
ar
X

iv
:1

50
9.

04
98

5v
1 

 [
m

at
h.

G
N

] 
 1

6 
Se

p 
20

15

SELF-MAPS UNDER THE COMPACT-OPEN TOPOLOGY

RICHARD J. LUPTON, MAX F. PITZ

Abstract. This paper investigates the space Ck(ω
∗, ω∗), the space of con-

tinuous self-maps on the Stone-Čech remainder of the integers, ω∗, equipped

with the compact-open topology. Our main results are that

• Ck(ω
∗, ω∗) is Baire,

• Stone-Čech extensions of injective maps on ω form a dense set of weak

P -points in Ck(ω
∗, ω∗),

• it is independent of ZFC whether Ck(ω
∗, ω∗) contains P -points, and that

• Ck(ω
∗, ω∗) is not an F -space, but contains, as ω∗, no non-trivial conver-

gent sequences.

1. Introduction

Spaces of continuous functions are amongst the most natural and important

objects in topology. This paper studies continuous self-maps of topological spaces,

and in particular continuous self-maps on ω∗, the Stone-Čech remainder of the

integers.

The space ω∗ is one of the most important spaces in topology and its structure

has been extensively examined. More importantly, however, our choice of ω∗, and

our decision to study self-maps—as opposed to the more widely studied real-valued

functions prevalent in topology and functional analysis—is motivated by the ob-

servation that C(ω∗, ω∗) contains the Stone-Čech extensions of finite-to-one maps

on ω. More precisely, the Stone-Čech extension of any finite-to-one map ω → ω

restricts to a continuous map ω∗ → ω∗.

The finite-to-one maps ω → ω appear in important places in set-theoretic topol-

ogy. M.E. Rudin proved in [20] for instance, that if there are two points x, y ∈ ω∗

such that for each finite-to-one map φ : ω → ω, βφ(x) 6= βφ(y), then H∗ has at

least two composants (H∗ is the Stone-Čech remainder of the half-line [0,∞), and

is a connected compact Hausdorff space (a continuum); the composant of a point

x is the union of all proper subcontinua containing that point). More generally,

the Rudin-Blass order on ω∗ is defined in terms of finite-to-one maps [14] (it is the

finite-to-one version of the Rudin-Keisler order).

By equipping C(ω∗, ω∗) with a topology, we can study the finite-to-one maps

ω → ω (mod finite) as a topological space in its own right, which we denote S(ω).

The compact-open topology is a natural topology to use here. Thinking of ω∗ as a

space of ultrafilters on its Boolean Algebra, subsets of ω modulo finite differences,
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an open set in the compact-open topology specifies where elements of the Boolean

Algebra can be mapped. Since finite-to-one maps ω → ω are usually studied in

relation to their action on ultrafilters, seeking a topology that interacts well with

ultrafilters is sensible.

Besides studying extensions of finite-to-one maps, we also assess the extent to

which properties of ω∗ are mirrored in C(ω∗, ω∗), with respect to a suitable func-

tion space topology. For this, the compact-open topology again seems to naturally

present itself. For example, in the context of self-maps on a locally compact Haus-

dorff space X , the compact-open topology is the smallest topology on C(X,X) giv-

ing a topological semi-group such that the canonical embedding X →֒ C(X,X),

sending a point to the corresponding constant function, is an embedding [16,

VIII.1.9].

Once C(X,X) has been equipped with the compact-open topology, we denote it,

in the standard way, by Ck(X,X). In this paper we show that Ck(ω
∗, ω∗) and its

subspace S(ω) are both Baire spaces (Theorems 5.7 and 5.14). Further, we show

that S(ω) is a dense subspace of Ck(ω
∗, ω∗), all points of which are weak P -points

in Ck(ω
∗, ω∗) (Theorems 5.3 and 6.14). More generally, we show in Theorem 6.13

that every open finite-to-one map X → X on a compact Hausdorff, nowhere c.c.c.

F -space X is a weak P -point in Ck(X,X).

Further, we show that for a zero-dimensional compact Hausdorff space X , a map

in Ck(X,X) is a P -point if and only if it has finite range, all points of which are

P -points in X (Theorem 6.10). Hence Ck(ω
∗, ω∗) has P -points precisely when ω∗

does, an assertion well-known to be independent of ZFC.

Lastly, we show that Ck(ω
∗, ω∗) is not an F -space (Theorem 7.8), but still

contains, as does ω∗, no convergent sequences. Indeed, we prove that Ck(X,X)

never contains non-trivial convergent sequences, for any compact F -space X (The-

orem 7.3).

We would like to thank Rolf Suabedissen, Alan Dow and Jan van Mill for inter-

esting discussions on the subject.

2. F -spaces and ω∗

This section contains a brief introduction to the spaces βω and ω∗. Recall that

a subspace Y ⊂ X is called C∗-embedded if every continuous real-valued bounded

function on Y can be extended to a continuous function on X . For every non-

compact Tychonoff space X , its Stone-Čech compactification βX is a compact

Hausdorff space in which X is dense and C∗-embedded, and X∗ = βX \ X is its

remainder. For a concrete description of βω and ω∗ in terms of ultrafilters on the

natural numbers see for example [21].

The space ω∗ is a zero-dimensional compact Hausdorff space of cardinality 2c

and weight c = 2ℵ0 , containing no isolated points. Every non-empty clopen subset

of ω∗ is again homeomorphic to ω∗. The space ω∗ contains a family of c disjoint

clopen sets and therefore has density c [7, 3.6.18].

Further, the space ω∗ has two additional crucial topological properties, the Gδ-

and the F -space property. Recall that a subset of a Tychonoff space of the form
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f−1(0) for some real-valued continuous function f is called a zero-set. A cozero-set

is the complement of a zero-set. A space X is called an F -space if each cozero-set

is C∗-embedded in X . A space is said to have the Gδ-property if every non-empty

Gδ-set has non-empty interior.

Indeed, these properties are fairly common amongst Stone-Čech remainders. It is

well-known that wheneverX is a locally compact σ-compact space then X∗ is an F -

space [2, 14.16], and if X is zero-dimensional, locally compact and σ-compact, then

X∗ is compact zero-dimensional without isolated points and has the Gδ-property

[2, 14.17].

A zero-dimensional compact space without isolated points with the Gδ- and

the F -space property is often called a Parovičenko space. The reason why these

properties have received special attention lies in the well-known result that under

the Continuum Hypothesis, all Parovičenko spaces of weight c are homeomorphic

to ω∗ [19].

In the following, we list some more background results on F -spaces. Recall that

subspaces A,B ⊂ X are completely separated if there is a continuous f : X → [0, 1]

such that A ⊂ f−1(0) and B ⊂ f−1(1). Equivalently, two subspaces are completely

separated if they are contained in disjoint zero-sets. Proofs of the following results

are contained in [9, 14.25] and in the exercises [9, 14N] and [7, 3.6.G].

(1) A Tychonoff space is an F -space if and only if disjoint cozero-subsets are

completely separated.

(2) In an F -space, disjoint open Fσ-subsets have disjoint closures, and in nor-

mal spaces both conditions are equivalent.

(3) Closed subspaces of normal F -spaces are F -spaces.

(4) Infinite closed subspaces of compact F -spaces contain a copy of βω. There-

fore, compact F -spaces do not contain convergent sequences.

