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Strong data-processing inequalities for channels and Bayesian

networks
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Abstract

The data-processing inequality, that is, I(U ;Y ) ≤ I(U ;X) for a Markov chain U → X →
Y , has been the method of choice for proving impossibility (converse) results in information
theory and many other disciplines. Various channel-dependent improvements (called strong
data-processing inequalities, or SDPIs) of this inequality have been proposed both classically and
more recently. In this note we first survey known results relating various notions of contraction
for a single channel. Then we consider the basic extension: given SDPI for each constituent
channel in a Bayesian network, how to produce an end-to-end SDPI?

Our approach is based on the (extract of the) Evans-Schulman method, which is demon-
strated for three different kinds of SDPIs, namely, the usual Ahslwede-Gács type contraction
coefficients (mutual information), Dobrushin’s contraction coefficients (total variation), and fi-
nally the FI -curve (the best possible non-linear SDPI for a given channel). Resulting bounds
on the contraction coefficients are interpreted as probability of site percolation. As an example,
we demonstrate how to obtain SDPI for an n-letter memoryless channel with feedback given an
SDPI for n = 1.

Finally, we discuss a simple observation on the equivalence of a linear SDPI and comparison
to an erasure channel (in the sense of “less noisy” order). This leads to a simple proof of a
curious inequality of Samorodnitsky (2015), and sheds light on how information spreads in the
subsets of inputs of a memoryless channel.
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1 Introduction

Multiplication of a componentwise non-negative vector by a stochastic matrix results in a vector that
is “more uniform”. This observation appears in several classical works [Mar06,Doe37,Bir57] differ-
ing in their particular way of making quantitative estimates. For example, Birkhoff’s work [Bir57]
initiated a study (sometimes known as geometric ergodicity) of contraction of the projective dis-
tance dP (x, y) , log maxi

xi
yi
−log mini

xi
yi

between vectors in R
n
+. Here, instead, we will be interested

in contraction of statistical distances and information measures involving probability distributions,
which we define next.

Fix a transition probability kernel (channel) PY |X : X → Y acting between two measurable
spaces. We denote by PY |X◦P the distribution on Y induced by the push-forward of the distribution
P , which is the distribution of the output Y when the input X is distributed according to P , and
by P × PY |X the joint distribution PXY if PX = P . We also denote by PZ|Y ◦ PY |X the serial
composition of channels.1

We define three quantities that will play key role in our discussion: the total variation, the
Kullback-Leibler (KL) divergence and the mutual information

dTV(P,Q) , sup
E

|P [E] −Q[E]| = 1

2

∫

|dP − dQ|, (1)

D(P‖Q) ,
∫

log
dP

dQ
dP, (2)

I(A;B) , D(PAB‖PAPB). (3)

The purpose of this paper is to give exposition to the phenomenon that upon passing through
a non-degenerate noisy channel distributions become strictly closer and this leads to a loss of
information. Namely we have three effects:

1. Total-variation (or Dobrushin) contraction:

dTV(PY |X ◦ P,PY |X ◦Q) < dTV(P,Q) .

2. Divergence contraction:
D(PY |X ◦ P‖PY |X ◦Q) < D(P‖Q)

3. Information loss: For any Markov chain2 U → X → Y we

I(U ;Y ) < I(U ;X) .

These strict inequalities are collectively referred to as strong data-processing inequalities (SDPIs).
The goal of this paper is to show intricate interdependencies between these effects, as well as
introducing tools for quantifying how strict these SDPIs are.

1More formally, we should have written PY |X : P(X ) → P(Y) as a map between spaces of probability measures
P(·) on respective bases. The rationale for our notation PY |X : X → Y is that we view Markov kernels as randomized
functions. Then, a single distribution P on X is a randomized function acting from a space of a single point, i.e.
P : [1] → X , and that in turn explains our notation PY |X ◦ P for denoting the induced marginal distribution.

2The notation A → B → C simply means that A ⊥⊥ C|B.
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Organization In Section 2 we overview the case of a single channel. Notably, most of the results
in the literature are proved for finite alphabets, i.e., |X ||Y| < ∞, with a few exceptions such as
[CKZ98, PW16]. We provide in Appendix A a self-contained proof of some of these results for
general alphabets.

From then on we focus on the question: Given a multi-terminal network with a single source and
multiple sinks, and given SDPIs for each of the channels comprising the network, how do we obtain
an SDPI for the composite channel from source to sinks? It turns out that this question has been
addressed implicitly in the work of Evans and Schulman [ES99] on redundancy required in circuits
of noisy gates. Rudiments also appeared in Dawson [Daw75] as well as Boyen and Koller [BK98].

In Section 3 we present the essence of the Evans-Schulman method and derive upper bounds on
the mutual information contraction coefficient ηKL for Bayesian networks (directed graphical mod-
els). We also interpret the resulting bounds as probabilities of disupting end-to-end connectivity
under independent removals of graph vertices (site percolation). Then in Section 4 we derive analo-
gous estimates for Dobrushin’s coefficient ηTV that governs the contraction of the total variation on
networks. While the results exactly parallel those for mutual information, the proof relies on new
arguments using coupling. Finally, Section 5 extends the technique to bounding the FI -curves (the
non-linear SDPIs). Section 6 concludes with an alternative point of view on mutual information
contraction, namely that of comparison to an erasure channel. As an example we give a short
proof of a result of Samorodnitsky [Sam15] about distribution of information in subsets of channel
outputs.

Notation Elements of the Cartesian product X n are denoted xn , (x1, . . . , xn) to emphasize their
dimension. Given a transition probability kernel from PY |X : X → Y we denote PnY |X = PY n|Xn

the kernel acting from X n → Yn componentwise independently:

PY n|Xn(yn|xn) ,
n
∏

j=1

PY |X(yj |xj).

To demonstrate the general bounds we consider the running example of PY |X being an n-letter
binary symmetric channel (BSC), given by

Y = X + Z, X, Y ∈ F
n
2 , Z ∼ Bern(δ)n (4)

and denoted by BSC(δ)n. Throughout this paper δ̄ , 1− δ.

2 SDPI for a single channel

2.1 Contraction coefficients for f-divergence and mutual information

Let f : (0,∞) → R be a convex function that is strictly convex at 1 and f(1) = 0. Let Df (P ||Q) ,
EQ[f(

dP
dQ)] denote the f -divergence of P and Q with P ≪ Q, cf. [Csi67].3 For example, the

total variation (1) and the KL divergence (2) correspond to f(x) = 1
2 |x − 1| and f(x) = x log x

respectively; taking f(x) = (x− 1)2 we obtain the χ2-divergence: χ2(P‖Q) ,
∫

(dPdQ)
2dQ− 1.

3More generally, Df (P ||Q) , Eµ

[

f
(

dP/dµ
dQ/dµ

)]

, where µ is a dominating probability measure of P and Q, e.g.,

µ = (P +Q)/2, with the understanding that f(0) = f(0+), 0f( 0
0
) = 0 and 0f( a

0
) = limx↓0 xf(

a
x
) for a > 0.

4



For any Q that is not a point mass, define:

ηf (PY |X , Q) , sup
P :0<Df (P‖Q)<∞

Df (PY |X ◦ P‖PY |X ◦Q)

Df (P‖Q)
, (5)

ηf (PY |X) , sup
Q
ηf (Q) . (6)

It is easy to show that the supremum is over a non-empty set whenever Q is not a point mass
(see Appendix A). For notational simplicity when the channel is clear from context we abbreviate
ηf (PY |X) as ηf . For contraction coefficients of total variation, χ2 and KL divergence, we write
ηTV, ηχ2 and ηKL, respectively, which play prominent roles in this exposition.

One of the main tools for studying ergodicity property of Markov chains as well as Gibbs
measures, ηTV(PY |X) is known as the Dobrushin’s coefficient of the kernel PY |X . Dobrushin [Dob56]
showed that the supremum in the definition of ηTV can be restricted to point masses, namely,

ηTV(PY |X) = sup
x,x′

dTV(PY |X=x, PY |X=x′), (7)

thus providing a simple criterion for strong ergodicity of Markov processes. Later [CKZ98, Propo-
sition II.4.10(i)] (see also [CIR+93, Theorem 4.1] for finite alphabets) demonstrated that all other
contraction coefficients are upper bounded by the Dobrushin’s coefficient, with inequality being
typically strict (cf. the BSC example below):

Theorem 1 ([CKZ98, Proposition II.4.10]). For every f -divergence, we have

ηf (PY |X) ≤ ηTV(PY |X). (8)

For the opposite direction, lower bounds on ηf typically involves ηχ2 , the contraction coefficient
of the χ2-divergence. It is well-known, e.g. Sarmanov [Sar58], that ηχ2(PY |X , PX) is the squared
second largest eigenvalue of the conditional expectation operator, which in turn equals the maximal
correlation coefficient of the joint distribution PXY :

S(X;Y ) , sup
f,g

ρ(f(X), g(Y )) =
√

ηχ2(PY |X , PX) , (9)

where ρ(·, ·) denotes the correlation coefficient and the supremum is over real-valued functions f, g
such that f(X) and g(Y ) are square integrable.

The relationship between ηKL and ηχ2 on finite alphabets has been systematically studied by
Ahlswede and Gács [AG76]. In particular, [AG76] proved

ηχ2(PY |X , PX) ≤ ηKL(PY |X , PX), (10)

and noticed that the inequality is frequently strict.4 Furthermore, for finite alphabets, the following
equivalence is demonstrated in [AG76]:

ηχ2(PX , PY |X) < 1 ⇐⇒ ηKL(PX , PY |X) < 1 (11)

⇐⇒ graph {(x, y) : PX(x) > 0, PY |X(y|x) > 0} is connected. (12)

As a criterion for ηf (PY |X , PX ) < 1, this is an improvement of (8) only for channels with ηTV(PY |X) =
1. The lower bound (10) can in fact be considerably generalized:

4See [AG76, Theorem 9] and [AGKN13] for examples.
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Theorem 2. Let f be twice continuously differentiable on (0,∞) with f ′′(1) > 0. Then for any
PX that is not a point mass,

ηχ2(PY |X , PX) ≤ ηf (PY |X , PX) , (13)

and
ηχ2(PY |X) ≤ ηf (PY |X) . (14)

See Appendix A.1 for a proof of (13) for the general case, which yields (14) by taking suprema
over PX on both sides. Note that (14) (resp. (13)) have been proved in [CKZ98, Proposition II.6.15]
for the general alphabet (resp. in [Rag14, Theorem 3.3] for finite alphabets).

