (locally). Then

(see [Ki]) Θp(µ, b)|S = (µ + ΛC∞
(b))−1|S , where ΛC∞

(b) is an operator realization of −∆ + b · ∇
generating a contraction positivity preserving C0-semigroup on C∞, hence a Feller process.

3. The primary goal of this note is to extend the method in [Ki] to weakly form-bounded measure

drifts.

The study of measure perturbations of −∆ has a long history, see e.g. [AM, SV], where the Lp-

regularity theory of −∆ (more generally, of a Dirichlet form) perturbed by a measure potential in

the corresponding Kato class was developed, 1 6 p < ∞ (cf. Corollary 1 below).
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Recently, [BC] constructed a strong Feller process associated with −∆ + σ · ∇ with a Rd-valued

measure σ in the Kato class K̄d+1
δ (see definition below), for δ = 0, running perturbation-theoretic

techniques in Cb, thus obtaining e.g. a Brownian motion drifting upward when penetrating certain

fractal-like sets. We strengthen their result in Theorem 2 below.

Definition 4. A Cd-valued Borel measure σ on Rd is said to belong to F̄
1

2

δ , the class of weakly

form-bounded measures, if there exists λ = λδ > 0 such that
∫

Rd

(

(λ − ∆)− 1

4 (x, y)f(y)dy

)2

|σ|(dx) 6 δ‖f‖2
2, f ∈ S.,

where |σ| := |σ1| + · · · + |σd| is the variation of σ. Clearly, F
1

2

δ ⊂ F̄
1

2

δ .

Definition 5. A Cd-valued Borel measure σ on Rd is said to belong to the Kato class K̄d+1
δ if there

exists λ = λδ > 0 such that

sup
x∈Rd

∫

Rd
(λ − ∆)− 1

2 (x, y)|σ|(dy) 6 δ.

See [BC] for examples of measures in K̄d+1
0 .

It is clear that Kd+1
δ ⊂ K̄d+1

δ . By Lemma 1 below, K̄d+1
δ ⊂ F̄

1

2

δ .

The operator-valued function Θp(ζ, σ), Re ζ > d
d−1λδ (see above), ‘a candidate’ for the resolvent of

the desired operator realization of −∆ + σ · ∇ generating a C0-semigroup on C∞, is not well defined

for a σ having non-zero singular part. We modify the method in [Ki]. Also, in contrast to the setup of

[Ki], a general σ doesn’t admit a monotone approximation by regular vector fields vk (i.e. by vkLd),

which complicates the proof of convergence Θ2(ζ, vkLd)
s→ Θ2(ζ, σ) in L2, needed to carry out the

method. We overcome this difficulty using an important variant of the Kato-Ponce inequality by

[GO] (see also [BL]) (Proposition 5 below).

Our method depends on the fact that the operators −∆, ∇ constituting −∆ + σ · ∇ commute. In

particular, our method admits a straightforward generalization to (−∆)
α
2 + σ · ∇, where (−∆)

α
2 is

the fractional Laplacian, 1 < α < 2, with measure σ weakly form-bounded with respect to ∆α−1, i.e.
∫

Rd

(

(λ − ∆)− α−1

4 (x, y)f(y)dy

)2

|σ|(dx) 6 δ‖f‖2
2, f ∈ S

for some λ = λδ > 0. (We note that the potential theory of operator −∆
α
2 perturbed by a drift in

the corresponding Kato class, as well as its associated process, attracted a lot of attention recently,

see [BJ, CKS, KSo] and references therein.)

In Theorems 1, 2 (but not in Corollary 1) we assume that σ admits an approximation by (weakly)

form-bounded measures ≪ Ld having the same form-bound δ (in fact, δ + ε, for an arbitrarily small

ε > 0 independent of k). We verify this assumption for σ = bLd + ν,

bLd ∈ F̄
1

2

δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√

δ1 +
√

δ2,

but do not address, in this note, the issue of constructing such an approximation for a general σ; we

also do not address the issue (we believe, related) of constructing weakly form-bounded vector fields

whose singularities are principally different from those of Fδ2

1

+ Kd+1
δ2

(cf. (1)).
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Lp + L∞ (p > d)

Ld + L∞
OO

Ld + L∞

Ld,∞ + L∞
OO

Ld,∞ + L∞

Fδ2

OO

F0

Fδ2

dd❍❍❍❍❍❍❍❍❍❍❍❍❍❍

Ld + L∞

F0
::✈✈✈✈✈✈✈✈✈✈✈✈✈

Lp + L∞ (p > d)

Kd+1
0
ZZ✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺

Kd+1
0

Kd+1
δ
DD✠✠✠✠✠✠✠✠✠

Fδ2

F
1

2

δ
OO

Kd+1
δ

F
1

2

δ
DD✠✠✠✠✠✠✠✠✠

Kd+1
0

K̄d+1
0
OO

Kd+1
δ

K̄d+1
δ
OO

F
1

2

δ

F
1

2

δ1
+ K̄d+1

δ2
OO

K̄d+1
0

K̄d+1
δ
DD✠✠✠✠✠✠✠✠✠

K̄d+1
δ

F
1

2

δ1
+ K̄d+1

δ2
DD✠✠✠✠✠✠✠✠

F
1

2

δ1
+ K̄d+1

δ2

F̄
1

2

δ
OO

The general classes of drifts studied in the literature in connection with operator −∆ + σ · ∇.