3. A nice basis for Ck(X,X)

The compact-open topology on the space C(X,Y ) of continuous functions X →

Y is the topology generated by a subbasis consisting of sets of the form

[C,U ] = {f ∈ C(X,Y ) : f(C) ⊆ U}

where C is a compact subset of X and U is an open subset of Y . The resulting

topological space is denoted by Ck(X,Y ). A good reference for the basic properties

of the compact-open topology is [7, §3.4].

In this section we prove that if X is locally compact and zero-dimensional, the

space Ck(X,X) has a particularly nice basis, consisting of elements of the form
⋂n

i=0[Ai, Bi] with Ai, Bi ⊂ X compact clopen such that the Ai are pairwise disjoint.

Lemma 3.1. In a locally compact zero-dimensional space X, the collection of sets

of the form [A,B], for A,B compact clopen subsets of X, forms a clopen subbasis

for Ck(X,X).
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Proof. Let B be the collection of compact clopen subsets of X . Note that B is a

base for X which is closed under finite unions. It follows from [6, XII.5.1] that the

collection {[A,B] : A,B ∈ B} forms a clopen subbasis for Ck(X,X).

To familiarise ourselves with the compact-open topology, we spell out the argu-

ment contained in the reference. Consider a subbasic open set [C,U ] in Ck(X,X),

with C ⊆ X compact and U ⊆ X open, and some f ∈ [C,U ]. Since every set of

the form [A,B] for A,B ∈ B is open in Ck(X,X), it is enough to show that there

are A,B ∈ B with f ∈ [A,B] ⊆ [C,U ].

First, observe that f(C) is a compact subset of U , so using that B is a base

for X closed under finite unions, we find B ∈ B with f(C) ⊆ B ⊆ U . Then

f ∈ [C,B] ⊆ [C,U ]. Now, f−1(B) is open, and contains the compact set C, so

using that B is a base for X closed under finite unions again, we may find A ∈ B

with C ⊆ A ⊆ f−1(B). Furthermore f(A) ⊆ B, so f ∈ [A,B]. But clearly then

f ∈ [A,B] ⊆ [C,B] ⊆ [C,U ]

which is precisely what we required.

To see that [A,B] is clopen, note that for f /∈ [A,B] there is x ∈ A such that

f(x) /∈ B. Thus, [{x}, X \B] is a neighbourhood of f not intersecting [A,B]. �

Lemma 3.2. Suppose Ai, Bi are clopen in X for i ∈ {0, . . . , n}. Then there are

clopen Ui, Vi for i ∈ {0, . . . ,m} so that in Ck(X,X),

n
⋂

i=0

[Ai, Bi] =

m
⋂

i=0

[Ui, Vi] ,

and such that {U0, . . . , Um} is a pairwise disjoint refinement of {A0, . . . , An}.

Proof. We work by induction on n. For n = 0, there is nothing to prove. For n = 1,

observe that

[A0, B0] ∩ [A1, B1] = [A0 ∩ A1, B0 ∩B1] ∩ [A0 \A1, B0] ∩ [A1 \A0, B1] .

So let n ≥ 2, and suppose the Lemma holds at n−1. Consider the basic open set
⋂n

i=0 [Ai, Bi]. Applying the inductive hypothesis to
⋂n−1

i=0 [Ai, Bi], we may assume

without loss of generality that the collection {A0, . . . , An−1} is already pairwise

disjoint. Generalising our observation from the case n = 2, we obtain

[An, Bn]∩
n−1
⋂

i=0

[Ai, Bi] =

[

An \
n−1
⋃

i=0

Ai, Bn

]

∩
n−1
⋂

i=0

[An ∩ Ai, Bn ∩Bi]∩
n−1
⋂

i=0

[Ai \An, Bi] ,

from which the result follows. �

Theorem 3.3. Suppose X is locally compact and zero-dimensional. Then Ck(X,X)

has a base of sets of the shape
n
⋂

i=0

[Ai, Bi] ,

for Ai, Bi compact clopen in X, and {A0, . . . , An} pairwise disjoint.

Proof. Clear by Lemmas 3.1 and 3.2. �
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By similar considerations one can prove that for a locally compact, zero-dimensional

spaceX , the spaceCk(X,X) has a π-base consisting of sets of the shape
⋂n

i=0 [Ci, Di]

where {C0, . . . , Cn} and {D0, . . . , Dn} are both pairwise disjoint collections of com-

pact clopen subsets of X , [15].

4. First topological properties of spaces of self-maps

The above results about bases and π-bases of Ck(X,X) allow us to make first ob-

servations about topological properties of Ck(ω
∗, ω∗), and more generally Ck(X,X).

Recall that for all Tychonoff spaces X the function space Ck(X,X) is also Ty-

chonoff [7, 3.4.15].

Observation 4.1. For every locally compact zero-dimensional space X, the weight

of Ck(X,X) equals the weight of X.

Proof. By Lemma 3.1. �

Observation 4.2. For a non-empty space X, the cellularity of Ck(X,X) is at least

as big as the cellularity of X.

Proof. Let x ∈ X , and {Aα : α < κ} be a collection of disjoint open subsets of X .

Then the family {[{x}, Aα] : α < κ} is a κ-sized collection of disjoint open subsets

of Ck(X,X). �

Observation 4.3. Ck(ω
∗, ω∗) has density c.

Proof. Because w(Ck(ω
∗, ω∗)) = c, Ck(ω

∗, ω∗) has density at most c. By the pre-

vious result, Ck(ω
∗, ω∗) has density at least c. �

Observation 4.4. |C(ω∗, ω∗)| = 2c.

Proof. There are 2c constant functions. Also, ω∗ is Hausdorff so continuous func-

tions are determined completely by their action on a dense subset of ω∗. Given ω∗

has density c we have

2c ≤ |C(ω∗, ω∗)| ≤
∣

∣(ω∗)
c
∣

∣ = (2c)
c

= 2c. �

Observation 4.5. If X is an infinite compact zero-dimensional Hausdorff space

then Ck(X,X) contains an infinite locally finite family of disjoint non-empty open

sets.

Proof. Let A ⊂ X be an infinite clopen set with non-empty complement B = X \A,

and fix a collection {An : n ∈ ω} of disjoint non-empty clopen subsets of A. For

n ∈ ω define the non-empty (basic) open sets

Un = [An, B] ∩ [A \An, A].

We claim the collection U = {Un : n ∈ ω} is locally finite. Indeed, suppose that

f /∈
⋃

U . If f(A) ⊆ A, then [A,A] is a neighbourhood of f witnessing that [A,A]∩

Un = ∅ for all n ∈ ω.

Otherwise, if f(A) 6⊆ A, then f−1(B)∩A 6= ∅. Note that by continuity of f , the

set f−1(B) is clopen. If for some n ∈ ω we have A′
n = f−1(B)∩An 6= ∅ then [A′

n, B]
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is a neighbourhood of f witnessing that [A′, B] ∩ Um = ∅ for all m ∈ ω \ {n}. And

finally, if f−1(B) ∩ An = ∅ for all n ∈ ω then [f−1(B) ∩ A,B] is a neighbourhood

of f such that [f−1(B) ∩ A,B] ∩ Un = ∅ for all n ∈ ω. �

In fact, if X contains a family of disjoint open sets of size κ, an easy modification

shows that under the above conditions, Ck(X,X) contains a locally finite collection

of disjoint open sets of size κ.

Theorem 4.6. The function space Ck(X,X) of an infinite compact zero-dimensional

Hausdorff space X is not pseudocompact.