Moreover, (14) in fact holds with equality for all nonlinear and operator convex f , e.g., for KL
divergence and for squared Hellinger distance; see [CRS94, Theorem 1] and [CKZ98, Proposition
II.6.13 and Corollary II.6.16]. Therefore, we have:

Theorem 3.

ηχ2(PY |X) = ηKL(PY |X) . (15)

See Appendix A.1 for a self-contained proof. This result was first obtained in [AG76] using
different methods for discrete space. Rather naturally, we also have [CKZ98, Proposition II.4.12]:

ηf (PY |X) = 1 ⇐⇒ ηTV(PY |X) = 1

for any non-linear f .
As an illustrating example, for BSC(δ) defined in (4), we have cf. [AG76]

ηχ2 = ηKL = (1− 2δ)2 < ηTV = |1− 2δ|. (16)

Appendix B present general results on the contraction coefficients for binary-input arbitrary-output
channels, which can be bounded using Hellinger distance within a factor of two.

We next discuss the the fixed-input contraction coefficient ηKL(PY |X , Q). Unfortunately, there
is no simple reduction to the χ2-case as in (15). Besides the lower bound (10), there is a variety
of upper bounds relating ηKL and ηχ2 . We quote [MZ15, Theorem 11], who show for finite input-
alphabet case:

ηKL(PY |X , Q) ≤ 1

minxQ(x)
ηχ2(PY |X , Q) .

Another bound (which also holds for all ηf with operator-convex f) is in [Rag14, Theorem 3.6]:

ηKL(PY |X , Q) ≤ max

(

ηχ2(PY |X , Q), sup
0<β<1

ηLCβ
(PY |X , Q)

)

,

where ηLCβ
denotes contraction coefficient of an f -divergence LCβ(P‖Q) = ββ̄

∫ (P−Q)2

βP+β̄Q
with β ∈

(0, 1) and β̄ = 1− β (see also Appendix B).
We also note in passing that SDPIs are intimately related to hypercontractivity and maximal

correlation, as discovered by Ahlswede and Gács [AG76] and recently improved by Anantharam et
al. [AGKN13] and Nair [Nai14]. Indeed, the main result of [AG76] characterizes ηKL(PY |X , PX) as
the maximal ratio of hyper-contractivity of the conditional expectation operator E[·|X].

The fixed-input contraction coefficient ηKL(Q) is closely related to the (modified) log-Sobolev
inequalities. Indeed, if ηKL(Q) < 1 whereQ is the invariant measure for the Markov kernel PY |X , i.e.,
PY |X ◦Q = Q, then any initial distribution P such that D(P‖Q) <∞ converges to Q exponentially
fast since

D(PnY |X ◦ P ||Q) ≤ ηnKL(PY |X , Q)D(P ||Q),

6



where the exponent ηKL(PY |X , Q) can in turn be estimated from log-Sobolev inequalities, e.g. [Led99].
When Q is not invariant, it was shown [DMLM03] that

1− α(Q) ≤ ηKL(PY |X , Q) ≤ 1− Cα(Q)

holds for some universal constant C, where α(Q) is a modified log-Sobolev (also known as 1-log-
Sobolev) constant:

α(Q) = inf
f 6=1,‖f‖2=1

E

[

f2(X) log f2(X)
f2(X′)

]

E[f2(X) log f2(X)]
, PXX′ = Q× (PX|Y ◦ PY |X).

For further connections between ηKL and log-Sobolev inequalities on finite alphabets see [Rag13,
Rag14].

There exist several other characterizations of ηKL, such as the following one in terms of the
contraction of mutual information (cf. [CK81, Exercise III.3.12, p. 350] for finite alphabet):

ηKL(PY |X) = sup
I(U ;Y )

I(U ;X)
, (17)

where the supremum is over all Markov chains U → X → Y with fixed PY |X (or equivalently, over
all joint distributions PXU ) such that I(U ;X) < ∞. This result is an immediate consequence of
the following input-dependent version (see Appendix A.3 for a proof in the general case; the finite
alphabet case has been shown in [AGKN13])

Theorem 4. For any PX that is not a point mass,

ηKL(PY |X , PX) = sup
I(U ;Y )

I(U ;X)
, (18)

where the supremum is taken over all Markov chains U → X → Y with fixed PXY = PX ◦ PY |X

such that 0 < I(U ;X) <∞.

Another characterization of ηKL, in view of (15) and (9), is

ηKL(PY |X) = sup ρ2(f(X), g(Y )) ,

where the supremum is over all PX and real-valued square-integrable f(X) and g(Y ).

2.2 Non-linear SDPI

How to quantify the information loss if ηKL = 1 for the channel of interest? In fact this situation
can arise in very basic settings, such as the additive-noise Gaussian channel under the moment
constraint on the input distributions (cf. [PW16, Theorem 9, Section 4.5]), where the mutual
information does not contract linearly as in (17), but can still contract non-linearly. In such cases,
establishing a strong-data processing inequality can be done by following the joint-range idea of
Harremoës and Vajda [HV11]. Namely, we aim to find (or bound) the best possible data-processing
function FI defined as follows.

Definition 1 (FI -curve). Fix PY |X and define

FI(t, PY |X) , sup
PUX

{

I(U ;Y ) : I(U ;X) ≤ t, PUXY = PUXPY |X

}

. (19)
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Equivalently, the supremum is taken over all joint distributions PUXY with a given conditional
PY |X and satisfying U → X → Y . The upper concave envelope of FI is denoted by F cI :

F cI (t, PY |X) , inf{f(t) : ∀t′ ≥ 0 FI(t
′, PY |X) ≤ f(t′), f–concave} .

Equivalently, we have

F cI (t, PY |X) = sup
PV UX

{

I(U ;Y |V ) : I(U ;X|V ) ≤ t, PV UXY = PV UXPY |X

}

, (20)

where I(A;B|C) , I(A,C;B)− I(C;B) is the conditional mutual information, and averaging over
V serves the role of concavification (so that V can be taken binary). Whenever it does not lead to
confusion we will write FY |X(t) instead of FI(t, PY |X).

The operational significance of the FI -curve is that it gives the optimal input-independent strong
data processing inequality:

I(U ;Y ) ≤ FI(I(U ;X)),

which generalizes (17) since F ′
I(0) = ηKL(PY |X) and t 7→ 1

tFI(t) is decreasing (see, e.g., [CPW15,
Section I]). See [CPW15] for bounds and expressions for BSC and Gaussian channels.

Frequently it is more convenient to work with the concavified version F cI as it allows for some
natural extension of the results about contraction coefficients. Proposition 18 shows that FI may
not be concave.

2.3 Some applications: classical and new

The main example of a strong data-processing inequality (SDPI) was discovered by Ahlswede and
Gács [AG76]. They have shown, using the characterization (11), that whenever PY |X is a discrete
memoryless channel that does not admit zero-error communication, we have ηKL(PY |X) ≤ η < 1
and

I(W ;Y ) ≤ ηI(W ;X) (21)

for all Markov chains W → X → Y .
SDPIs have been popular for establishing lower (impossibility) bounds in various setups, in both

classical and more recent works. We mention only a few of these applications:

• By Dobrushin for showing non-existence of multiple phases in Ising models at high tempera-
tures [Dob70];

• By Erkip and Cover in portfolio theory [EC98];

• By Evans and Schulman in analysis of noise-resistant circuits [ES99];

• By Evans, Kenyon, Peres and Schulman in the analysis of inference on trees and percola-
tion [EKPS00];

• By Courtade in distributed data-compression [Cou12];

• By Duchi, Wainwright and Jordan in statistical limitations of differential privacy [DJW13];

• By the authors to quantify optimal communication and optimal control in line networks
[PW16];

• By Liu, Cuff and Verdú in key generation [LCV15];
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• By Xu and Raginsky in distributed estimation [XR15].

All of the applications above use SDPI (21) to prove negative (impossibility) statements. A
notable exception is the work of Boyen and Koller [BK98], who considered the basic problem of
computing the posterior-belief vector of a hidden Markov model: that is, given a Markov chain {Xj}
observed over a memoryless channel PY |X , one aims to recompute P

Xj |Y
j
−∞

as each new observation

Yj arrives. The problem arises when X is of large dimension and then for practicality one is
constrained to approximate (quantize) the posterior. However, due to the recursive nature of belief
computations, the cumulative effect of these approximations may become overwhelming. Boyen
and Koller [BK98] proposed to use the SDPI similar to (21) with η < 1 for the Markov chain {Xj}
and show that this cumulative effect stays bounded since

∑

ηn < ∞. Similar considerations also
enable one to provide provable guarantees for simulation of inter-dependent stochastic processes.

3 Contraction of mutual information in networks

We start by defining a Bayesian network (also known as a directed graphical model). Let G be a
finite directed acyclic graph with set of vertices {Yv : v ∈ V} denoting random variables taking
values in a fixed finite alphabet.5 We assume that each vertex Yv is associated with a conditional
distribution PYv|Ypa(v) where pa(v) denotes parents of v, with the exception of one special “source”

node X that has no inbound edges (there may be other nodes without inbound edges, but those
have to have their marginals specified). Notice that if V ⊂ V is an arbitrary set of nodes we can
progressively chain together all the random transformations and unequivocally compute PV |X (here
and below we use V and YV = {Yv : v ∈ V } interchangeably). We assume that vertices in V are
topologically sorted so that v1 > v2 implies there is no path from v1 to v2. Associated to each node
we also define

ηv , ηKL(PYv |Ypa(v)) .