Here we identify b(x) with b(x)Ld.

4. We proceed to precise formulations of our results.

Notation. Let

md := inf
κ>0

sup
x 6=y,

Re ζ>0

|∇(ζ − ∆)−1(x, y)|
(
κ−1Re ζ − ∆

)− 1

2 (x, y)
(2)

(note that md is bounded from above by π
1

2 (2e)− 1

2 d
d
2 (d − 1)

1−d
2 < ∞, see [Ki, (A.1)]),

J :=

(

1 +
1

1 +
√

1 − mdδ
, 1 +

1

1 −
√

1 − mdδ

)

.

Theorem 1 (Lp-theory of −∆ + σ · ∇). Let d > 3. Assume that σ is a Cd-valued Borel measure in

F̄
1

2

δ such that σ = bLd + ν, where b : Rd → Cd,

bLd ∈ F̄
1

2

δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√

δ1 +
√

δ2,
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or, more generally (see Lemma 1 below), σ ∈ F̄
1

2

δ (λ) is such that there exist vk ∈ C∞
0 (Rd,Cd),

vkLd ∈ F̄
1

2

δ (λ), vkLd w−→ σ.

If mdδ < 1, then for every p ∈ J :

(i) There exists a holomorphic C0-semigroup e−tΛp(σ) in Lp such that, possibly after replacing

vkLd’s with a sequence of their convex combinations (also weakly converging to measure σ), we have

e−tΛp(vkLd) s→ e−tΛp(σ) in Lp,

as k ↑ ∞, where

Λp(vkLd) := −∆ + vk · ∇, D(Λp(vkLd)) = W 2,p.

(ii) The resolvent set ρ(−Λp(σ)) contains a half-plane O ⊂ {ζ ∈ C : Re ζ > 0}, and the re-

solvent (ζ + Λp(σ))−1, ζ ∈ O, admits an extension by continuity to a bounded linear operator in

B
(

W− 1

r′
,p, W1+ 1

q
,p

)

, where 1 6 r < min{2, p}, max{2, p} < q.

(iii) The domain of the generator D
(
Λp(σ)

)
⊂ W1+ 1

q
,p

for every q > max{p, 2}.

Remarks. I. If σ ≪ Ld, then the interval J ∋ p in Theorem 1 can be extended, see [Ki] (in [Ki] we

work directly in Lp, while in the proof of Theorem 1 we have to first prove our convergence results

in L2, and then transfer them to Lp (Proposition 7), hence the more restrictive assumptions on p).

II. A straightforward modification of the proof of Theorem 1 yields:

Corollary 1 (Lp-theory of −∆ + Ψ). Let d > 3. Assume that Ψ is a C-valued Borel measure such

that
∫

Rd

(

(λ − ∆)− 1

2 (x, y)f(y)dy

)2

|Ψ|(dx) 6 δ‖f‖2
2, f ∈ S,

for some λ = λδ > 0. We write Ψ ∈ F̄δ

(
∆, λ

)
. Set Vk := ρkeεk∆Ψ, εk ↓ 0, where ρk ∈ C∞

0 ,

0 6 ρk 6 1, ρ ≡ 1 in {|x| ≤ k}, ρ ≡ 0 in {|x| ≥ k + 1}, so that

VkLd ∈ F̄δ(∆, λ) for all k, VkLd w→ Ψ as k ↑ ∞
(see Lemma 2 below). If δ < 1, then for every p ∈

(
1+ 1

1+
√

1−δ
, 1+ 1

1−
√

1−δ

)
there exists a holomorphic

C0-semigroup e−tΠp(Ψ) in Lp such that

e−tΠp(VkLd) s→ e−tΠp(Ψ) in Lp,

where Πp(VkLd) := −∆ + Vk, D(Πp(VkLd)) = W 2,p, possibly after replacing VkLd’s with a se-

quence of their convex combinations (also weakly converging to Ψ), and the domain of the generator

D
(
Πp(Ψ)

)
⊂ W

1

q
,p

, for any q > max{2, p}.

Corollary 1 extends the results in [AM, SV] (applied to operator −∆+Ψ), where a real-valued Ψ is

assumed to be in the Kato class K̄d
δ of measures (e.g. delta-function concentrated on a hypersurface).

One disadvantage of Corollary 1, compared to [AM, SV], is that it requires |Ψ| 6 δ(λ − ∆) (in the

sense of quadratic forms) rather than Ψ− 6 δ(λ − ∆ + Ψ+), where Ψ = Ψ+ − Ψ−, Ψ+, Ψ− > 0.

The purpose of Theorem 1 is to prove
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Theorem 2 (C∞-theory of −∆ + σ · ∇). Let d > 3. Assume that σ is a Rd-valued Borel measure in

F̄
1

2

δ such that σ = bLd + ν, where b : Rd → Rd,

bLd ∈ F̄
1

2

δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√

δ1 +
√

δ2,

or, more generally (see Lemma 1 below), σ ∈ F̄
1

2

δ (λ) is such that there exist vk ∈ C∞
0 (Rd,Rd),

vkLd ∈ F̄
1

2

δ (λ), vkLd w−→ σ.