Proof. By [7, 3.10.22], for a Tychonoff space Y , pseudocompactness is equivalent

to the assertion that every locally finite family of non-empty open subsets of Y is

finite. Hence, Ck(X,X) is not pseudocompact by the previous observation. �

Since pseudocompactness is implied by (countable) compactness [7, 3.10.20], it

follows that the function space Ck(X,X) of an infinite compact zero-dimensional

Hausdorff space X is never (countably) compact.

Theorem 4.7. Every pseudocompact subspace of Ck(ω
∗, ω∗) has empty interior.

Proof. Note that as a consequence of Theorem 3.3 every open set contains a ba-

sic clopen subset homeomorphic to a finite product of Ck(ω
∗, ω∗), which is not

pseudocompact by the previous corollary. Hence, the original set could not have

been pseudocompact, as pseudocompactness is hereditary with respect to clopen

subspaces. �

5. Completeness properties of Ck(ω
∗, ω∗)

Establishing completeness properties of function spaces Ck(X,R) of real-valued

functions is a natural but hard problem. Indeed, no complete characterisation is

known for which spaces X the function space Ck(X,R) is Baire. For a characterisa-

tion when Ck(X,R) is Baire for locally compact or first countable spaces X see [10].

Completeness results have also been established for other target spaces: If X is a

hemi-compact k-space, and Y Čech-complete with a Gδ diagonal then Ck(X,Y ) is

Čech-complete [11, 4.1].

We have already seen that Ck(ω
∗, ω∗) does not exhibit many of the most com-

mon compactness properties. In this section however, we show that Ck(ω
∗, ω∗) is

Baire. In fact, we establish something slightly stronger, namely that Ck(ω
∗, ω∗) is

(strongly) Choquet.

Recall that the property of being Baire can be described using the Choquet

game. The Choquet game is an infinite (ω)-length game with two players, called E

and NE. The players take turns to choose non-empty open sets, with the condition

that if one player chooses an open set U , then the other player on their subsequent

turn must choose a non-empty open set V with V ⊆ U . Player E begins. Plays

of the game therefore form descending ω-length chains of open sets, of the shape

(U1, V1, U2, V2, . . .), where the Ui correspond to E’s moves, and the Vi correspond

to NE’s moves. Player E wins if the resulting intersection,
⋂

i∈ω Ui =
⋂

i∈ω Vi, is
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empty. Otherwise, player NE wins. By a theorem of Oxtoby, the space X is Baire

if and only if E has no winning strategy ([12, I.8.11]). If NE has a winning strategy,

then X is said to be Choquet ([12, I.8.12]). Clearly if X is Choquet, then X is also

Baire.

It will be convenient for the second part of this section to formalise precisely

what is meant by a strategy. The following approach is taken from [12]. Observe

that partial plays of the Choquet game are finite descending sequences of non-empty

open sets that can be given the structure of a tree, where we say s ≤ t precisely

when t extends s, that is s ⊆ t. A strategy σ is then just a special kind of subtree

(we demand a subtree be closed under taking initial segments, as in [12]). More

precisely, a tree σ is a strategy (for NE) if and only if

(1) ∅ ∈ σ;

(2) if (U0, . . . , Un, Vn) ∈ σ then for any non-empty open subset Un+1 of Vn,

(U0, . . . , Un, Vn, Un+1) ∈ σ;

(3) if (U0, . . . , Un) ∈ σ, then there is precisely one non-empty open set Vn ⊆ Un

with (U0, . . . , Un, Vn) ∈ σ; we write Vn = σ(U0, . . . , Un).

Observe that the branches of a strategy σ correspond to plays of the Choquet game

where NE has adhered to the strategy σ. We call such plays σ-compatible. A

strategy is therefore a winning strategy precisely when all its branches are winning

plays.

This formalised notion of a strategy is useful when we need to be careful about

how we construct our strategy, and we will use this description explicitly later.

However, for the first results in this section, one can think of a strategy like a

function, which takes the history of the game played so far, and provides the next

move for the player. Clearly such a description can be formalised as above. In fact,

we will simply describe how NE should respond to the history of the game, since

clause (3) in the definition above is the only clause we might have control over.

In fact, when we describe NE’s moves, it will often only depend on E’s previous

move. A strategy (for NE) which is not dependent on the entire history of the

game, but only the previous move of E, is called a 1-tactic. If NE has a winning

1-tactic in the Choquet game on X , then clearly NE has a winning startegy, but

the converse is not true in general (see, for example, [3]).

The strong Choquet game is a variant of the Choquet game, where E may specify

on each of their turns a point inside the open set that they play, and NE must then

respond with an open subset containing this point. The winning condition is the

same. Strategies can be defined analogously to the Choquet game, as can 1-tactics.

A space X is strongly Choquet if and only if NE has a winning strategy in the

strong Choquet game on X . Every strongly Choquet space is Choquet.

We will later show that the subspace of Stone-Čech extensions of finite-to-one

maps is Choquet. Let us begin with a result showing that we can tailor injective

maps ω → ω such that their Stone-Čech extensions satisfy countably many con-

ditions imposed by the compact-open topology. To do so, we adapt the notion of

Cantor schemes and Lusin schemes used in [12]. For a tree 〈T,≤〉 of height ω write
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Tn = {t ∈ T : height(t) = n} for n ∈ ω, and denote the set of successors of an el-

ement t ∈ Tn by succ(t) = {s ∈ Tn+1 : t ≤ s}. We call T a finite splitting tree if

0 < |succ(t)| < ∞ for all t ∈ T .

Definition 5.1. Let T be a tree of height ω. A collection {At : t ∈ T} of non-empty

clopen subsets of a space X is called a T -scheme (in X) if

(1) At ∩ As = ∅ for all n ∈ ω and t, s ∈ Tn with t 6= s, and

(2)
⋃

s∈succ(t) As ⊆ At for all t ∈ T .

If in addition, a T -scheme {At : t ∈ T} also satisfies

(3)
⋃

t∈Tn
At = X for all n ∈ ω,

we refer to it as a covering T -scheme. Lastly, if the collection {At : t ∈ T} only

satisfies (2), we refer to it as a weak T -scheme.

Under this notation, a Cantor scheme is a 2<ω-scheme, and a Lusin scheme is a

ω<ω-scheme.

For the next result, since when discussing Stone-Čech extensions of injective

maps ω → ω we are primarily interested in the restriction of said maps to ω∗, let

us for notational convenience cease to distinguish between βφ and βφ ↾ ω∗.

Lemma 5.2. Let 〈T,≤〉 be a finite splitting tree of height ω and suppose that

{At : t ∈ T} is a covering T -scheme and {Bt : t ∈ T} is a weak T -scheme in ω∗.

Then there is an injective map φ : ω → ω such that its Stone-Čech extension βφ

satisfies βφ(At) ⊆ Bt for all t ∈ T .

Proof. Using [7, 3.6.A], fix collections {Ct : t ∈ T} and {Dt : t ∈ T} of (clopen) sub-

sets of ω such that {Ct : t ∈ T} is a covering T -scheme in ω, {Dt : t ∈ T} is a weak

T -scheme in ω, and C∗
t (= Ct \ Ct) = At and D∗

t = Bt for all t ∈ T .

We construct an injective function φ : ω → ω such that, for each m ∈ ω and

t ∈ Tm,

(⋆) φ ↾n+1 (Ct ∩ [m,n]) ⊆ Dt for all n ∈ ω with m ≤ n.