See the excellent book of Lauritzen [Lau96] for a thorough introduction to a graphical model
language of specifying conditional independencies.

The following result can be distilled from [ES99]:

Theorem 5. Let W ∈ V and V ⊂ V such that W > V . Then

ηKL(PV,W |X) ≤ ηW · ηKL(PV,pa(W )|X) + (1− ηW ) · ηKL(PV |X) . (22)

Furthermore, let perc(V ) denote the probability that there is a path from X to V 6 in the graph if
each node v is removed independently with probability 1− ηv (site percolation). Then, we have for
every V ⊂ V

ηKL(PV |X) ≤ perc(V ) . (23)

In particular, if ηv < 1 for all v ∈ V then ηKL(PV |X) < 1.

Proof. Consider an arbitrary random variable U such that

U → X → (V,W ) .

5At the expense of technical details, the alphabet can be replaced with any countably-generated (e.g. Polish)
measurable space. For clarity of presentation we focus here on finite alphabets.

6More formally, perc(V ) equals probability that there exists a sequence of nodes v1, . . . , vn with v1 = X, vn ∈ V
satisfying two conditions: 1) for each i ∈ [n − 1] the pair (vi, vi+1) is a directed edge in G; and 2) each vi is not
removed.

9



Let A = pa(W ) \ V . Without loss of generality we may assume A does not contain X: indeed, if
A includes X then we can introduce an artificial node X ′ such that X ′ = X and include X ′ into A
instead of X. Relevant conditional independencies are encoded in the following graph:

U X V

A W

From the characterization (17) it is sufficient to show

I(U ;V,W ) ≤ (1− ηW )I(U ;V ) + ηW I(U ;V,A) . (24)

Denote B = V \pa(W ) and C = V ∩ pa(W ). Then pa(W ) = (A,C) and V = (B,C). To verify (24)
notice that by assumption we have

U → X → (V,A) → W .

Therefore conditioned on V we have the Markov chain

U → X → A→W |V

and the channel A→W is a restriction of the original PW |pa(W ) to a subset of the inputs. Indeed,
PW |A,V = PW |pa(W ),B = PW |pa(W ) by the assumption of the graphical model. Thus, for every
realization v = (b, c) of V , we have PW |A=a,V=v = PW |A=a,C=c and therefore

I(U ;W |V = v) ≤ η(PW |A,C=c)I(U ;A|V = v) ≤ η(PW |A,C)I(U ;A|V = v), (25)

where the last inequality uses the following property of the contraction coefficient which easily
follows from either (6) or (17):

sup
c
η(PW |A,C=c) ≤ η(PW |A,C). (26)

Averaging both sides of (25) over v ∼ PV and using the definition ηW = η(PW |pa(W )) = η(PW |A,C),
we have

I(U ;W |V ) ≤ ηW I(U ;A|V ) . (27)

Adding I(U ;V ) to both sides yields (24).
We now move to proving the percolation bound (23). First, notice that if a vertex W satisfies

W > V , then letting {∃π : X → V } be the event that there exists a directed path from X to (any
element of) the set V under the site percolation model, we notice that {W removed} is independent
from {∃π : X → V } and {∃π : X → V ∪ pa(W )}. Thus we have

perc(V ∪ {W}) , P[∃π : X → V ∪ {W}]
= P[∃π : X → V ∪ {W},W removed] + P[∃π : X → V ∪ {W},W kept]

= P[∃π : X → V,W removed] + P[∃π : X → V ∪ pa(W ),W kept]

= P[∃π : X → V ](1− ηW ) + ηWP[∃π : X → V ∪ pa(W )]

= (1− ηW )perc(V ) + ηWperc(V ∪ pa(W )) .

That is, the set-function perc(·) satisfies the recursion given by the right-hand side of (22). Now
notice that (23) holds trivially for V = {X}, since both sides are equal to 1. Then, by induction
on the maximal element of V and applying (22) we get that (23) holds for all V .

10



Theorem 5 allows us to estimate contraction coefficients in arbitrary (finite) networks by peeling
off last nodes one by one. Next we derive a few corollaries:

Corollary 6. Consider a fixed (single-letter) channel PY |X and assume that it is used repeatedly
and with perfect feedback to send information from W to (Y1, . . . , Yn). That is, we have for some
encoder functions fj

PY n|W (yn|w) =
n
∏

j=1

PY |X(yj |fj(w, yj−1)),

which corresponds to the graphical model:

W //
66 99Y1 //

))
Y2 // Y3 · · ·

Then
ηKL(PY n|W ) ≤ 1− (1− ηKL(PY |X))

n < n · ηKL(PY |X)

Proof. Apply Theorem 5 n times.

Let us call a path π = (X, · · · , v) with v ∈ V to be shortcut-free from X to V , denoted X
sf→ V ,

if there does not exist another path π′ from X to any node in V such that π′ is a subset of π. (In
particular v necessarily is the first node in V that π visits.) Also for every path π = (X, v1, . . . , vm)
we define

ηπ ,
m
∏

j=1

ηvj .

Corollary 7. For any subset V we have

ηKL(PV |X) ≤
∑

π:X
sf
→V

ηπ . (28)

In particular, we have the estimate of Evans-Schulman [ES99]:

ηKL(PV |X) ≤
∑

π:X→V

ηπ . (29)

Proof. Both results are simple consequence of union-bounding the right-hand side of (23). But for
completeness, we give an explicit proof. First, notice the following two self-evident observations:

1. If A and B are disjoint sets of nodes, then

∑

π:X
sf
→A∪B

ηπ =
∑

π:X
sf
→A, avoid B

ηπ +
∑

π:X
sf
→B, avoid A

ηπ. (30)

2. Let π : X → V and π1 be π without the last node, then

π : X
sf→ V ⇐⇒ π1 : X

sf→ {pa(V ) \ V }. (31)

11



Now represent V = (V ′,W ) with W > V ′, denote P = pa(W ) \ V and assume (by induction)
that

ηKL(PV ′|X) ≤
∑

π:X
sf
→V

ηπ (32)

ηKL(PV ′,P |X) ≤
∑

π:X
sf
→{V ′,P}

ηπ . (33)

By (30) and (31) we have

∑

π:X
sf
→V

ηπ =
∑

π:X
sf
→V ′

ηπ +
∑

π:X
sf
→W, avoid V ′

ηπ (34)

=
∑

π:X
sf
→V ′

ηπ + ηW
∑

π:X
sf
→P, avoid V ′

ηπ (35)

Then by Theorem 5 and induction hypotheses (32)-(33) we get

ηKL(PV |X) ≤ ηW
∑

π:X
sf
→{V ′,P}

ηπ + (1− ηW )
∑

π:X
sf
→V ′

ηπ (36)

= ηW







∑

π:X
sf
→P, avoid V ′

ηπ −
∑

π:X
sf
→V ′, pass P

ηπ






+

∑

π:X
sf
→V ′

ηπ (37)

≤ ηW
∑

π:X
sf
→P, avoid V ′

ηπ +
∑

π:X
sf
→V ′

ηπ (38)

where in (37) we applied (30) and split the summation over π : X
sf→ V ′ into paths that avoid and

pass nodes in P . Comparing (35) and (38) the conclusion follows.

Both estimates (28) and (29) are compared to that of Theorem 5 in Table 1 in various graphical
models.

Evaluation for the BSC We consider the contraction coefficient for the n-letter binary sym-
metric channel BSC(δ)n defined in (4). By (16), for n = 1 we have ηKL = (1 − 2δ)2. Then by
Corollary 6 we have for arbitrary n:

ηKL ≤ 1− (4δ(1 − δ))n . (39)

A simple lower bound for ηKL can be obtained by considering (17) and taking U ∼ Bern(1/2)
and U → X being an n-letter repetition code, namely, X = (U, . . . , U). Let7 ǫ = P[|Z| ≥ n/2] be
the probability of error for the maximal likelihood decoding of U based on Y , which satisfies the
Chernoff bound ǫ ≤ (4δ(1 − δ))n/2. We have from Jensen’s inequality

I(U ;Y ) = H(U)−H(U |Y ) ≥ 1− h(ǫ) = 1− (4δ(1 − δ))
n
2
+O(logn) ,

7For elements of Fn
2 , | · | is the Hamming weight.
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Name Graph Theorem 5
Estimate (28) via
shortcut-free paths

Original Evans-Schulman
estimate (29)

Markov chain 1 X → Y1 → B → Y2 η η η + η3

Markov chain 2
A

��
X

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥

// B // Y

η2 η2 η2 + η3

Parallel channels
Y1

X

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦

// Y2

2η − η2 2η 2η

Parallel channels
with feedback

Y1

��
X

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦

// Y2

2η − η2 2η 3η

Table 1: Comparing bounds on the contraction coefficient ηKL(PY |X). For simplicity, we assume
that the ηKL coefficients of all constituent kernels are bounded from above by η.

where we used the fact that the binary entropy h(x) = −x log x−(1−x) log(1−x) = −x log x+O(x2)
as x→ 0. Consequently, we get

ηKL ≥ 1− (4δ(1 − δ))
n
2
+O(logn) . (40)

Comparing (39) and (40) we see that ηKL → 1 exponentially fast. To get the exact exponent we
need to replace (39) by the following improvement:

ηKL ≤ ηTV ≤ 1− (4δ(1 − δ))
n
2
+O(logn) ,

where the first inequality is from (8) and the second is from (48) below. Thus, all in all we have
for BSC(δ)n as n→ ∞

ηKL, ηTV = 1− (4δ(1 − δ))
n
2
+O(logn) . (41)

4 Dobrushin’s coefficients in networks

The proof of Theorem 5 relies on the characterization (17) of ηKL via mutual information, which sat-
isfies the chain rule. Neither of these two properties is enjoyed by the total variation. Nevertheless,
the following is an exact counterpart of Theorem 5 for total variation.