If mdδ < 2d−5
(d−2)2 , then:

(i) There exists a positivity preserving contraction C0-semigroup e−tΛC∞
(σ) on C∞ such that ,

possibly after replacing vkLd’s with a sequence of their convex combinations (also weakly converging

to measure σ) we have

e−tΛC∞
(vkLd) s−→ e−tΛC∞

(σ) in C∞, t > 0,

as k ↑ ∞, where

ΛC∞
(vkLd) := −∆ + vk · ∇, D(ΛC∞

(vkLd)) = C2 ∩ C∞.

(ii) [Strong Feller property ] (µ + ΛC∞
(σ))−1|S can be extended by continuity to a bounded linear

operator in B(Lp, C0,γ), γ < 1 − d−1
p

, for every d − 1 < p < 1 + 1
1−

√
1−mdδ

.

(iii) The integral kernel e−tΛC∞
(σ)(x, y) (x, y ∈ Rd) of e−tΛC∞

(σ) determines the (sub-Markov)

transition probability function of a Feller process.

Remark. If σ ≪ Ld, then the constraint on δ in Theorem 2 can be relaxed, see [Ki], cf. Remark I

above.

1. Approximating measures

1. In Theorems 1 and 2. Suppose σ = bLd+ν, where b : Rd → Cd, bLd ∈ F̄
1

2

δ1
(λ), and ν ∈ K̄d+1

δ2
(λ).

The following statement is a part of Theorems 1 and 2.

Lemma 1. There exist vector fields vk ∈ C∞
0 (Rd,Cd), k = 1, 2, . . . such that

(1) vkLd ∈ F̄
1

2

δ (λ),
√

δ :=
√

δ1 +
√

δ2, for every k, and

(2) vkLd w−→ σ as k ↑ ∞.

Proof. We fix functions ρk ∈ C∞
0 , 0 6 ρk 6 1, ρ ≡ 1 in {|x| ≤ k}, ρ ≡ 0 in {|x| ≥ k + 1}, and define

vkLd := bkLd + νk,

where, for some fixed εk ↓ 0,

νk := ρkeεk∆ν, bk := ρkeεk∆b.

It is clear that vk ∈ C∞
0 (Rd,Rd) and vkLd w−→ σ as k ↑ ∞. Let us show that νk ∈ K̄d+1

δ2
(λ) for every

k. Indeed, we have the following pointwise (a.e.) estimates on Rd:

(λ − ∆)− 1

2 |νk| 6 (λ − ∆)− 1

2 |eεk∆ν| 6 (λ − ∆)− 1

2 eεk∆|ν| = eεk∆(λ − ∆)− 1

2 |ν|.
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Since ‖eεk∆(λ−∆)− 1

2 |ν|‖∞ 6 ‖(λ−∆)− 1

2 |ν|‖∞ and, in turn, ‖(λ−∆)− 1

2 |ν|‖∞ 6 δ2 (⇔ ν ∈ K̄d+1
δ2

(λ)),

we have νk ∈ K̄d+1
δ2

(λ). By interpolation, νk ∈ F̄
1

2

δ1
(λ). A similar argument yields bkLd ∈ F̄

1

2

δ1
(λ).

Thus, vkLd ∈ F̄
1

2

δ (λ), for every k. �

2. In Corollary 1. Suppose Ψ ∈ F̄δ(∆, λ). Select ρk ∈ C∞
0 , 0 6 ρk 6 1, ρ ≡ 1 in {|x| ≤ k}, ρ ≡ 0

in {|x| ≥ k + 1}. Fix some εk ↓ 0.

Lemma 2. We have Vk := ρkeεk∆Ψ ∈ C∞
0 (Rd), and

(1) VkLd ∈ F̄δ(∆, λ) for every k,

(2) VkLd w→ Ψ as k ↑ ∞.

Proof. Assertion (2) is immediate. Let us prove (1). It is clear that VkLd ∈ F̄δ

(
∆, λ

)
if and only if

〈|Vk|ϕ, ϕ〉 6 δ〈(λ − ∆)
1

2 ϕ, (λ − ∆)
1

2 ϕ〉, ϕ ∈ S.

We have |Vk| = ρkeεk∆|Ψ| 6 eεk∆|Ψ|, so

〈|Vk|ϕ, ϕ〉 6 〈eεk∆|Ψ|ϕ, ϕ〉 = 〈|Ψ|, eεk∆(ϕ2)〉
(

since Ψ ∈ F̄δ(∆)

)

6 δ

〈(

(λ − ∆)
1

2 [eεk∆(ϕ2)]
1

2

)2
〉

= δ
〈

(λ − ∆)[eεk∆(ϕ2)]
1

2 , [eεk∆(ϕ2)]
1

2

〉

= δ〈eεk∆ϕ2〉 + δ〈∇[eεk∆(ϕ2)]
1

2 , ∇[eεk∆(ϕ2)]
1

2 〉
(

we are using 〈eεk∆ϕ2〉 = 〈ϕ2〉
)

= δ〈ϕ2〉 + δ〈(eεk∆ϕ2)−1(eεk∆ϕ∇ϕ)2〉
(

by Hölder inequality

)

6 δ〈ϕ2〉 + δ〈eεk∆(∇ϕ)2〉 = 〈(λ − ∆)
1

2 ϕ, (λ − ∆)
1

2 ϕ〉,

as needed. �

2. Proof of Theorem 1

Preliminaries. 1. By Lemma 1, there exist vector fields vk ∈ C∞
0 (Rd,Cd), k = 1, 2, . . . , such that

vkLd ∈ F̄
1

2

δ (λ),
√

δ :=
√

δ1 +
√

δ2, and vkLd w−→ σ as k ↑ ∞.