In other words, φ ↾n promises to send Ct to Dt whenever height(t) < n. Since

φ is injective it extends to a continuous self-map of ω∗ [7, 3.7.16], and satisfies

βφ(At) ⊆ Bt for all t ∈ T , because by (⋆) the set φ(Ct) is almost contained in Dt,

i.e. |φ(Ct) \Dt| < ∞.

Since {Ct : t ∈ T} is a covering scheme, for every n ∈ ω the set {t ∈ Tn : n ∈ Ct}

contains a unique element tn. We define φ : ω → ω recursively by

φ : n 7→ min (Dtn \ ran(φ ↾n)).

Since D∗
t = Bt 6= ∅ for all t ∈ T , every Dt is infinite and hence φ is well-defined, and

injective. To see that condition (⋆) is satisfied, we proceed by induction. Suppose

the statement holds for φ ↾n. Let m ≤ n and consider some Ct for t ∈ Tm. If

n /∈ Ct then

φ ↾n+1 (Ct ∩ [m,n]) = φ ↾n+1 (Ct ∩ [m,n− 1]) = φ ↾n (Ct ∩ [m,n− 1]) ⊆ Dt
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by induction assumption. And if n ∈ Ct, we have Ctn ⊆ Ct by properties (1) and

(2) of schemes, which in turn implies Dtn ⊆ Dt. Hence

φ ↾n+1 (Ct ∩ [m,n]) = φ ↾n (Ct ∩ [m,n− 1]) ∪ φ(n) ⊆ Dt ∪Dtn ⊆ Dt.

This completes the inductive step and proof. �

Corollary 5.3. The set {βφ : φ : ω → ω is injective} is dense in Ck(ω
∗, ω∗). �

The density result was first proved by an alternative method in [15].

Let us now consider the basis B for Ck(ω
∗, ω∗) as described in Theorem 3.3,

consisting of sets of the form

U =

n
⋂

i=0

[Ai, Bi]

for Ai, Bi clopen subsets of ω∗ for all 0 ≤ i ≤ n and {A0, . . . , An} a clopen partition

of ω∗.

Lemma 5.4. Let B be the base for Ck(ω
∗, ω∗) described above, and suppose V =

⋂k
i=0 [Ci, Di] ∈ B. Then every U ∈ B with U ⊆ V can be written as U =

⋂j

i=0 [Ai, Bi] such that {A0, . . . , Ak} forms a clopen partition of ω∗, and {A0, . . . , Aj}

refines {C0, . . . , Ck}, while {B0, . . . , Bj} refines {D0, . . . , Dk} in such a way that

Al ⊂ Cm implies Bl ⊂ Dm.

Proof. By applying Lemma 3.2 to the set U = U ∩ V it follows that without loss

of generality, the collection {A0, . . . , Aj} is a partition of ω∗ refining {C0, . . . , Ck}.

To see that {B0, . . . , Bj} refines {D0, . . . , Dl}, consider say B0. Then A0 ⊆ Cm

for some m ≤ k by the previous part. If B0 6⊆ Dm fix y0 ∈ B0 \Dm and yi ∈ Bi

for 1 ≤ i ≤ j and consider f , the continuous finite-range function sending Ai 7→ yi.

Then, it is clear that f ∈ U \ V , a contradiction. �

Theorem 5.5. Let B be the base for Ck(ω
∗, ω∗) described above, and suppose

{Un : n ∈ ω} ⊂ B is a nested collection of basic open sets, i.e. Un+1 ⊂ Un for all

n ∈ ω. Then
⋂

n∈ω Un contains the Stone-Čech extension of an injection ω → ω,

and in particular is non-empty.

Proof. Using Lemma 5.4, we can write

Un =

jn
⋂

i=0

[An
i , B

n
i ]

such that for the appropriate finite splitting tree T , the collections

{An
i : n ∈ ω, i ≤ jn} and {Bn

i : n ∈ ω, i ≤ jn}

form a covering T -scheme and a weak T -scheme in ω∗ respectively.

By Lemma 5.2 there is an injective map φ : ω → ω such that its Stone-Čech

extension satisfies βφ(An
i ) ⊆ Bn

i for all n ∈ ω and 0 ≤ i ≤ jn. It follows that

βφ ∈ Un for all n ∈ ω as desired. �
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Corollary 5.6. Ck(ω
∗, ω∗) is strongly Choquet. Moreover, NE has a winning 1-

tactic for the strong Choquet game, and a winning 1-tactic in the Choquet game,

and in both cases can always obtain a Stone-Čech extension of an injection ω → ω

in the winning set.

Proof. The winning 1-tactic for player NE looks as follows. Whenever player E plays

an open set Vn and a point x ∈ Vn, player NE responds with any basic open set

Un ∈ B such that x ∈ Un ⊆ Vn. It follows from Theorem 5.5 that
⋂

n∈ω Un 6= ∅. �

Corollary 5.7. Ck(ω
∗, ω∗) is Choquet and Baire. �

With a little more analysis we can say more about the properties of Stone-Čech

extensions of injections ω → ω, and finite-to-one maps ω → ω, as subspaces of

Ck(ω
∗, ω∗). Let us write S1(ω) for the set of Stone-Čech extensions of injective

maps ω → ω, and recall that we denote the set of Stone-Čech extensions of finite-

to-one maps ω → ω by S(ω).

Definition 5.8. Suppose X is a (Choquet) space and T a subset of X. We say NE

has a winning strategy that targets T (or more succinctly, T is targetable in X) if

and only if NE has a winning strategy σ such that whenever (U0, V0, U1, . . .) is a

σ-compatible play of the Choquet game on X, then
⋂

n∈ω

Un ∩ T 6= ∅.

Rephrasing the above we see that in the Choquet game on Ck(ω
∗, ω∗), player

NE has a winning strategy that targets S1(ω). We now wish to prove a general

theorem about such targetable subsets. To do this we introduce some machinery

for building winning strategies. This machinery was first introduced in [15]. Recall

that strategies can be formally defined as trees; this formalism will be used in the

following. Note that a finite sequence of length n will be viewed as a function on

the set n = {0, . . . , n− 1}.

Definition 5.9. Suppose σ and µ are strategies for NE (E) in the Choquet game

on X. A transfer map (from µ to σ) is a map T : µ → σ such that

(1) (s ⊆ t → T (s) ⊆ T (t))

(2) T preserves length, i.e. for all s ∈ µ, length(s) = length(T (s)).

If T is a transfer map from µ to σ, then for s a µ-compatible sequence of open

sets, we may (abusing notation) define T (s) to be
⋃

n∈ω T (s ↾ n) (where n-tuples

here are thought of as partial functions on the domain ω; this just gives us the

obvious limit).

Transfer maps are useful because of the following observations, which will be

used to check that new strategies that we build are winning.

Observation 5.10. Suppose T is a transfer map from µ to σ. If s is µ-compatible,

then T (s) is σ-compatible. Further, if s is µ-compatible, then for all n ∈ ω we have

T (s ↾ n) = T (s) ↾ n ⊆ T (s).
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In the following, ⌢ will be used to denote the concatenation operator on finite

sequences.

Theorem 5.11. Suppose X is regular, and D is a dense subset of X. Suppose NE

has a winning strategy which targets D in the Choquet game on X. Then

(1) D is non-meager in X;

(2) NE has a winning strategy in the Choquet game on D.