Theorem 8. Under the same assumption of Theorem 5,

ηTV(PV,W |X) ≤ (1− ηW )ηTV(PV |X) + ηW ηTV(Ppa(W ),V |X) , (42)

where ηW = ηTV(PW |pa(W )). Furthermore, let perc(V ) denote the probability that there is a path
from X to V in the graph if each node v is removed independently with probability 1 − ηv (site
percolation). Then, we have for every V ⊂ V

ηTV(PV |X) ≤ perc(V ) . (43)

In particular, if ηv < 1 for all v ∈ V , then ηTV(PV |X) < 1.

13



Proof. Fix x, x̃ and denote by P (resp. Q) the distribution conditioned on X = x (resp. x′). Denote
Z = pa(W ). The goal is to show

dTV(PV W , QVW ) ≤ (1− ηW )dTV(PV , QV ) + ηW dTV(PZV , QZV ) . (44)

which, by the arbitrariness of x, x′ and in view of the characterization of η in (7), yields the desired
(42). By Lemma 22 in Appendix C, there exists a coupling of PZV and QZV , denoted by πZV Z′V ′ ,
such that

π[(Z, V ) 6= (Z ′, V ′)] = dTV(PZV , QZV ) ,

π[V 6= V ′] = dTV(PV , QV )

simultaneously (that is, this coupling is jointly optimal for the total variation of the joint distribu-
tions and one pair of marginals).

Conditioned on Z = z and Z ′ = z′ and independently of V V ′, letWW ′ be distributed according
to a maximal coupling of the conditional laws PW |Z=z and PW |Z=z′ (recall that QW |Z = PW |Z =
PW |pa(W ) by definition). This defines a joint distribution πZVWZ′V ′W ′ , under which we have the
Markov chain V V ′ → ZZ ′ →WW ′. Then

π[W 6=W ′|ZV Z ′V ′] = π[W 6=W ′|ZZ ′] = dTV(PW |pa(W )=Z , PW |pa(W )=Z′) ≤ ηW1{Z 6=Z′}.

Therefore we have

π[W 6=W ′|V = V ′] = E[π[W 6=W ′|ZZ ′]|V = V ′]

≤ ηWπ[Z 6= Z ′|V = V ′].

Multiplying both sides by π[V = V ′] and then adding π[V 6= V ′], we obtain

π[(W,V ) 6= (W ′, V ′)] ≤ (1− ηW )π[V 6= V ′] + ηWπ[(Z, V ) 6= (Z ′, V ′)]

= (1− ηW )dTV(PV , QV ) + ηW dTV(PZV , QZV ),

where the LHS is lower bounded by dTV(PWV , QWV ) and the equality is due to the choice of π.
This yields the desired (44), completing the proof of (42). The rest of the proof is done as in
Theorem 5.

As a consequence of Theorem 8, both Corollary 6 and 7 extend to total variation verbatim with
ηKL replaced by ηTV:

Corollary 9. In the setting of Corollary 6 we have

ηTV(PY n|W ) ≤ 1− (1− ηTV(PY |X))
n < n · ηKL(PY |X) . (45)

Corollary 10. In the setting of Corollary 7 we have

ηTV(PV |X) ≤
∑

π:X
sf
→V

ηπTV ≤
∑

π:X→V

ηπTV ,

where for any path π = (X, v1, . . . , vm) we denoted ηπTV ,
m
∏

j=1
ηTV(Pvj |pa(vj)).
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Evaluation for the BSC Consider the n-letter BSC defined in (4), where Y = X + Z with
Z ∼ Bern(δ)n and |Z| ∼ Binom(n, δ). By Dobrushin’s characterization (7), we have

ηTV = max
x,x′∈Fn

2

dTV(PY |X=x, PY |X=x′)

= dTV(Bern(δ)
n,Bern(1− δ)n)

= dTV(Binom(n, δ),Binom(n, 1− δ)) (46)

= 1− 2P[|Z| > n/2]− P[|Z| = n/2] (47)

= 1− (4δ(1 − δ))
n
2
+O(logn) , (48)

where (46) follows from the sufficiency of |Z| for testing the two distributions, (47) follows from
dTV(P,Q) = 1−

∫

P ∧Q and (48) follows from standard binomial tail estimates (see, e.g., [Ash65,
Lemma 4.7.2]). The above sharp estimate should be compared to the bound obtained by applying
Corollary 9:

ηTV ≤ 1− (2δ)n . (49)

Although (49) correctly predicts the exponential convergence of ηTV → 1 whenever δ < 1
2 , the

exponent estimated is not optimal.

5 Bounding FI-curves in networks

In this section our goal is to produce upper bound bounds on the FI -curve of a Bayesian network
FV |X in terms of those of the constituent channels. For any vertex v of the network, denote the
FI -curve of the channel Pv|pa(v) by Fv|pa(v), abbreviated by Fv , and the concavified version by F cv .

Theorem 11. In the setting of Theorem 5,

FV,W |X ≤ FV |X + F cW ◦ (Fpa(W ),V |X − FV |X) , (50)

F cV,W |X ≤ F cV |X + F cW ◦ (F cpa(W ),V |X − F cV |X) . (51)

Furthermore, the right-hand side of (51) is non-negative, concave, nondecreasing and upper bounded
by the identity mapping id.

Remark 1. The FI -curve estimate in Theorem 11 implies that of contraction coefficients of Theo-
rem 5. To see this, note that since Fpa(W ),V |X ≤ id, the following is a relaxation of (50):

id− FV,W |X ≥ (id− FW ) ◦ (id− FV |X). (52)

Consequently, if each channel in the network satisfies an SDPI, then the end-to-end SDPI is also
satisfied. That is, if each vertex has a non-trivial FI -curve, i.e., Fv < id for all v ∈ V, then the
channel X → V also has a strict contractive property, i.e., FV |X < id.

Furthermore, since F cW (t) ≤ ηW t, noting the fact that F ′
V |X(0) = ηKL(PV |X) and taking the

derivative on both sides of (50) we see that the latter implies (22).

Proof. We first show that for any channel PY |X , its FY |X-curve satisfies that t 7→ t − FY |X(t) is

nondecreasing. Indeed, it is known, cf. [CPW15, Section I], that t 7→ FY |X(t)

t is nonincreasing. Thus,
for t1 < t2 we have

t2 − FY |X(t2) ≥ t2 −
t2
t1
FY |X(t1)

=
t2
t1

(

t1 − FY |X(t1)
)

≥ t1 − FY |X(t1) ,
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where the last step follows from the fact that FY |X(t) ≤ t. Similarly, for any concave function

Φ : R+ → R+ s.t. Φ(0) = 0 we have Φ(t2)
t2

≤ Φ(t1)
t1

. Therefore, the argument above implies
t 7→ t− Φ(t) is nondecreasing and, in particular, so is t 7→ t− F cW (t).

Let PUX be such that I(U ;X) ≤ t and I(U ;W,V ) = FV,W |X(t). By the same argument that
leads to (27) we obtain

I(U ;W |V = v0) ≤ FW (I(U ;A|V = v0))

≤ F cW (I(U ;A|V = v0)) .

Averaging over v0 ∼ PV and applying Jensen’s inequality we get

I(U ;W,V ) ≤ F cW (I(U ; pa(W ), V )− I(U ;V )) + I(U ;V ).

Therefore,

FV,W |X(t) ≤ F cW (I(U ; pa(W ), V )− I(U ;V )) + I(U ;V )

≤ F cW (Fpa(W ),V |X(t)− I(U ;V )) + I(U ;V ) (53)

= Fpa(W ),V |X(t)− (id− F cW )(Fpa(W ),V |X(t)− I(U ;V ))

≤ Fpa(W ),V |X(t)− (id− F cW )(Fpa(W ),V |X(t)− FV |X(t)) (54)

= FV |X(t) + F cW (Fpa(W ),V |X(t)− FV |X(t))

≤ F cV |X(t) + F cW (F cpa(W ),V |X(t)− F cV |X(t)) (55)

where (53) and (54) follow from the facts that t 7→ FW (t) and t 7→ t−FW (t) are both nondecreasing,
and (55) follows from that a+ F cW (b− a) is nondecreasing in both a and b.

Finally, we need to show that the right-hand side of (55) is nondecreasing and concave (this
automatically implies that (55) is an upper-bound to the concavification F cV |X). To that end, denote

tλ = λt1 + (1− λ)t0, fλ = F cV |X(tλ), gλ = F cpa(W ),V |X(tλ) and notice the chain

fλ + F cW (gλ − fλ) ≥ λf1 + (1− λ)f0 + F cW (λ(g1 − f1) + (1− λ)(g0 − f0)) (56)

≥ λ(f1 + F cW (g1 − f1)) + (1− λ)(f0 + F cW (g0 − f0)) (57)

where (56) is from concavity of F cV |X , F
c
pa(W ),V |X and monotonicity of (a, b) 7→ a + F cW (b − a),

and (57) is from concavity of F cW .

Corollary 12. In the setting of Corollary 6 we have

FY n|W (t) ≤ t− ψ(n)(t) ,

where ψ(1) = ψ, ψ(k+1) = ψ(k) ◦ ψ and ψ : R+ → R+ is a convex function such that

FY |X(t) ≤ t− ψ(t) .

Proof. The case of n = 1 follows from the assumption on ψ. The case of n > 1 is proved by induction,
with the induction step being an application of Theorem 11 with V = Y n−1 and W = Yn.

Generally, the bound of Corollary 12 cannot be improved in the vicinity of zero. As an example
where this is tight, consider a parallel erasure channel, whose FI -curve for t ≤ log q is computed in
Theorem 17 below.
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Evaluation for the BSC To ease the notation, all logarithms are with respect to base two in
this section. Let h(y) = y log 1

y + (1 − y) log 1
1−y denote the binary entropy function and h−1 :

[0, 1] → [0, 12 ] its functional inverse. Let p ∗ q , p(1 − q) + q(1 − p) for p, q ∈ [0, 1] denote binary
convolution and define

ψ(t) , t− 1 + h(δ ∗ h−1(max(1− t, 0))) (58)

which is convex and increasing in t on R+. For n = 1 it was shown in [CPW15, Section 2] that the
FI -curve of BSC(δ) is given by

FI(t,BSC(δ)) = F cI (t,BSC(δ)) = t− ψ(t) .