2. Due to the strict inequality mdδ < 1, we may assume that the infimum md (cf. (2)) is attained,

i.e. there is κd > 0

|∇(ζ − ∆)−1(x, y)| 6 md

(

κ−1
d Re ζ − ∆

)− 1

2

(x, y), x, y ∈ Rd, x 6= y, Re ζ > 0.

3. Set O := {ζ ∈ C : Re ζ > κdλδ},

The method of proof. We modify the method of [Ki]. Fix some p ∈ J , and some r, q satisfying

1 6 r < min{2, p} 6 max{2, p} < q. Our starting object is an operator-valued function

Θp(ζ, σ) := (ζ − ∆)
− 1

2
− 1

2q Ωp(ζ, σ, q, r)(ζ − ∆)− 1

2r′ ∈ B(Lp), ζ ∈ O,
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which is ‘a candidate’ for the resolvent of the desired operator realization Λp(σ) of −∆ + σ · ∇ on

Lp. Here

Ωp(ζ, σ, q, r) :=

(

Ω2(ζ, σ, q, r)

∣
∣
∣
∣
Lp∩L2

)clos

Lp

∈ B(Lp), (3)

where, on L2,

Ω2(ζ, σ, q, r) := (ζ − ∆)− 1

2

(
1

2
− 1

q

)

(1 + Z2(ζ, σ))−1(ζ − ∆)− 1

2

(
1

2
− 1

r′

)

∈ B(L2),

Z2(ζ, σ)h(x) := (ζ − ∆)− 1

4 σ · ∇(ζ − ∆)− 3

4 h(x)

=

∫

Rd
(ζ − ∆)− 1

4 (x, y)

(∫

Rd
∇(ζ − ∆)− 3

4 (y, z)h(z)dz

)

· σ(y)dy, x ∈ Rd, h ∈ S,

and ‖Z2‖2→2 < 1, so Ω2(ζ, σ, q, r) ∈ B(L2), see Proposition 1 below. We prove that Ωp(ζ, σ, q, r) ∈
B(Lp) in Proposition 6 below.

We show that Θp(ζ, σ) is the resolvent of Λp(σ) (assertion (i) of Theorem 1) by verifying conditions

of the Trotter approximation theorem:

1) Θp(ζ, vkLd) = (ζ + Λp(vkLd))−1, ζ ∈ O, where Λp(vkLd) := −∆ + vk · ∇, D(Λp(vkLd)) = W 2,p.

2) supn>1 ‖Θp(ζ, vkLd)‖p→p 6 Cp|ζ|−1, ζ ∈ O.

3) µΘp(ζ, vkLd)
s→ 1 in Lp as µ ↑ ∞ uniformly in k.

4) Θp(ζ, vkLd)
s→ Θp(ζ, σ) in Lp for some ζ ∈ O as k ↑ ∞ (possibly after replacing vkLd’s with a

sequence of their convex combinations, also weakly converging to measure σ), see Propositions 2 - 7

below for details.

We note that a priori in 1) the set of ζ’s for which Θp(ζ, vkLd) = (ζ + Λp(vkLd))−1 may depend

on k; the fact that it actually does not is the content of Proposition 3.

The proofs of 2), 3), contained in Proposition 2 and 4, are based on an explicit representation of

Ωp(ζ, vkLd, q, r), k = 1, 2, . . . , see formula (4) below. (The representation (4) doesn’t exist if σ has a

non-zero singular part; we have to take a detour via L2, (cf. (3)), which requires us to put somewhat

more restrictive assumptions on δ (compared to [Ki], where the case of a σ having zero singular part

is treated).)

Next, 4) follows from Θ2(ζ, vkLd)
s→ Θ2(ζ, σ), combined with supn ‖Θp(ζ, vkLd)‖2(p−1)→2(p−1) < ∞

(⇐ 2)) and Hölder inequality, see Proposition 7. Our proof of Θ2(ζ, vkLd)
s→ Θ2(ζ, σ) (Proposition

5) uses the Kato-Ponce inequality by [GO].

Finally, we note that the very definition of the operator-valued function Θp(ζ, σ) ensures smoothing

properties Θp(ζ, σ) ∈ B
(

W− 1

r′
,p, W1+ 1

q
,p

)

⇒ assertion (ii). Assertion (iii) is immediate from (ii).

Now, we proceed to formulating and proving Propositions 1 - 7.

Proposition 1. We have for every ζ ∈ O
(1) ‖Z2(ζ, vkLd)‖2→2 6 δ for all k.

(2) ‖Z2(ζ, σ)f‖2 6 δ‖f‖2, for all f ∈ S, all k.
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Proof. (1) Define H := |vk| 1

2 (ζ−∆)− 1

4 , S := v
1

2

k ∇(ζ−∆)− 3

4 where v
1

2

k := |vk|− 1

2 vk. Then Z2(ζ, vkLd) =

H∗S, and we have

‖Z2(ζ, vkLd)‖2→2 6 ‖H‖2→2‖S‖2→2 6 ‖H‖2
2→2‖∇(ζ − ∆)− 1

2 ‖2→2 6 δ,

where ‖∇(ζ − ∆)− 1

2 ‖2→2 = 1, and ‖H‖2
2→2 6 δ (cf. Lemma 1(1)).