Proof. (1) is easy to verify, so we focus on (2). First observe that the setR of regular

open subsets of X forms a base for X . It is easily verified that NE has a winning

strategy that targets D in the Choquet game on X where both players, E and NE,

are restricted to playing elements ofR. We also have thatR#D = {U ∩D : U ∈ R}

is a base for the topology on D, and it suffices to show that NE has a winning

strategy in the Choquet game on D where moves are restricted to open sets from

R#D. For U ∈ R#D, let us define L(U) = int
(

U
X
)

, which is regular open in X ,

and observe that L(U) ∩D = U , and if U ⊆ V then L(U) ⊆ L(V ).

So let σ be a winning strategy for NE targetting D in the Choquet game on X

with moves restricted to R. We build a winning strategy µ for NE in the Choquet

game on D with moves from R#D, alongside a transfer map µ → σ, denoted T .

T will have the following properties;

(1) If s = (U0, V0, . . . , Un) ∈ µ then T (s) = t⌢(L(Un)) for some t;

(2) If s = (U0, V0, . . . , Vn) ∈ µ then T (s) = t⌢(L(Vn)) for some t.

Provided µ and T can be defined in this way, then whenever s = (U0, V0, . . .)

is a µ-compatible play of the Choquet game on D with moves from R#D, then

T (U0, V0, . . .) = (L(U0), L(V0), . . .), is σ-compatible, and so
⋂

n∈ω

L(Un) ∩D 6= ∅.

But
⋂

n∈ω

L(Un) ∩D =
⋂

n∈ω

Un

so µ is a winning strategy for NE in the Choquet game on D with moves from

R#D. Hence D is Choquet.

So we are left with the task of justifying the recursive construction of µ and

T . We are required to have ∅ ∈ µ and T (∅) = ∅. Also for any U0 ∈ R#D,

we have (U0) ∈ µ and T (U0) = (L(U0)). Now if (U0, V0, . . . , Vn) ∈ µ, then

for any Un+1 ∈ R#D with Un+1 ⊆ Vn we have (U0, V0, . . . , Vn, Un+1) ∈ µ, and

T (U0, V0, . . . , Vn, Un+1) = T (U0, V0, . . . , Vn)
⌢
(L(Un+1)). Provided (1) and (2)

have been staisfied in the recursion so far, this is well-defined. Now suppose

(U0, V0, . . . , Un) ∈ µ. Then let V ′
n = σ(T (U0, V0, . . . , Un)), and set Vn = V ′

n ∩ D.

Then Vn ∈ R#D, Vn ⊆ Un, and L(Vn) = V ′
n. We then insist that (U0, V0, . . . , Un, Vn) ∈

µ, and

T (U0, V0, . . . , Un, Vn) = T (U0, V0, . . . , Un)
⌢(L(Vn)).

This completes the construction of µ and T . �
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Remark 5.12. Observe in the above, that if σ is a winning 1-tactic, then so is µ.

Furthermore, one obtains a similar result where “Choquet” is replaced by “strongly

Choquet”, by adapting the above proof.

Conversely, if D is a dense Choquet subspace of X , then NE has a winning

strategy targeting D in the Choquet game on X ([15, 1.2.3]). Hence we have

Theorem 5.13. Let X be a regular (Choquet) space, and D a dense subspace of

X. Then D is Choquet if and only if NE has a winning strategy in the Choquet

game on X which targets D. �

In particular, since the property of being a targetable subspace of a Choquet

space is upward hereditary, we obtain the following result.

Corollary 5.14. Both S1(ω) and S(ω), as subspaces of Ck(ω
∗, ω∗), are Choquet

and hence Baire. �

Using the previous remark, NE also has a winning 1-tactic in the Choquet game

on S1(ω) (and on S(ω)), and both S1(ω) and S(ω) are strongly Choquet.

6. P -points and weak P -points in Ck(X,X)

We show that for an infinite compact zero-dimensional space X , no autohome-

omorphism of X can be a P -point in Ck(X,X) and that it is independent of ZFC

whether Ck(ω
∗, ω∗) contains P -points or not. On the other hand, we show that

every autohomeomorphism of ω∗ is a weak P -point in Ck(ω
∗, ω∗). More generally,

autohomeomorphisms and open finite-to-one maps in Ck(X,X) are always weak

P -points for compact Hausdorff F -spaces which are nowhere c.c.c.

A P -point is a point p such that any countable intersection of neighbourhoods of

p contains a neighbourhood of p. In other words, p is a P -point if p is in the interior

of every Gδ-set containing p. The existence of P -points in ω∗ was first shown as a

consequence of the Continuum Hypothesis (CH) by Rudin in [21]. The existence

of P -points can also be shown under MA+¬CH [18, 2.5.5]. In general, however,

Shelah proved it consistent that P -points in ω∗ do not exist [18, 2.7].

A weak P -point is a point p which does not lie in the boundary of any countable

set. The ZFC-existence of weak P -points in ω∗ was first shown by Kunen in [13].

Kunen’s result was subsequently generalised to wider classes of compact F -spaces.

First, van Mill proved in [17] the existence of weak P -points for every compact

crowded F -space of weight c in which each non-empty Gδ has non-empty interior.

The weight restriction in van Mill’s result was subsequently removed by Bell in [1].

One year later, Dow and van Mill proved the following theorem.

Theorem 6.1 (Dow and van Mill, [5]). Every compact nowhere c.c.c. F -space

contains a weak P -point.

In [4], Dow complemented this result and proved that c.c.c. compact F -spaces

of weight at least c
+ contain weak P -points, and that it is consistent that every

non-separable compact c.c.c. F -space contains a weak P -point.
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P -points in Ck(X,X). We now ask under what conditions Ck(X,X) contains

P -points.

Lemma 6.2 ([6, XII.1.2].). Every space X embeds into Ck(X,X). �

Indeed, the map x 7→ fx sending a point to the corresponding constant function

fx is an embedding. The next result shows that P -points and weak P -points are

preserved by this embedding.

Observation 6.3. Let X be a compact space and p be a (weak) P -point of X.

Then fp is a (weak) P -point in Ck(X,X).

Proof. If p is a P -point in X , one checks that whenever fp ∈
⋂

n∈ω[Cn, Un] for

Cn ⊆ X compact and Un ⊆ X open, then fp ∈ [X, int(
⋂

Un)] ⊆
⋂

n∈ω[Cn, Un].

If p is a weak P -point and {fl : l ∈ ω} ⊆ Ck(X,X) \ {fp} a countable set, pick

points xl ∈ ran(fl)\{p} for each l ∈ ω. Then [X,X\{xl : l ∈ ω}] is a neighbourhood

separating fp from {fl : l ∈ ω} as required. �

In particular, it follows for compact spaces X that fp ∈ Ck(X,X) is a (weak)

P -point if and only if p ∈ X is a (weak) P -point.

The evaluation map ev: Ck(X,X)×X → X is given by 〈f, x〉 7→ f(x). For a

point x ∈ X , the evaluation at x is the map evx : Ck(X,X) → X given by f 7→ f(x).

The next lemmas show that evaluation maps are continuous open functions (with

respect to the compact-open topology).

Lemma 6.4 ([7, 3.4.3]). For a locally compact Hausdorff space X, the evaluation

mapping ev is continuous with respect to the compact-open topology. Consequently,

the evaluation map at x, evx, is continuous for every x ∈ X. �

Lemma 6.5. Let X be a zero-dimensional locally compact space. For every point

x ∈ X, the evaluation map at x, evx, is a continuous open map.