Applying Corollary 12 we obtain the following bound on the FI -curve of BSC of blocklength n
(even with feedback):

Proposition 13. Let Z1, . . . , Zn
i.i.d.∼ Bern(δ) be independent of U . For any (encoder) functions

fj, j = 1, . . . , n, define
Xj = fj(U, Y

j−1), Yj = Xj + Zj .

Then
I(U ;Y n) ≤ I(U ;Xn)− ψ(n)(I(U ;Xn)) , (59)

where ψ(1) = ψ, ψ(k+1) = ψ(k) ◦ ψ and ψ is defined in (58).

Remark 2. The estimate (59) was first shown by A. Samorodnitsky (private communication) under
extra technical constraints on the joint distribution of (Xn,W ) and in the absence of feedback. We
have then observed that Evans-Schulman type of technique yields (59) generally.

Since ψ(t) = 4δ(1 − δ)t+ o(t) as t→ 0 we get

F cI (t,BSC(δ)
n) ≤ t− t(4δ(1 − δ))n+o(n)

as n→ ∞ for any fixed t. A simple lower bound, for comparison purposes, can be inferred from (40)
after noticing that there we have I(U ;X) = 1, and so

F cI (1,BSC(δ)
n) ≥ 1− (4δ(1 − δ))

n
2
+O(logn) ,

This shows that the bound of Proposition 13 is order-optimal: F (t) → t exponentially fast. Exact
exponent is given by (41).

As another point of comparison, we note the following. Existence of capacity-achieving error-
correcting codes then easily implies

lim
n→∞

1

n
F cI (nθ,BSC(δ)

n) = min(θ,C) ,

where C = 1− h(δ) is the Shannon capacity of BSC(δ). Since for t > 1 we have ψ(t) = t− C one
can show that

lim
n→∞

1

n
ψ(n)(nθ) = |θ − C|+ ,

and therefore we conclude that in this sense the bound (59) is asymptotically tight.

17



6 SDPI via comparison to erasure channels

So far our leading example has been the binary symmetric channel (4). We now consider another
important example:

Example 1. For any set X , the erasure channel on X with erasure probability δ is a random
transformation from X to X ∪ {?}, where ? /∈ X defined as

PE|X(e|x) =
{

δ, e =?

1− δ, e = x
.

For X = [q], we call it the q-ary erasure channel denoted by ECq(δ). In the binary case, we denote
the binary erasure channel by BEC(δ) , EC2(δ). A simple calculation shows that for every PUX
we have

I(U ;E) = (1− δ)I(U ;X) (60)

and therefore for ECq(δ) we have ηKL(PE|X) = 1− δ and FI(t) = min((1 − δ)t, log q).

Next we recall a standard information-theoretic ordering on channels, cf. [EGK11, Section 5.6]:

Definition 2. Given two channels with common input alphabet, PY |X and PY ′|X , we say that
PY ′|X is less noisy than PY |X , denoted by PY |X ≤l.n. PY ′|X if for all joint distributions PUX we
have

I(U ;Y ) ≤ I(U ;Y ′) . (61)

We also have an equivalent formulation in terms of divergence:

Proposition 14. PY |X ≤l.n. PY ′|X if and only if for all PX , QX we have

D(QY ‖PY ) ≤ D(QY ′‖PY ′) (62)

where PY , PY ′ , QY , QY ′ are the output distributions induced by PX , QX over PY |X and PY ′|X , re-
spectively.

See Appendix A.4 for the proof.8

The following result shows that the contraction coefficient of KL divergence can be equivalently
formulated as being less noisy than the corresponding erasure channel:9

Proposition 15. For an arbitrary channel PY |X we have

ηKL(PY |X) ≤ η ⇐⇒ PY |X ≤l.n. PE|X , (63)

where PE|X is the erasure channel on the same input alphabet and erasure probability 1− η.

Proof. The definition of ηKL(PY |X) guarantees for every PUX

I(U ;Y ) ≤ (1− δ)I(U ;X), (64)

where the right-hand side is precisely I(U ;E) by (60).

8It is tempting to put forward a fixed-PX version of the previous criterion (similar to Theorem 4). That would,
however, require some extra assumptions on PX . Indeed, knowing that I(W ;Y ) ≤ I(W ;Y ′) for all PW,X with a given
fixed PX tells us nothing about how distributions PY |X=x and PY ′|X=x compare outside the support of PX . (For
discrete channels and strictly positive PX , however, it is easy to argue that indeed (62) holds for all QX if and only
if (61) holds for all PU,X with a given marginal PX .)

9Note that another popular partial order for random transformations – that of stochastic degradation – may also
be related to contraction coefficients, see [Rag14, Remark 3.2].
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It turns out that the notion of less-noisiness tensorizes:

Proposition 16. If PY1|X1
≤l.n. PY ′

1 |X1
and PY2|X2

≤l.n. PY ′
2 |X2

then

PY1|X1
× PY2|X2

≤l.n. PY ′
1 |X1

× PY ′
2 |X2

In particular,
ηKL(PY |X) ≤ η =⇒ PnY |X ≤l.n. P

n
E|X . (65)

where PE|X is the erasure channel on the same input alphabet and erasure probability 1− η.

Proof. Construct a relevant joint distribution U → X2 → (Y 2, Y ′2) and consider

I(U ;Y1, Y2) = I(U ;Y1) + I(U ;Y2|Y1) . (66)

Now since U ⊥⊥ Y2|Y1 we have by PY2|X2
≤l.n. PY ′

2 |X2

I(U ;Y2|Y1) ≤ I(U ;Y ′
2 |Y1)

and putting this back into (66) we get

I(U ;Y1, Y2) ≤ I(U ;Y1) + I(U ;Y ′
2 |Y1) = I(U ;Y1, Y

′
2) .

Repeating the same argument, but conditioning on Y ′
2 we get

I(U ;Y1, Y2) ≤ I(U ;Y ′
1 , Y

′
2) ,

as required. The last claim of the proposition follows from Proposition 15.

Consequently, everything that has been said in this paper about ηKL(PY |X) can be restated in
terms of seeking to compare a given channel in the sense of the ≤l.n. order to an erasure channel.
It seems natural, then, to consider erasure channel in somewhat greater details.

6.1 FI-curve of erasure channels

Theorem 17. Consider the q-ary erasure channel of blocklength n and erasure probability δ. Its
FI-curve is bounded by

F cI (t,ECq(δ)
n) ≤ E[min(B log q, t)], B ∼ Binom(n, 1− δ) . (67)

The bound is tight in the following cases:

1. at t = k log q with integral k ≤ n if and only if an (n, k, n− k + 1)q MDS code exists10

2. for t ≤ log q and t ≥ (n− 1) log q;

3. for all t when n = 1, 2, 3.

Remark 3. Introducing B′ ∼ Binom(n − 1, 1 − δ) and using the identity E[B1{B≤a}] = n(1 −
δ)P[B′ ≤ a− 1], we can express the right-hand side of (67) in terms of binomial CDFs:

E[min(B,x)] = x+ P[B′ ≤ ⌊x⌋ − 1](1 − δ)(n − x)− xδP[B′ ≤ ⌊x⌋]

This implies that the upper bound (67) is piecewise-linear, increasing and concave.
10We remind that a subset C of [q]n is called an (n, k, d)q code if |C| = qk and Hamming distance between any two

points from C is at least d. A code is called maximum-distance separable (MDS) if d = n− k + 1. This is equivalent
to the property that projection of C onto any subset of k coordinates is bijective.

19



Proof. Consider arbitrary U → Xn → En with PEn|Xn = ECq(δ)
n. Let S be random subset of [n]

which includes each i ∈ [n] independently with probability 1− δ. A direct computation, shows that

I(U ;En) = I(U ;XS , S) =
∑

σ⊂[n]

P[S = σ]I(U ;Xσ) (68)

≤
∑

σ⊂[n]

P[S = σ]min(|σ| log q, t) = E[min(B log q, t)] . (69)

From here (67) follows by taking supremum over PU,Xn .
Claims about tightness follow by constructing U = Xn and taking Xn to be the output of the

MDS code (so that H(Xσ) = min(|σ| log q, t)) and invoking the concavity of FI(t). One also notes
that [n, 1, n]q (repetition code) and [n, n−1, 2] (single parity check code) show tightness at t = log q
and t = (n− 1) log q.

Finally, we prove that when t = k log q and the bound (67) is tight then a (possibly non-linear)
(n, k, n− k+1)q MDS code must exist. First, notice that the right-hand side of (67) is a piecewise-
linear and concave function. Thus the bound being tight for FI(t) (that is a concave-envelope of
FI(t)) should also be tight as a bound for FI(t). Consequently, there must exist U → Xn → En

such that the bound (69) is tight with t = I(U ;Xn). This implies that we should have

I(U ;Xσ) = min(σ log q, t) (70)

for all σ ⊂ [n]. In particular, we have I(U ;Xi) = log q and thus H(Xi|U) = 0 and without loss
of generality we may assume that U = Xn. Again from (70) we have that H(Xn) = H(Xk) =
k log q. This implies that Xn is a uniform distribution on a set of size qk and projection on any k
coordinates is injective. This is exactly the characterization of an MDS code (possibly non-linear)
with parameters (n, k, n− k + 1)q.

We also formulate some interesting observations for binary erasure channels:

Proposition 18. For BEC(n, δ) we have:

1. For n ≥ 3 we have that FI(t) is not concave. More exactly, FI(t) < F cI (t) for t ∈ (1, 2).

2. For arbitrary n and t ≤ log 2 or t ≥ (n − 1) log 2 we have FI(t) = F cI (t) = E[min(B log 2, t)]
with B defined in in (67).