(2) We have, for every f , g ∈ S,
〈
g, Z2(ζ, σ)f

〉
=

〈
(ζ − ∆)− 1

4 g, σ · ∇(ζ − ∆)− 3

4 f
〉

(here we are using vkLd w→ σ)

= lim
k

〈
(ζ − ∆)− 1

4 g, vk · ∇(ζ − ∆)− 3

4 f
〉

(here we are using assertion (1))

6 δ‖g‖2‖f‖2,

i.e. ‖Z2(ζ, σ)f‖2 6 δ‖f‖2, as needed. �

The natural extension of Z2(ζ, σ)|S (by continuity) to B(L2) will be denoted again by Z2(ζ, σ).

Since ‖Z2(ζ, vkLd)‖2→2, ‖Z2(ζ, σ)‖2→2 6 δ < 1, we have Ω2(ζ, vkLd, q, r), Ω2(ζ, σ, q, r) ∈ B(L2).

Set

I :=

(
2

1 +
√

1 − mdδ
,

2

1 −
√

1 − mdδ

)

.

In the next few propositions, given a p ∈ I, we assume r, q satisfy 1 6 r < min{2, p} 6 max{2, p} < q.

The following proposition plays a principal role:

Proposition 2. Let p ∈ I. There exist constants Cp, Cp,q,r < ∞ such that for every ζ ∈ O
(1) ‖Ωp(ζ, vkLd, q, r)‖p→p 6 Cp,q,r for all k,

(2) ‖Ωp(ζ, vkLd, ∞, 1)‖p→p 6 Cp|ζ|− 1

2 for all k.

Proof. Denote v
1

p

k := |vk|
1

p
−1

vk. Set:

Ω̃p(ζ, vLd, q, r) := Qp(q)(1 + Tp)−1Gp(r), ζ ∈ O, (4)

where

Qp(q) := (ζ − ∆)
− 1

2q′ |vk|
1

p′ , Tp := v
1

p

k · ∇(ζ − ∆)−1|v|
1

p′ , Gp(r) := v
1

p

k · ∇(ζ − ∆)− 1

2
− 1

2r ,

are uniformly (in k) bounded in B(Lp), and, in particular, ‖Tp‖p→p 6
pp′

4 mdδ (see the proof of [Ki,

Prop. 1(i)]), and pp′

4 mdδ < 1 since p ∈ I. It follows that Cp,q,r := supk ‖Ω̃p(ζ, vLd, q, r)‖p→p < ∞.

Now, Ω̃p|L2∩Lp = Ω2|L2∩Lp (by expanding (1 + Tp)−1, (1 + Z2)−1 in the K. Neumann series in Lp and

in L2, respectively). Therefore, Ω̃p = Ωp ⇒ assertion (1). The proof of assertion (2) follows closely

the proof of [Ki, Prop. 1(ii)]. �

Clearly, Θp(ζ, vkLd) does not depend on q, r. Taking q = ∞, r = 1, we obtain from Proposition 2:

‖Θp(ζ, vkLd)‖p→p 6 Cp|ζ|−1, ζ ∈ O. (5)
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Proposition 3. Let p ∈ I. For every k = 1, 2, . . . O ⊂ ρ(−Λp(vkLd)), the resolvent set of

−Λp(vkLd), and

Θp(ζ, vkLd) = (ζ + Λp(vkLd))−1, ζ ∈ O,

where Λp(vkLd) := −∆ + vk · ∇, D(ΛC∞
(vkLd)) = W 2,p.

Proof. The proof repeats the proof of [Ki, Prop. 4]. �

Proposition 4. For p ∈ I, µΘp(µ, vkLd)
s→ 1 in Lp as µ ↑ ∞ uniformly in k.

Proof. The proof repeats the proof of [Ki, Prop. 3]. �

Proposition 5. There exists a sequence {v̂n} ⊂ conv{vk} ⊂ C∞
0 (Rd,Rd) such that

v̂nLd w−→ σ as n ↑ ∞, (6)

and

Ω2(ζ, v̂nLd, q, r)
s→ Ω2(ζ, σ, q, r) in L2, ζ ∈ O. (7)

Proof. To prove (7), it suffices to establish convergence Z2(ζ, v̂nLd)
s→ Z2(ζ, σ) in L2, ζ ∈ O.

Let ηr ∈ C∞
0 , 0 6 ηr 6 1, ηr ≡ 1 on {x ∈ Rd : |x| 6 r} and ηr ≡ 0 on {x ∈ Rd : |x| > r + 1}.

Claim 1. We have

(j) ‖(ζ − ∆)− 1

4 |vk|(ζ − ∆)− 1

4 ‖2→2 6 δ for all k.

(jj) ‖(ζ − ∆)− 1

4 |σ|(ζ − ∆)− 1

4 f‖2 6 δ‖f‖2, for all f ∈ S.