Proof. Continuity follows from the previous lemma. To show that evx is open, it

is enough to consider the image of a basic open set
⋂

k≤n[Ak, Bk] where all Ak and

Bk are compact clopen subsets of X . Note that by Corollary 3.3 we may assume

all Ak to be pairwise disjoint. However, it is easy to verify that

evx(
⋂

k≤n

[Ak, Bk]) =

{

Bk if x ∈ Ak,

X otherwise,

which is an open set as required. �

Lemma 6.6. Let 〈Ux : x ∈ X〉 be a sequence of open sets in Ck(X,X). Let S =
⋃

x∈X Ux × {x}. Then ev(S) is open. In particular ev is an open map.

Proof. We have

ev(S) = ev

(

⋃

x∈X

Ux × {x}

)

=
⋃

x∈X

ev(Ux × {x}) =
⋃

x∈X

evx(Ux),

and since each evx is an open map by Lemma 6.5, the set ev(S) is open.
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To show ev is an open map, simply note that every basic open set U × V in

Ck(X,X) × X can be written in the above form: setting Ux = U for x ∈ V and

Ux = ∅ for x 6∈ V gives S =
⋃

x∈X Ux×{x} = U ×V . Therefore, ev(U ×V ) is open

by the above. �

With the help of the evaluation map we can now characterise P -points in Ck(X,X)

for compact zero-dimensional X .

Lemma 6.7. Suppose that X is a zero-dimensional compact space. If f ∈ Ck(X,X)

is a P -point then all y ∈ ran(f) are P -points in X.

Proof. It is straightforward to verify that the image of a P -point under a continuous

open mapping is a P -point. Thus, if y = f(x) ∈ ran(f) then y = evx(f) and the

result follows from Lemma 6.5. �

Theorem 6.8. Suppose that X is a zero-dimensional compact Hausdorff space.

Then P -points in Ck(X,X) are precisely those functions that assume finitely many

values, all of which are P -points in X.

Proof. Generalising Lemma 6.3 gives that every function whose range consists of

finitely many P -points of X is itself a P -point of Ck(X,X).

Conversely, using Lemma 6.7 it only remains to show that any P -point f ∈

Ck(X,X) has finite range. But otherwise, ran(f) = f(X) is an infinite compact

Hausdorff space and therefore contains non-P -points [21, 4.3]. This contradicts

Lemma 6.7. �

Corollary 6.9. For an infinite zero-dimensional compact space X, no autohome-

omorphism of X can be a P -point in Ck(X,X). �

Theorem 6.10. It is consistent with and independent of ZFC whether the space

Ck(ω
∗, ω∗) contains P -points.

Proof. It follows from Theorem 6.8 that Ck(ω
∗, ω∗) contains P -points if and only

if ω∗ contains P -points. The latter statement is well known to be consistent with

and independent of ZFC (see [18]). �

Weak P -points in Ck(X,X). We now show that even though autohomeomor-

phisms are never P -points, they are weak P -points in Ck(ω
∗, ω∗). The result gen-

eralises to show that for compact zero-dimensional nowhere c.c.c. F -spaces, all

autohomeomorphisms of X are weak P -points in Ck(X,X).

Note that the analogue of Theorem 6.7 fails for weak P -points: indeed, weak

P -points are preserved by a continuous open function only if that function has

countable fibers, an assumption which does not hold for ev.

Lemma 6.11. Let X be an F -space. If A and B are countable subsets of X such

that A ∩ B = ∅ = A ∩ B, then A and B have disjoint closures. Moreover, if X is

compact zero-dimensional, there is a clopen subset C ⊂ X such that A ⊂ C ⊂ X\B.

Proof. The condition A ∩ B = ∅ = A ∩ B implies that A and B are contained

in disjoint cozero sets. By the F -space property, A and B have disjoint closures.
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A straightforward application of zero-dimensionality and compactness yields the

clopen set C. �

Lemma 6.12 (Convergence Lemma). Let X be a compact F -space. If for f and

fn ∈ Ck(X,X) (n ∈ ω) there are points P = {pn : n ∈ ω} such that for A = f(P )

and B = {fn(pn) : n ∈ ω} we have A ∩B = ∅ = A ∩B then f /∈ {fn : n ∈ ω}.

Proof. By the previous lemma, we have A ∩ B = ∅. It follows that [P ,X \B] is a

neighbourhood of f disjoint from {fn : n ∈ ω}. �

Theorem 6.13. Let X be a compact Hausdorff, nowhere c.c.c. F -space. Then

every open finite-to-one map is a weak P -point in Ck(X,X).

Proof. Let X be a compact nowhere c.c.c. F -space. Since regular closed sets, i.e.

sets of the form U for U ⊆ X open, inherit these three properties, Theorem 6.1

implies that such a space contains a dense set of weak P -points. Moreover, note

that nowhere c.c.c. implies that countable subsets of X are nowhere dense.

Now let f ∈ Ck(X,X) be an open map with finite fibres and let {fl : l ∈ ω} ⊆

Ck(X,X) \ {f} be an arbitrary countable collection of functions. We show that f

does not lie in the closure of {fl : l ∈ ω}.

For every n let us consider {fn 6= f} = {x ∈ X : fn(x) 6= f(x)}, a non-empty

open subset of X . Let F = {n ∈ ω : |fn({fn 6= f})| < ∞} and define

E =
⋃

n∈F

fn({fn 6= f}),

a countable, and hence nowhere dense subset of X .

By recursion on l, we pick weak P -points {xl : l ∈ ω} of X (not necessarily faith-

fully indexed) such that

(1) {f(xl) : l ∈ ω} ∩ {fl(xl) : l ∈ ω} = ∅, and

(2) {f(xl) : l ∈ ω} ∩ E = ∅.

Moreover, whenever fm(xm) lies in the boundary of a countable set of weak P -

points of X , we will pick such a set Ym, making sure that

(3) Ym ∩ {f(xl) : l ∈ ω} = ∅ for all m ∈ ω.

This implies the result: letting

A = {f(xl) : l ∈ ω} and B = {fl(xl) : l ∈ ω},

we see that since by assumption on f all points in A are weak P -points of X ,

requirement (1) implies A ∩ B = ∅. Next, we claim (1) and (3) imply A ∩ B = ∅.

To see this, suppose for a contradiction that fm(xm) ∈ A. Clearly, then, the point

fm(xm) lies in the closure of a countable set of weak P -points, so condition (3)

applies. But then the disjoint sets of weak P -points Ym and A of X do not have

disjoint closures, contradicting Lemma 6.11. This establishes the claim.

Thus, we have

A ∩B = ∅ = A ∩B,

and hence the result follows from the Convergence Lemma 6.12.
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It remains to describe the recursive construction. To begin, note that since f has

finite fibres, the set f−1(E) is countable and hence nowhere dense, so we may pick

a weak P -point x0 in {f0 6= f} \ f−1(E). Moreover, if possible we fix a countable

set Y0 of weak P -points different from x0 such that f0(x0) lies in the closure of Y0.

Otherwise, put Y0 = ∅.

For the inductive step, assume that the construction has been carried out suc-

cessfully up to some n ∈ w, i.e. we have weak P -points {xl : l ≤ n} and countable

collections Yl of weak P -points for l ≤ n such that

(1) {f(xl) : l ≤ n} ∩ {fl(xl) : l ≤ n} = ∅,

(2) {f(xl) : l ≤ n} ∩ E = ∅, and also

(3) Ym ∩ {f(xl) : l ≤ n} = ∅ for all m ≤ n.