3. For t = 2, n = 4 the bound (67) is not tight and F cI (t) < E[min(B log 2, t)].

Proof. First note that in Definition 1 of FI(t) the supremum is a maximum and and U can be
restricted to alphabet of size |X | + 2. So in particular, FI(t) = f if and only if there exists
I(U ;Y n) = f , I(U ;Xn) ≤ t.

Now consider t ∈ (1, 2) and n = 3 and suppose (U,Xn) achieves the bound. For the bound to
be tight we must have I(U ;X3) = t. For the bound to be tight we must have I(U ;Xi) = 1 for all
i, that is H(Xi) = 1, H(Xi|U) = 0 and H(Xn|U) = 0. Consequently, without loss of generality we
may take U = Xn. So for the bound to be tight we need to find a distribution s.t.

H(X3) = H(X1,X2) = H(X2,X3) = H(X1,X3) = t,H(X1) = H(X2) = H(X3) = 1. (71)

It is straightforward to verify that this set of entropies satisfies Shannon inequalities (i.e. submod-
ularity of entropy checks), so the main result of [ZY97] shows that there does exist a sequence
of triples X3 (over large alphabets) which attains this point. We will show, however, that this
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is impossible for binary-valued random variables. First, notice that the set of achievable entropy
vectors by binary triplets is a closed subset of R7

+ (as a continuous image of a compact set). Thus,
it is sufficient to show that (71) itself is not achievable.

Second, note that for any pair A,B of binary random variables with uniform marginals we must
have

A = B + Z, B ⊥⊥ Z ∼ Bern(p) .

Without loss of generality, assume that X2 = X1 + Z where H(Z) = t − 1 > 0. Moreover,
H(X3|X1,X2) = 0 implies that X3 = f(X1,X2) for some function f .

Given X1 we have H(X3|X1 = x) = H(X3|X2 = x) = t− 1 > 0. So the function X1 7→ f(X1, x)
should not be constant for either choice of x ∈ {0, 1} and the same holds for X2 7→ f(x,X2).
Eliminating cases leaves us with f = X1 +X2 or f = X1 +X2 + 1. But then X3 = X1 +X2 = Z
and H(X3) < 1, which is a contradiction.

Since by Theorem 17 we know that the bound (67) is tight for FI(t) we conclude that

FI(t) < F cI (t), ∀t ∈ (1, 2) .

To show the second claim consider U = Xn and X1 = · · · = Xn ∼ Bern(p) for t ≤ log 2. For
t ≥ (n− 1) log 2 take Xn−1 to be iid Bern(12 ) and

Xn = X1 + · · ·+Xn−1 + Z ,

where Z ∼ Bern(p). This yields I(U ;Xσ) = H(Xσ) = |σ| log 2 for every subset σ ⊂ [n] of size up
to n− 1. Consequently, the bound (67) must be tight.

Finally, third claim follows from Theorem 17 and the fact that there is no [4, 2, 3] binary code,
e.g. [MS77, Corollary 7, Chapter 11].

Putting together (65) and (67) we get the following upper bound on the concavified FI -curve
of n-letter product channels in terms of the contraction coefficient of the single-letter channel.

Corollary 19. If ηKL(PY |X) = η, then

F cI (t, P
n
Y |X) ≤ E[min(B log q, t)], B ∼ Binom(n, 1− δ) .

This gives an alternative proof of Corollary 6 for the case of no feedback.

6.2 Samorodnitsky’s SDPI

So far, we have been concerned with bounding the “output” mutual information in terms of a
certain “input” one. However, frequently, one is interested in bounding some “output” information
given knowledge of several input ones. For example, for the parallel channel we have shown that

I(W ;Y n) ≤ (1− (1− ηKL(PY |X))
n)I(W ;Xn) .

But it turns out that a stronger bound can be given if we have finer knowledge about the joint
distribution of W and Xn.

The following bound can be distilled from [Sam15]:

Theorem 20 (Samorodnitsky). Consider the Bayesian network

U → Xn → Y n ,
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where PY n|Xn =
∏n
i=1 PYi|Xi

is a memoryless channel with ηi , ηKL(PYi|Xi
). Then we have

I(U ;Y n) ≤ I(U ;XS |S) = I(U ;XS , S) , (72)

where S ⊥⊥ (U,Xn, Y n) is a random subset of [n] generated by independently sampling each element
i with probability ηi. In particular, if ηi = η for all i, then

I(U ;Y n) ≤
∑

σ⊂[n]

η|σ|(1− η)n−|σ|I(U ;Xσ) (73)

Proof. Just put together characterization (63), tensorization property Proposition 16 to get I(U ;Y n) ≤
I(U ;En), where En is the output of the product of erasure channels with erasure probabilities 1−ηi.
Then the calculation (68) completes the proof.

Remark 4. Let us say that “total” information I(U ;Xn) is distributed among subsets of [n] as
given by the following numbers:

Ik ,

(

n

k

)−1
∑

T∈([n]
k )

I(U ;XT ) .

Then bound (73) says (replacing Binom(n, η) by its mean value ηn):

I(U ;Y n) . Iηn .

Informally: the only kind of information about U that has a chance to be inferred on the basis of
Y n is one that is contained in subsets of X of size at most ηn.

Remark 5. Another implication of the Theorem is a strengthening of the Mrs. Gerber’s Lemma.
Fix a single-letter channel PY |X and suppose that for some increasing convex function m(·) and all
random variables X we have

H(Y ) ≥ m(H(X)) .

Then, in the setting of the Theorem we have

H(Y n) ≥ m

(

1

ηn
H(XS |S)

)

. (74)

Note that by Han’s inequality (74) is strictly better than the simple consequence of the chain rule:
H(Y n) ≥ nm(H(Xn)/n). For the case of PY |X = BSC(δ) the bound (74) is a sharpening of the
Mrs. Gerber’s Lemma, and has been the focus of [Sam15], see also [Ord16]. To prove (74) let
Xn → En be EC(1− η). Then, by Theorem 20 applied to U = Xi, n = i− 1 we have

H(Xi|Y i−1) ≥ H(Xi|Ei−1) .

Thus, from the chain rule and convexity of m(·) we obtain

H(Y n) =
∑

i

H(Yi|Y i−1) ≥ nm

(

1

n

∑

i

H(Xi|Ei−1)

)

,

and the proof is completed by computing H(En) in two ways:

nh(η) +H(XS |S) = H(En)

=
∑

i

H(Ei|Ei−1) =
∑

i

h(η) + ηH(Xi|Ei−1) .
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Remark 6. Using Proposition 14 we may also state a divergence version of the Theorem: In the
setting of Theorem 20 for any pair of distributions PXn and QXn we have

D(PY n‖QY n) ≤ D(PXS |S‖QXS |S|PS) .

Similarly, we may extend the argument in the previous remark: If for a fixedQX , QY (not necessarily
related by PY |X) there exists an increasing concave function f such that for all PX and PY =
PY |X ◦ PX we have

D(PX‖QX) ≤ f(D(PY ‖QY )) ∀PX
then

D(PY n‖(QY )n) ≤ nf

(

1

ηn
D(PXS |S‖

∏

i∈S

QX |PS)
)

.
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A Contraction coefficients on general spaces

A.1 Proof of Theorem 2

We show that

ηf (PY |X , PX) = sup
QX

Df (QY ‖PY )
Df (QX‖PX)

≥ ηχ2(PY |X , PX) = sup
QX

χ2(QY ‖PY )
χ2(QX‖PX)

, (75)

where both suprema are over all QX such that the respective denominator is in (0,∞). With
the assumption that PX is not a point mass, namely, there exists a measurable set E such that
PX(E) ∈ (0, 1), it is clear that such QX always exists. For example, let QX = 1

2(PX + PX|X∈E),

where PX|X∈E(·) , PX(·∩E)
PX(E) . Then 1

2 ≤ dQX
dPX

≤ 1
2(1 +

1
PX(E)) and hence Df (QX‖PX) < ∞ since f

is continuous. Furthermore, QX 6= PX implies that Df (QX‖PX) 6= 0 [Csi67].
The proof follows that of [CIR+93, Theorem 5.4] using the local quadratic behavior of f -

divergence; however, in order to deal with general alphabets, additional approximation steps are
needed to ensure the likelihood ratio is bounded away from zero and infinity.

Fix QX such that χ2(QX‖PX) <∞. Let A = {x : dQX
dPX

(x) < a} where a > 0 is sufficiently large

such that QX(A) ≥ 1/2. Let Q′
X = QX|X∈A and Q′

Y = PY |X ◦Q′
X . Then

dQ′
Y

dPY
≤ a

QX(A) ≤ 2a. Let

Q′′
X = 1

aPX + (1− 1
a)Q

′
X and Q′′

Y = PY |X ◦Q′
X = 1

aPY + (1− 1
a)Q

′
Y . Then we have

1

a
≤ dQ′′

X

dPX
≤ 2a+

1

a
,

1

a
≤ dQ′′

Y

dPY
≤ 2a+

1

a
. (76)

Note that χ2(Q′
X‖PX ) = 1

Q(X∈A)EP [(
dQX
dPX

)21{X∈A}] − 1. By dominated convergence theorem,

χ2(Q′
X‖PX) → χ2(QX‖PX) as a → ∞. On the other hand, since Q′

Y → QY pointwise, the weak
lower-semicontinuity of χ2-divergence yields lim infa→∞ χ2(Q′

Y ‖PY ) ≥ χ2(QY ‖PY ). Furthermore,

using the simple fact that χ2(ǫP +(1−ǫ)Q‖P ) = (1−ǫ)2χ2(Q‖P ), we have χ2(Q′′
X‖PX)

χ2(Q′′
Y ‖PY ) =

χ2(Q′
X‖PX)

χ2(Q′
Y ‖PY ) .
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Therefore, to prove (75), it suffices to show for each fixed a, for any δ > 0, there exists P̃X such

that
Df (P̃X‖P̃Y )
Df (QX‖PX) ≥

χ2(Q′′
X‖PX)

χ2(Q′′
Y ‖PY )

− δ.