Proof. Define H := |vk| 1

2 (ζ − ∆)− 1

4 . We have ‖(ζ − ∆)− 1

4 |vk|(ζ − ∆)− 1

4 ‖2→2 = ‖H∗H‖2→2 =

‖H‖2
2→2 6 δ, where ‖H‖2

2→2 6 δ (⇔ vkLd ∈ F̄
1

2

δ (λ), cf. Lemma 1(1)), i.e. we have proved (j).

An argument similar to the one in the proof of Proposition 1, but using assertion (j), yields (jj). �

Claim 2. There exists a sequence {v̂n} ⊂ conv{vk} such that (6) holds, and for every r > 1

(ζ − ∆)− 1

4 ηr(v̂n − σ) · ∇(ζ − ∆)− 3

4
s→ 0 in L2, Re ζ > λ.

(here and below we use shorthand v̂n − σ := v̂nLd − σ).

Proof of Claim 2. In view of Claim 1(j), (jj), it suffices to establish this convergence over S. Let

c(x) = e−x2

, so that c ∈ S, |(ζ − ∆)− 1

4 c| > 0 on Rd.

Step 1. Let r = 1, so ηr = η1. Let us show that there exists a sequence {v1
ℓ1

} ⊂ conv{vk} such that

(λ − ∆)− 1

4 η1(v1
ℓ1

− σ) · ∇(λ − ∆)− 3

4
s→ 0 in L2 as ℓ1 ↑ ∞. (8)

First, we show that

(λ − ∆)− 1

4 η1(vk − σ)(λ − ∆)− 1

4 c
w→ 0 in L2. (9)

Indeed, by Claim 1(j), (jj), ‖(λ − ∆)− 1

4 η1(vk − σ)(λ − ∆)− 1

4 c‖2 6 2δ‖c‖2 for all k. Hence, there

exists a subsequence of {vk} (without loss of generality, it is {vk} itself) such that (λ − ∆)− 1

4 η1(vk −
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σ)(λ−∆)− 1

4 c
w→ h for some h ∈ L2. Therefore, given any f ∈ S, we have 〈f, (λ−∆)− 1

4 η1(vk −σ)(λ−
∆)− 1

4 c〉 → 〈f, h〉. Along with that, since vkLd w→ σ, we also have

〈f, (λ − ∆)− 1

4 η1(vk − σ)(λ − ∆)− 1

4 c〉 = 〈(λ − ∆)− 1

4 f, η1(vk − σ)(λ − ∆)− 1

4 c〉 → 0,

i.e. 〈f, h〉 = 0. Since f ∈ S was arbitrary, we have h = 0, which yields (9).

Now, in view of (9), by Mazur’s Theorem, there exists a sequence {v1
ℓ1

} ⊂ conv{vk} such that

(λ − ∆)− 1

4 η1(v1
ℓ1

− σ)(λ − ∆)− 1

4 c
s→ 0 in L2. (10)

We may assume without loss of generality that each v1
ℓ1

∈ conv{vn}n>ℓ1
.

Next, set ℓ := ℓ1, ϕℓ := η1(v1
ℓ − σ), Φ := (λ − ∆)− 1

4 c, fix some u ∈ S. We estimate:

‖(λ − ∆)− 1

4 ϕℓ · ∇(λ − ∆)− 3

4 u‖2
2

=
〈

ϕℓ · ∇(λ − ∆)− 3

4 u, (λ − ∆)− 1

2 ϕℓ · ∇(λ − ∆)− 3

4 u
〉

(

since ϕℓ ≡ 0 on {|x| > 2}, in the left multiple ϕℓ = ϕℓΦ
η2

Φ

)

=

〈

ϕℓΦ
η2

Φ
· ∇(λ − ∆)− 3

4 u, (λ − ∆)− 1

2 ϕℓ · ∇(λ − ∆)− 3

4 u

〉

=

〈

ϕℓΦ,
η2

Φ
∇(λ − ∆)− 3

4 u
[

(λ − ∆)− 1

2 ϕℓ · ∇(λ − ∆)− 3

4 u
]〉

(here we are using in the left multiple that ϕℓ = (λ − ∆)
1

4 (λ − ∆)− 1

4 ϕℓ)

=

〈

(λ − ∆)− 1

4 ϕℓΦ, (λ − ∆)
1

4 (fgℓ)

〉

where we set f := η2

Φ ∇(λ − ∆)− 3

4 u ∈ C∞
0 (Rd,Rd), gℓ := (λ − ∆)− 1

2 ϕℓ · ∇(λ − ∆)− 3

4 u ∈ (λ − ∆)− 1

4 L2

(in view of Claim 1(j), (jj)). Thus, in view of the above estimates,

‖(λ − ∆)− 1

4 ϕℓ · ∇(λ − ∆)− 3

4 u‖2
2 6 ‖(λ − ∆)− 1

4 ϕℓΦ‖2‖(λ − ∆)
3

4 (fgℓ)‖2.