We have to choose a point xn+1 satisfying requirements (1) – (3). Note that

{fn+1 6= f} \ f−1
n+1({f(xl) : l ≤ n}) 6= ∅.

This holds, as otherwise fn+1({fn+1 6= f}) is contained in the finite set {f(xl) : l ≤ n},

yielding {f(xl) : l ≤ n} ⊂ E, and hence contradicting our induction assumption (2).

Thus, the set {fn+1 6= f} \ f−1
n+1({f(xl) : l ≤ n}) is a non-empty open set and

hence, since countable sets are nowhere dense, we can find a weak P -point

xn+1 ∈ {fn+1 6= f} \



f−1
n+1({f(xl) : l ≤ n}) ∪ f−1({fl(xl) : l ≤ n} ∪E) ∪

⋃

l≤n

Yl



.

This choice satisfies (1) and (2). Finally, if fn+1(xn+1) lies in the closure of a

countable set of weak P -points, fix any such countable set Yn+1 with Yn+1 ∩

{f(xl) : l ≤ n+ 1} = ∅. Otherwise, put Yn+1 = ∅. This satisfies (3) and com-

pletes the recursion and proof. �

Note that in a compact F -space, infinite closed subsets contain a copy of βω and

therefore have cardinality at least 2c. Thus, every self-map on such a space with

fibres of size < 2c has finite fibres.

Corollary 6.14. For a Parovičenko space X the function space Ck(X,X) contains

a dense set of weak P -points. In particular, the extensions of injective maps on ω

form a dense set of weak P -points in Ck(ω
∗, ω∗).

Proof. Combine 3.3, 5.3 and 6.13. Note that injective functions on ω extend to

injective functions on ω∗. �

7. Convergent sequences in Ck(X,X)

As a compact F -space, the space ω∗ does not contain non-trivial convergent

sequences. Even though Ck(ω
∗, ω∗) is not an F -space (Theorem 7.8), we establish

that Ck(ω
∗, ω∗) does not contain non-trivial convergent sequences (Theorem 7.3).

Lemma 7.1. Let X be a compact space and suppose fn → f in Ck(X,X). For

any collection P = {pn : n ∈ ω} of points in X, and A = f(P ) = {f(pn) : n ∈ ω}

and B = {fn(pn) : n ∈ ω} we have

(1) A = f(P ) = f
(

P
)

,
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(2) A \A ⊆ B, and

(3) B \B ⊆ A.

Proof. For (1), note that f
(

P
)

⊆ f(P ) by continuity of f , and we obtain equality

because the image of P under f must be compact and so closed.

For (2), note that by continuity of ev (Lemma 6.4), we have

ev
(

{〈fn, pn〉 : n ∈ ω}
)

⊆ ev({〈fn, pn〉 : n ∈ ω}) = B.

Now if x ∈ A \A, then by (1) we can write x = f(p) for p ∈ P \ P . We show

〈f, p〉 ∈ {〈fn, pn〉 : n ∈ ω}, and hence, by the above, x ∈ B. So let U be an open

neighbourhood of f in Ck(X,X), and let V be an open neighbourhood of p in X .

Since fn → f , there is an N ∈ ω such that {fn : n ≥ N} ⊆ U . Since p ∈ P , we have

P∩V is infinite, and hence must contain some pn for n ≥ N . Then 〈fn, pn〉 ∈ U×V .

This proves 〈f, p〉 ∈ {〈fn, pn〉 : n ∈ ω}, and hence (2).

For (3), suppose for a contradiction that there is x ∈ B \
(

B ∪ A
)

. Pick an

open neighbourhood U of x such that U ∩ A = ∅. Since x ∈ B \B, the set I =

{n ∈ ω : fn(pn) ∈ U} must be infinite. Using (1), we conclude that f ∈ [P , ω∗ \ U ]

but fn /∈ [P , ω∗ \ U ] for all n ∈ I. This contradicts fn → f . �

Lemma 7.2. Let X be a compact space without non-trivial convergent sequences

and let f and fn (for n ∈ ω) be pairwise distinct functions in Ck(X,X). Then there

exists a subsequence {fni
: i ∈ ω} and points P = {pi : i ∈ ω} such that A = f(P )

and B = {fni
(pi) : i ∈ ω} are disjoint.

Proof. We will differentiate between three cases.

Case 1. For some F = f−1(x), the functions fn ↾ F do not equal f ↾ F eventually.

In this case, there is an infinite subsequence {fni
: i ∈ ω} and pi ∈ F such that

fni
(pi) 6= x and we are done.

Next, for n ∈ ω let us consider {fn 6= f} = {x ∈ X : fn(x) 6= f(x)}, a non-empty

open set. Note that since we have dealt with Case 1, we may from now on assume

that for all finite A ⊂ X we have f−1(A) ∩ {fn 6= f} = ∅ eventually (⋆). For the

remaining two cases, consider the sets Ek =
⋃

n≥k fn({fn 6= f}).

Case 2. Property (⋆) holds and the sets Ek are eventually finite.

Let E denote the first Ek which is finite. By (⋆) there exists N ≥ k such that

f−1(E) ∩ {fn 6= f} = ∅

for all n ≥ N , so pick points pn ∈ {fn 6= f} for each n ≥ N . It follows that

{f(pn) : n ≥ N} ∩ {fn(pn) : n ≥ N} ⊆ (X \ E) ∩ E = ∅,

as desired.

Case 3. Property (⋆) holds and all Ek are infinite.
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We use recursion to find an infinite subsequence S = {nl : l ∈ ω} and points

{pl : l ∈ ω} such that {f(pl) : l ∈ ω} ∩ {fnl
(pl) : l ∈ ω} = ∅. To begin, pick any

p0 ∈ {f0 6= f}. For the recursion step, assume we have found {pl : l ≤ k} such that

A = {f(pl) : l ≤ k} and B = {fnl
(pl) : l ≤ k}

are disjoint. Again, by (⋆), there is N ≥ nk such that

f−1(B) ∩ {fn 6= f} = ∅ for all n ≥ N.

Next, we claim that there is some n > N such that

{fn 6= f} \ f−1
n (A) 6= ∅.

Indeed, otherwise we would have fn({fn 6= f}) ⊆ A for all n > N , i.e. Ek ⊂ A

eventually, a contradiction. Let nk+1 > N be such an n.

Now pick pk+1 ∈
{

fnk+1
6= f

}

\ f−1
nk+1

(A). We have f(pk+1) /∈ B, and therefore

it follows that

{f(pl) : l ≤ k + 1} ∩ {fnl
(pl) : l ≤ k + 1} = ∅

as desired. This completes the recursion. �

Theorem 7.3. The space of self-maps Ck(X,X) of a compact F -space X does not

contain non-trivial convergent sequences.

Proof. Suppose for a contradiction that fn → f ∈ Ck(X,X). Moving to a sub-

sequence if necessary, we may assume by Lemma 7.2 that there are points P =

{pn : n ∈ ω} such that A = f(P ) and B = {fn(pn) : n ∈ ω} are disjoint. Note that

since in a compact F -space, infinite closed subsets have size at least 2c, it follows

from Lemma 7.1 that either A and B are both finite or both infinite. If they are

finite, then A ∩B = ∅ and we are done by the Convergence Lemma 6.12.

So assume that both A and B are infinite. Since every infinite regular space

contains an infinite discrete subspace [6, VII.2.4], we may assume, after moving to

another subsequence of the fn, that A is infinite discrete. As before, by Lemma 7.1

it follows that the corresponding B is still infinite, so after moving to another

subsequence, we can assume that both A and B are infinite and discrete. Since

countable subsets of F -spaces are C∗-embedded, it follows that A\A ∼= ω∗ ∼= B\B.