For 0 < ǫ < 1, let P̃X = ǭPX + ǫQ′′
X , which induces P̃Y = PY |X ◦ P̃X = ǭPY + ǫQ′′

Y . Then

Df (P̃X‖PX) = EPX
[f(1 + ǫ(

dQ′′
X

dPX
− 1))]. Recall from (76) that

dQ′′
X

dPX
∈ [ 1a ,

1
a + 2a]. Since f ′′ is

continuous and f ′′(1) = 1, by Taylor’s theorem and dominated convergence theorem, we have

Df (P̃X‖PX) = ǫ2

2 χ
2(Q′′

X‖PX )(1+ o(1)). Analogously, Df (P̃Y ‖PY ) = ǫ2

2 χ
2(Q′′

Y ‖PY )(1+ o(1)). This
completes the proof of ηf (PX) ≥ ηχ2(PX).

Remark 7. In the special case of KL divergence, we can circumvent the step of approximating
by bounded likelihood ratio: By [PW15, Lemma 4.2], since χ2(QY ‖PY ) ≤ χ2(QX‖PX) < ∞, we
have D(P̃X‖PX) = ǫ2χ2(QX‖PX)/2 + o(ǫ2) and D(P̃Y ‖PY ) = ǫ2χ2(QY ‖PY )/2 + o(ǫ2), as ǫ → 0.

Therefore χ2(QY ‖PY )
χ2(QX‖PX)

≤ limǫ→0
D(P̃Y ‖PY )

D(P̃X‖PX)
≤ ηKL(PX). Therefore ηKL(PX) ≥ ηχ2(PX)

A.2 Proof of Theorem 3

We prove
ηKL = ηχ2 . (77)

First of all, ηKL ≥ ηχ2 follows from Theorem 2. For the other direction we closely follow the
argument of [CRS94, Theorem 1]. Below we prove the following integral representation:

D(Q‖P ) =
∫ ∞

0
χ2(Q‖P t)dt, (78)

where P t , tQ+P
1+t . Then

D(QY ‖PY ) =
∫ ∞

0
χ2(QY ‖P tY )dt

≤
∫ ∞

0
ηχ2 · χ2(QX‖P tX)dt = ηχ2D(QX‖PX).

where we used P tY = PY |X ◦ P tX . It remains to check (78). Note that

− log x =

∫ ∞

0

1− x

(x+ t)(1 + t)
dt

Therefore

D(Q‖P ) =
∫ ∞

0

1

1 + t
EQ

[

dQ− dP

dP + tdQ

]

dt

Note that tEQ

[

dQ−dP
dP+tdQ

]

= −EP

[

dQ−dP
dP+tdQ

]

. Therefore EQ

[

dQ−dP
dP+tdQ

]

= 1
1+t

∫ (dQ−dP )2

dP+tdQ = (1 +

t)χ2(Q‖P t), completing the proof of (78).
It is instructive to remark how this result was established for finite alphabets originally in [AG76].

Consider the map

PX 7→ Vr(PX , QX) , D(PY |X ◦ PX‖PY |X ◦QX)− rD(PX‖QX) .

A simple differentiation shows that Hessian of this map at PX is negative-definite if and only if
r > ηχ2(PY |X , PX) and negative semidefinite if and only if r ≥ ηχ2(PY |X , PX) (note that this does
not depend on QX). Thus, taking r = ηχ2(PY |X) the map PX 7→ Vr(PX , QX) is concave in PX for
all QX . Thus, its local extremum at PX = QX is a global maximum and hence Vr(PX , QX) ≤ 0.
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A.3 Proof of Theorem 4

We shall assume that PX is not a point mass, namely, there exists a measurable set E such that
PX(E) ∈ (0, 1). Define

ηKL(PX) = sup
QX

D(QY ‖PY )
D(QX‖PX)

where the supremum is over all QX such that 0 < D(QX‖PX) <∞. It is clear that such QX always
exists (e.g., QX = PX|X∈E and D(QX‖PX) = log 1

PX(E) ∈ (0,∞)). Let

ηI(PX ) = sup
I(U ;Y )

I(U ;X)

where the supremum is over all Markov chains U → X → Y with fixed PXY such that 0 < I(U ;X) <
∞. Such Markov chains always exist, e.g., U = 1{X∈E} and then I(U ;X) = h(PX(E)) ∈ (0, log 2).
The goal of this appendix is to prove (18), namely

ηKL(PX) = ηI(PX) .

The inequality ηI(PX) ≤ ηKL(PX) follows trivially:

I(U ;Y ) = D(PY |U‖PY |PU ) ≤ ηKL(PX)D(PX|U‖PX |PU ) = ηKL(PX)I(X;U) .

For the other direction, fix QX such that 0 < D(QX‖PX ) < ∞. First, consider the case where
dQX
dPX

is bounded, namely, dQX
dPX

≤ a for some a > 0 QX-a.s. For any ǫ ≤ 1
2a , let U ∼ Bern(ǫ) and

define the probability measure P̃X = PX−ǫQX
1−ǫ . Let PX|U=0 = P̃X and PX|U=1 = QX , which defines

a Markov chain U → X → Y such that X,Y is distributed as the desired PXY . Note that

I(U ;Y )

I(U ;X)
=

ǭD(P̃Y ‖PY ) + ǫD(QY ‖PY )
ǭD(P̃X‖PX) + ǫD(QX‖PX)

where ǭ = 1− ǫ and P̃Y = PY |X ◦ P̃X . We claim that

D(P̃X‖PX) = o(ǫ), (79)

which, in view of the data processing inequality D(P̃X‖PX) ≤ D(P̃Y ‖PY ), implies I(U ;Y )
I(U ;X)

ǫ↓0−−→
D(QY ‖PY )
D(QX‖PX) as desired. To establish (79), define the function

f(x, ǫ) ,

{

1−ǫx
ǫ(1−ǫ) log

1−ǫx
1−ǫ , ǫ > 0

(x− 1) log e, ǫ = 0 .

One easily notices that f is continuous on [0, a]× [0, 1
2a ] and thus bounded. So we get, by bounded

convergence theorem,

1

ǫ
D(P̃X‖PX) = EPX

[

f

(

dQX
dPX

, ǫ

)]

→ EPX

[

dQX
dPX

− 1

]

log e = 0 .

To drop the boundedness assumption on dQX
dPX

we simply consider the conditional distribution

Q′
X , QX|X∈A where A = {x : dQX

dPX
(x) < a} and a > 0 is sufficiently large so that QX(A) > 0.
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Clearly, as a → ∞, we have Q′
X → QX and Q′

Y → QY pointwise (i.e. Q′
Y (E) → QY (E) for every

measurable set E), where Q′
Y , PY |X ◦Q′

X . Hence the lower-semicontinuity of divergence yields

lim inf
a→∞

D(Q′
Y ‖PY ) ≥ D(QY ‖PY ) .

Furthermore, since
dQ′

X
dPX

= 1
QX(A)

dQX
dPX

1A, we have

D(Q′
X‖PX) = log

1

QX(A)
+

1

QX(A)
EQ

[

log
dQX
dPX

1

{

dQX
dPX

≤ a

}]

. (80)

Since QX(A) → 1, by dominated convergence (note: EQ[| log dQX
dPX

|] < ∞) we have D(Q′
X‖PX) →

D(QX‖PX ). Therefore,

lim inf
a→∞

D(Q′
Y ‖PY )

D(Q′
X‖PX)

≥ D(QY ‖PY )
D(QX‖PX )

,

completing the proof.

A.4 Proof of Proposition 14

First, notice the following simple result:

D(Q‖λP + λ̄Q) = o(λ), λ→ 0 ⇐⇒ P ≪ Q (81)

Indeed, if P 6≪ Q then there is a set E with p = P [E] > 0 = Q[E]. Denote the binary divergence
by d(p‖q) , D(Bern(p)‖Bern(q)). Applying data-processing for divergence to X 7→ 1E(X), we get

D(Q‖λP + λ̄Q) ≥ d(0‖λp) = log
1

1− λp

and the derivative at λ→ 0 is non-zero. If P ≪ Q, then let f = dP
dQ and notice

log λ̄ ≤ log(λ̄+ λf) ≤ λ(f − 1) log e .

Dividing by λ and assuming λ < 1
2 we get

∣

∣

∣

∣

1

λ
log(λ̄+ λf)

∣

∣

∣

∣

≤ C1f + C2 ,

for some absolute constants C1, C2. Thus, by the dominated convergence theorem we get

1

λ
D(Q‖λP + λ̄Q) = −

∫

dQ

(

1

λ
log(λ̄+ λf)

)

→
∫

dQ(1− f) = 0 .

Another observation is that
lim
λ→0

D(P‖λP + λ̄Q) = D(P‖Q) , (82)

regardless of the finiteness of the right-hand side (this is a property of all convex lower-semicontinuous
functions).

Now, we prove Proposition 14. One direction is easy: if D(QY ‖PY ) ≤ D(QY ′‖PY ′) then

I(W ;Y ) = D(PY |W‖PY |PW ) ≤ D(PY ′|W‖PY ′ |PW ) = I(W ;Y ′) .
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For the other direction, consider an arbitrary pair (PX , QX). Let W = Bern(ǫ) and PX|W=0 = PX ,
PX|W=1 = QX . Then, we get

I(W ;Y ) = ǭD(PY ‖ǭPY + ǫQY ) + ǫD(QY ‖ǭPY + ǫQY ) ,

and similarly for I(W ;Y ′). Assume that D(QY ′‖PY ′) <∞, for otherwise (62) holds trivially. Then
QY ′ ≪ PY ′ and we get from (81) and (82) that

I(W ;Y ′) = ǫD(QY ′‖PY ′) + o(ǫ) . (83)

On the other hand, again from (82)

I(W ;Y ) ≥ ǫD(QY ‖ǭPY + ǫQY ) = ǫD(QY ‖PY ) + o(ǫ) . (84)

Since by assumption I(W ;Y ) ≤ I(W ;Y ′) we conclude from comparing (83) to (84) thatD(QY ‖PY ) ≤
D(QY ′‖PY ′) <∞, completing the proof.