By the Kato-Ponce inequality of [GO, Theorem 1],

‖(λ − ∆)
1

4 (fgℓ)‖2 6 C

(

‖f‖∞‖(λ − ∆)
1

4 gℓ‖2 + ‖(λ − ∆)
1

4 f‖∞‖gℓ‖2

)

,

for some C = C(d) < ∞. Clearly, ‖f‖∞, ‖(λ − ∆)
1

4 f‖∞ < ∞, and ‖(λ − ∆)
1

4 gℓ‖2, ‖gℓ‖2 are

uniformly (in ℓ) bounded from above according to Claim 1(j), (jj). Thus, in view of (10), we obtain

(8) (recalling that ℓ1 = ℓ, and ϕℓ1
= η1(v1

ℓ1
− σ)).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence {v1
ℓ1

} in place of

{vl}, thus obtaining a sequence {v2
ℓ2

} ⊂ conv{v1
ℓ1

} such that

(λ − ∆)− 1

4 η2(v2
ℓ2

− σ) · ∇(λ − ∆)− 3

4
s→ 0 in L2 as ℓ2 ↑ ∞.

We may assume without loss of generality that each v2
ℓ2

∈ conv{v1
ℓ1

}ℓ1>ℓ2
. Therefore, we also have

(λ − ∆)− 1

4 η1(v2
ℓ2

− σ) · ∇(λ − ∆)− 3

4
s→ 0 in L2 as ℓ2 ↑ ∞.
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Repeating this procedure n − 2 times, we obtain a sequence {vn
ℓn

} ⊂ conv{vn−1
ℓn−1

} (⊂ conv{vk}) such

that

(λ − ∆)− 1

4 ηi(v
n
ℓn

− σ) · ∇(λ − ∆)− 3

4
s→ 0 in L2 as ℓn ↑ ∞, 1 6 i 6 n.

Step 3. We set v̂n := vn
ℓn

, n > 1, so for every r > 1

(λ − ∆)− 1

4 ηr(v̂n − σ) · ∇(λ − ∆)− 3

4
s→ 0 in L2. (11)

Since vn
ℓn

∈ conv{vn−1
ℓn−1

}ℓn−1>ℓn , vn−1
ℓn−1

∈ conv{vn−2
ℓn−2

}ℓn−2>ℓn−1
, etc, we obtain that vn

ℓn
∈ conv{vk}k>ℓn ,

i.e. we also have (6). Finally, (11) combined with the resolvent identity yield

(ζ − ∆)− 1

4 ηr(v̂n − σ) · ∇(ζ − ∆)− 3

4
s→ 0 in L2, Re ζ > λ.

i.e. we have proved Claim 2. �

We are in a position to complete the proof of Proposition 5. Let us show that, for every ζ ∈ O

Z2(ζ, v̂nLd)g − Z2(ζ, σ)g = (ζ − ∆)− 1

4 (v̂n − σ) · ∇(ζ − ∆)− 3

4 g
s→ 0 in L2, g ∈ S.

Let us fix some g ∈ S. We have

(ζ − ∆)− 1

4 (v̂n − σ) · ∇(ζ − ∆)− 3

4 g = (ζ − ∆)− 1

4 (v̂n − ηrv̂n) · ∇(ζ − ∆)− 3

4 g

+ (ζ − ∆)− 1

4 (ηr v̂n − ηrσ) · ∇(ζ − ∆)− 3

4 g

+ (ζ − ∆)− 1

4 (ηrσ − σ) · ∇(ζ − ∆)− 3

4 g =: I1,r,n + I2,r,n + I3,r.

Claim 3. Given any ε > 0, there exists r such that ‖I3,r‖2, ‖I1,r,n‖2 < ε, for all n, ζ ∈ O.

Proof of Claim 3. It suffices to prove ‖I1,r,n‖2 < ε for all n. We will need the following elementary

estimate: |∇(ζ − ∆)− 3

4 (x, y)| 6 Md(κ−1
d Re ζ − ∆)− 1

4 (x, y), x, y ∈ Rd, x 6= y. We have

‖I1,r,n‖2 = ‖(Re ζ − ∆)− 1

4 (1 − ηr)v̂n · ∇(Re ζ − ∆)− 3

4 g‖2

6 cdMd‖(Re ζ − ∆)− 1

4 (1 − ηr)|v̂n|(κ−1
d Re ζ − ∆)− 1

4 g‖2

6 cdMd

∥
∥(Re ζ − ∆)− 1

4 |v̂n| 1

2

∥
∥

2→2

∥
∥(1 − ηr)|v̂n| 1

2 (κ−1
d Re ζ − ∆)− 1

4 g
∥
∥

2

We have
∥
∥(Re ζ − ∆)− 1

4 |v̂n| 1

2

∥
∥

2→2
6 δ in view of Lemma 1(1). In turn,

(1 − ηr)|v̂n| 1

2 (κ−1
d Re ζ − ∆)− 1

4 g

= |v̂n| 1

2 (κ−1
d Re ζ − ∆)− 1

4 (κ−1
d Re ζ − ∆)

1

4 (1 − ηr)(κ−1
d Re ζ − ∆)− 1

4 g,

so

∥
∥(1 − ηr)|v̂n| 1

2 (κ−1
d Re ζ − ∆)− 1

4 g
∥
∥

2
6 δ‖(κ−1

d Re ζ − ∆)
1

4 (1 − ηr)(κ−1
d Re ζ − ∆)− 1

4 g‖2,

where δ‖(κ−1
d Re ζ−∆)

1

4 (1−ηr)(κ−1
d Re ζ−∆)− 1

4 g‖2 → 0 as r ↑ ∞. The proof of Claim 3 is completed.

�
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Claim 2, which yields convergence ‖I2,r,n‖2 → 0 as n ↑ ∞ for every r, and Claim 3, imply that

Z2(ζ, v̂nLd)g − Z2(ζ, σ)g
s→ 0 in L2, g ∈ S, ζ ∈ O,

which, in view of Claim 1(j), (jj), yields Z2(ζ, v̂nLd) − Z2(ζ, σ)
s→ 0, ζ ∈ O, in L2 (⇒(7)). By Claim

2, we also have (6). This completes the proof of Proposition 5. �

Proposition 6. Let p ∈ I. There exist constants Cp, Cp,q,r < ∞ such that for every ζ ∈ O
(1) ‖Ωp(ζ, σ, q, r)‖p→p 6 Cp,q,r for all k,

(2) ‖Ωp(ζ, σ, ∞, 1)‖p→p 6 Cp|ζ|− 1

2 , for all k.

Proof. Immediate from Proposition 2 and Proposition 5. �

Now, we assume that p ∈ J ( I.

Proposition 7. Let {v̂n} be the sequence in Proposition 5. For any p ∈ J ,

Ωp(ζ, v̂nLd, q, r)
s→ Ωp(ζ, σ, q, r) in Lp, ζ ∈ O.

Proof. Set Ωp ≡ Ωp(ζ, σ, q, r), Ωn
p ≡ Ωp(ζ, v̂nLd, q, r). Recall that since p ∈ J , we have 2(p − 1) ∈ I.

Since Ωp, Ωn
p ∈ B(Lp), it suffices to prove convergence on S. We have (f ∈ S):

‖Ωpf − Ωn
p f‖p

p 6 ‖Ωpf − Ωn
pf‖p−1

2(p−1)‖Ωpf − Ωn
p f‖2. (12)

Let us estimate the right-hand side in (12):

1) Ωpf − Ωn
pf

(
= Ω2(p−1)f − Ωn

2(p−1)f
)

is uniformly bounded in L2(p−1) by Proposition 2 and

Proposition 6,

2) Ωpf − Ωn
pf = Ω2f − Ωn

2 f
s→ 0 in L2 as k ↑ ∞ by Proposition 5.

Therefore, by (12), Ωn
pf

s→ Ωpf in Lp, as needed. �

This completes the proof of assertion (i), and thus the proof of Theorem 1.

3. Proof of Theorem 2

(i) The approximating vector fields vk were constructed in Section 1. The proof repeats the

proof of [Ki, Theorem 2]. Namely, we verify conditions of the Trotter approximation theorem for

ΛC∞
(vk) := −∆ + vk · ∇, D(ΛC∞

(vk)) = C2 ∩ C∞:

1◦) supn ‖(µ + ΛC∞
(vk))−1‖∞→∞ 6 µ−1, µ > κdλδ.

2◦) µ(µ + ΛC∞
(vk))−1 → 1 in C∞ as µ ↑ ∞ uniformly in n.

3◦) There exists s-C∞- limn(µ + ΛC∞
(vk))−1 for some µ > κdλ.

1◦) is immediate. Let us verify 2◦) and 3◦). Fix some p ∈ J , p > d − 1 (such p exists since

mdδ < 2d−5
(d−2)2 ), and let

Θp(µ, σ) := (µ − ∆)− 1

2
− 1

2q Ωp(µ, σ, q, 1) ∈ B(Lp), µ > κdλ, (13)

where max{2, p} < q, see the proof of Theorem 1. We will be using the properties of Θp(µ, σ)

established there. Without loss of generality, we may assume that {vk} is the sequence constructed

in Proposition 7, that is, vk
w→ σ, and Ωp(µ, vkLd, q, 1)

s→ Ωp(µ, σ, q, 1) in Lp as k ↑ ∞.



STRONG FELLER PROCESSES WITH MEASURE-VALUED DRIFTS 15

Given any γ < 1 − d−1
p

we can select q sufficiently close to p so that by the Sobolev embedding

theorem,

(µ − ∆)
− 1

2
− 1

2q [Lp] ⊂ C0,γ ∩ Lp, and (µ − ∆)
− 1

2
− 1

2q ∈ B(Lp, C∞).

Then Proposition 7 yields Θp(µ, v̂nLd)f
s→ Θp(µ, σ)f in C∞, f ∈ S, as n ↑ ∞. The latter, combined

with the next proposition and 1◦), verifies condition 3◦):

Proposition 8. For every k = 1, 2, . . . , Θp(µ, vkLd)S ⊂ S, and

(µ + ΛC∞
(vkLd))−1|S = Θp(µ, vkLd)|S , µ > κdλ.

Proof. The proof repeats the proof of [Ki, Prop. 6]. �

Proposition 9. µΘp(µ, vk)
s→ 1 in C∞ as µ ↑ ∞ uniformly in k.

Proof. The proof repeats the proof of [Ki, Prop. 8]. �

The last two proposition yield 2◦). This completes the proof of assertion (i).

(ii) follows from the equality Θp(µ, σ)|S = (µ + ΛC∞
(C∞))−1|S (by construction), representation

(13), and the Sobolev embedding theorem.

(iii) It follows from (i) that e−tΛC∞
(σ) is positivity preserving. The latter, 1◦) and the Riesz-

Markov-Kakutani representation theorem imply (iii).
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