B Contraction coefficients for binary-input channels

In this appendix we provide a tight characterization of the KL contraction coefficient for binary-
input channel PY |X , where X ∈ {0, 1} and Y is arbitrary. Clearly, ηKL(PY |X) is a function of

P , PY |X=0 and Q , PY |X=1, which we abbreviate as η({P,Q}). The behavior of this quantity
closely resembles that of divergence between distributions. Indeed, we expect η({P,Q}) to be bigger
if P and Q are more dissimilar and, furthermore, η({P,Q}) = 0 (resp. 1) if and only if P = Q
(resp. P ⊥ Q). Next we show that η({P,Q}) is essentially equivalent to Hellinger distance:

Theorem 21. Consider a binary input channel PY |X : {0, 1} → Y with PY |X=0 = P and PY |X=1 =

Q. Then, its contraction coefficient ηKL(PY |X) = ηχ2(PY |X) , η({P,Q}) satisfies

H2(P,Q)

2
≤ η({P,Q}) ≤ H2(P,Q)− H4(P,Q)

2
, (85)

where Hellinger distance is defined as H2(P,Q) , 2− 2
∫ √

dPdQ.

Remark 8. An obvious upper bound is η({P,Q}) ≤ dTV(P,Q) by Theorem 1, which is worse
than Theorem 21 since dTV is small than the square-root of the right-hand side of (85). In fact it
is straightforward to verify that the upper bound holds with equality when the output Y is also
binary-valued. In particular, Theorem 21 implies that η({P,Q}) is always within a factor of two
of H2(P,Q).

Proof. First notice the identities:

χ2(Bern(α)‖Bern(β)) = (α− β)2

ββ̄
,

χ2(αP + ᾱQ‖βP + β̄Q) = (α− β)2
∫

(P −Q)2

βP + β̄Q
,

where we denote ᾱ = 1−α. Therefore the (input-dependent) χ2-contraction coefficient is given by

ηχ2(Bern(β), PY |X) = sup
α6=β

χ2(αP + ᾱQ‖βP + β̄Q)

χ2(Bern(α)‖Bern(β)) = ββ̄

∫

(P −Q)2

βP + β̄Q
, LCβ(P‖Q),
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where LCβ(P‖Q), clearly an f -divergence, is known as the Le Cam divergence (see, e.g., [Vaj09,
p. 889]). In view of Theorem 3, the input-independent KL-contraction coefficient coincides with
that of χ2 and hence

η({P,Q}) = sup
β∈(0,1)

LCβ(P‖Q).

Thus the desired bound (85) follows from the characterization of the joint range between pairs
of f -divergence [HV11], namely, H2 versus LCβ, by taking the convex hull of their joint range
restricted to Bernoulli distributions. Instead of invoking this general result, next we prove (85)
using elementary arguments. Since LC1/2(P‖Q) = 1−2

∫ dPdQ
dP+dQ ≥ 1−

∫ √
dPdQ = 1

2H
2(P,Q), the

left inequality of (85) follows immediately. To prove the right inequality, by Cauchy-Schwartz, note

that we have (1 − 1
2H

2(P,Q))2 = (
∫ √

dPdQ)2 = (
∫
√

βdP + β̄dQ
√

dPdQ
βdP+β̄dQ

)2 ≤
∫ dPdQ
βdP+β̄dQ

=

1− LCβ(P‖Q), for any β ∈ (0, 1).

C Simultaneously maximal couplings

Lemma 22. Let X and Y be Polish spaces. Given any pair of Borel probability measures PXY , QXY
on X ×Y, there exists a coupling π of PXY and QXY , namely, a joint distribution of (X,Y,X ′, Y ′)
such that L(X,Y ) = PXY and L(X ′, Y ′) = QXY under π, such that

π{(X,Y ) 6= (X ′, Y ′)} = dTV(PXY , QXY ) and π{X 6= X ′} = dTV(PX , QX). (86)

Remark 9. After submitting this manuscript, we were informed that this result is the main content
of [Gol79]. For interested reader we keep our original proof which is different from [Gol79] by relying
on Kantorovich’s dual representation and, thus, is non-constructive.

Remark 10. A triply-optimal coupling achieving in addition to (86) also π[Y 6= Y ′] = dTV(PY , QY )
need not exist. Indeed, consider the example where X,Y are {0, 1}-valued and

PXY =

(

1
2 0
0 1

2

)

, QXY =

(

0 1
2

1
2 0

)

.

In other words, X,Y ∼ Bern(1/2) under both P and Q; however, X = Y under P and X = 1− Y
under Q. Furthermore, since dTV(PX , QX) = dTV(PY , QY ) = 0, under any coupling πXYX′Y ′ of
PXY and QXY that simultaneously couples PX to QX and PY to QY maximally, we have X = X ′

and Y = Y ′, which contradicts X = Y and X ′ = 1 − Y ′. On the other hand, it is clear that a
doubly-optimal coupling (as claimed by Lemma 22) exists: just take X = X ′ = Y ∼ Bern(1/2)
and Y ′ = 1−X ′. It is not hard to show that such a coupling also attains the minimum

min
π
π[(X,Y ) 6= (X ′, Y ′)] + π[X 6= X ′] + π[Y 6= Y ′] = 2.

Proof. Define the cost function c(x, y, x′, y′) , 1{(x,y)6=(x′,y′)} + 1{x 6=x′} = 21{x 6=x′} + 1{x=x′,y 6=y′}.
Since the indicator of any open set is lower semicontinuous, so is (x, y, x′, y′) 7→ c(x, y, x′, y′).
Applying Kantorovich’s duality theorem (see, e.g., [Vil03, Theorem 1.3]), we have

min
π∈Π(PXY ,QXY )

Eπc(X,Y,X
′, Y ′) = max

f,g
EP [f(X,Y )]− EQ[g(X,Y )]. (87)

where f ∈ L1(P ), g ∈ L1(Q) and

f(x, y)− g(x′, y′) ≤ c(x, y, x′, y′). (88)
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Since the cost function is bounded, namely, c takes values in [0, 2], applying [Vil03, Remark 1.3],
we conclude that it suffices to consider 0 ≤ f, g ≤ 2. Note that constraint (88) is equivalent to

f(x, y)− g(x′, y′) ≤ 2,∀x 6= x′,∀y 6= y′

f(x, y)− g(x, y′) ≤ 1,∀x,∀y 6= y′

f(x, y)− g(x, y) ≤ 0,∀x,∀y
where the first condition is redundant given the range of f, g. In summary, the maximum on the
right-hand side of (87) can be taken over all f, g satisfying the following constraints:

0 ≤ f, g ≤ 2

f(x, y)− g(x, y′) ≤ 1,∀x, y 6= y′

f(x, y)− g(x, y) ≤ 0,∀x, y
Then

max
f,g

EP [f(X,Y )]− EQ[g(X,Y )] =

∫

X
max
φ,ψ

{∫

Y
p(x, y)φ(y)− q(x, y)ψ(y)

}

(89)

where the maximum on the right-hand side is over φ,ψ : Y → R satisfying

0 ≤ φ,ψ ≤ 2

φ(y)− ψ(y′) ≤ 1,∀y 6= y′

φ(y)− ψ(y) ≤ 0,∀y
(90)

The optimization problem in the bracket on the RHS of (89) can be solved using the following
lemma:

Lemma 23. Let p, q ≥ 0. Let (x)+ , max{x, 0}. Then

max
φ,ψ

{∫

Y
pφ− qψ : 0 ≤ φ ≤ ψ ≤ 2, supφ ≤ 1 + inf ψ

}

=

∫

(p− q)+ +

(∫

(p− q)

)

+

. (91)

Proof. First we show that it suffices to consider φ = ψ. Given any feasible pair (φ,ψ), set φ′ =
max{φ, inf ψ}. To check that (φ′, φ′) is a feasible pair, note that clearly φ′ takes values in [0, 2].
Furthermore, supφ′ ≤ supφ ≤ 1+ inf ψ ≤ 1+ inf φ′. Therefore the maximum on the left-hand side
of (91) is equal to

max
φ

{
∫

Y
(p− q)φ : 0 ≤ φ ≤ 2, supφ ≤ 1 + inf φ

}

.

Let a = inf φ. Then

max
φ

{
∫

(p− q)φ : 0 ≤ φ ≤ 2, supφ ≤ 1 + inf φ

}

= sup
0≤a≤2

max
φ

{
∫

(p − q)φ : a ≤ φ ≤ 2 ∧ (1 + a)

}

= sup
0≤a≤1

max
φ

{∫

(p − q)φ : a ≤ φ ≤ 1 + a

}

= sup
0≤a≤1

{

(1 + a)

∫

(p − q)+ + a

∫

(p− q)−

}

= sup
0≤a≤1

{∫

(p− q)+ + a

∫

(p− q)

}

=

∫

(p− q)+ +

(
∫

(p− q)

)

+

.
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Applying Lemma 23 to (89) for fixed x, we have

max
f,g

EP [f(X,Y )]− EQ[g(X,Y )]

=

∫

X

(∫

Y
(p(x, y) − q(x, y))+ + (p(x)− q(x))+

)

=

∫

X

∫

Y
(p(x, y)− q(x, y))+ +

∫

X
(p(x)− q(x))+ = dTV(PXY , QXY ) + dTV(PX , QX)

Combining the above with (87), we have

min
πXYX′Y ′

π{(X,Y ) 6= (X ′, Y ′)}+ π{X 6= X ′} = dTV(PXY , QXY ) + dTV(PX , QX).

Since π{(X,Y ) 6= (X ′, Y ′)} ≥ dTV(PXY , QXY ) and π{X 6= X ′} ≥ dTV(PX , QX) for any π, the
minimizer of the sum on the left-hand side achieves equality simultaneously for both terms, proving
the theorem.
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