Now consider A \ B. If this set is finite, then, after moving to a tail of our

sequence, we may assume that A \ B = ∅, and hence that A ⊆ B \ B ∼= ω∗. But

since A is countable and ω∗ has density c, it follows that A ( B \B, contradicting

Lemma 7.1(3). Thus, we may assume that the set A\B is infinite, and hence, after

moving to another subsequence, that A ∩B = ∅.

Next, consider B \ A. Similarly to the previous case, the finiteness of this set

will contradict Lemma 7.1(2). Thus, we may assume that the set B \A is infinite,

and hence, after moving to another subsequence, that B ∩ A = ∅.

Thus, we have found a subsequence, say {fni
: i ∈ ω}, such that for the sets

A = {f(pni
) : i ∈ ω} and B = {fni

(pni
) : i ∈ ω} we have

A ∩B = ∅ = B ∩A.
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It follows from the Convergence Lemma 6.12 that f is not an accumulation point of

{fni
: i ∈ ω}, contradicting fn → f . This last contradiction proves the theorem. �

As our final result we show that Ck(X,X) is not an F -space, for any infinite

zero-dimensional compact Hausdorff space X . In what follows, we let {An : n ∈ ω}

be an infinite collection of disjoint clopen subsets of X . We construct two open

disjoint Fσ sets which contain the identity, id, in their closure.

Lemma 7.4. Let X be a locally compact zero-dimensional space. Then the identity

id ∈ Ck(X,X) has a neighbourhood basis of sets of the form [A1, A1]∩· · ·∩[AN , AN ]

for An ⊂ X disjoint clopen subsets of X. �

Lemma 7.5. For A,B disjoint clopen subsets of X, and C any third clopen set of

X we have [C,C] ∩ [A,B] = ∅ if and only if both C ∩ A 6= ∅ and C ∩B = ∅.

Proof. For the forwards direction, note that if the second condition is violated

then [C,C] ∩ [A,B] ⊇ [X,C ∩ B] 6= ∅. And if the first condition is violated then

[C,C] ∩ [A,B] ⊇ [C,C] ∩ [X \ C,B] 6= ∅.

Conversely, consider f ∈ [C,C]. If C ∩ A 6= ∅ and C ∩ B = ∅ then for any

x ∈ C ∩ A we have f(x) ∈ C, so f(x) /∈ B and hence f /∈ [A,B]. �

Lemma 7.6. Let V = [C1, C1] ∩ · · · ∩ [CN , CN ] be a basic open neighbourhood of

the identity id ∈ Ck(X,X). Then if I ⊆ ω with |I| ≥ 2N , then writing

UI =
⋃

n6=m∈I

[An, Am],

we have

V ∩ UI 6= ∅.

Proof. For N = 1, note that Lemma 7.5 says that [C1, C1] intersects any [An, Am]∪

[Am, An] for n 6= m. Using induction on N , we now we prove that V intersects

UI . Let us first consider [CN , CN ] ∩ UI . Recall that by Lemma 7.5, [CN , CN ] does

not intersect [An, Am] if and only if CN ∩ Am = ∅ and CN ∩ An 6= ∅. Now put

IN = {n ∈ I : An ∩ CN = ∅}. Then [CN , CN ] in particular intersects every single

set in {[An, Am] : n 6= m ∈ IN} and {[An, Am] : n 6= m ∈ I \ IN}.

In other words, for V to be disjoint from UI we must have V ′ = [C1, C1] ∩ · · · ∩

[CN−1, CN−1] disjoint from
⋃

n6=m∈IN
[An, Am] ∪

⋃

n6=m∈I\IN
[An, Am]. However,

either |IN | or |I \ IN | is bigger than 2N−1, and therefore this is impossible by our

induction assumption. �

Note that it follows that the identity is in the boundary of the open Fσ-set

U =
⋃

n6=m∈ω[An, Am]. We now divide this open Fσ into two halves, each containing

the identity in its boundary. For n,m ∈ ω define

Fix(n,m) =
⋂

k<max(n,m)
k 6=n,m

[Ak, Ak] ,

noting that Fix(n,m) is clopen in Ck(X,X), and Fix(n,m) = Fix(m,n).
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Lemma 7.7. Suppose V = [C1, C1]∩ · · · ∩ [CN , CN ] is a basic open neighbourhood

of the identity, and V intersects U =
⋃

n6=m∈I [An, Am] for some I ⊆ ω. Then V

also intersects
⋃

n6=m∈I

([An, Am] ∩ Fix(n,m))

Proof. Fix f ∈ V ∩ U . Since f ∈ U , there are indices k 6= l ∈ I such that

f ∈ [Ak, Al]. Now define

g = f ↾ Ak ∪ id ↾ X \Ak ∈ Ck(X,X).

One checks that g ∈ V ∩
⋃

n6=m∈I ([An, Am] ∩ Fix(n,m)). �

Theorem 7.8. For an infinite zero-dimensional compact Hausdorff space X, its

function space Ck(X,X) is not an F -space.

Proof. As above, let {An : n ∈ ω} be an infinite collection of disjoint clopen subsets

of X . Now define

UE =
⋃

n6=m∈ω

[A2n, A2m] ∩ Fix(2n, 2m)

and

UO =
⋃

n6=m∈ω

[A2n+1, A2m+1] ∩ Fix(2n+ 1, 2m+ 1).

Then UE , UO are open Fσ subsets of Ck(X,X). The reader is invited to verify the

following two claims.

Claim 1. UE ∩ UO = ∅.

Claim 2. We have i ∈ UE \ UE. Similarly i ∈ UO \ UO.

The proof of the first claim is left as an exercise; the second claim follows from

Lemmas 7.6 and 7.7. Thus, we have found two disjoint cozero-sets of Ck(X,X)

with intersecting closures. Hence, Ck(X,X) is not an F -space. �

Lastly, we remark that Ck(ω
∗, ω∗) also fails to have the Gδ property: Ck(ω

∗, ω∗)

contains a non-empty Gδ with empty interior. Indeed, let A ⊕ B be a non-trivial

clopen partition of ω∗, and let f be an autohomeomorphism of ω∗ swapping A and

B. If we let {An : n ∈ ω} be a collection of disjoint clopen sets contained in A, then
⋂

n∈ω[An, f(An)] is a non-empty Gδ with empty interior.

8. Open Questions

We have seen in Section 6 that Ck(ω
∗, ω∗) is not homogeneous: it contains weak

P -points (for example, all autohomeomorphisms of ω∗ and constant functions fp
with p ∈ ω∗ a weak P -point) and it contains non-weak P -points (for example,

constant functions fx where x ∈ ω∗ is not a weak P -point). We also saw that

consistently, Ck(ω
∗, ω∗) also contains P -points. Thus, we have found two, and

consistently three, orbits of Ck(ω
∗, ω∗).

Question 8.1. What is the number of orbits of Ck(ω
∗, ω∗)?
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Question 8.2. Is it true that if x, y ∈ ω∗ are in different orbits of ω∗ then fx, fy
are in different orbits of Ck(ω

∗, ω∗)?

By a result of Froĺık [8], a positive answer would imply that Ck(ω
∗, ω∗) has the

maximal number of distinct orbits, namely 2c.

Question 8.3. Can a constant weak P -point function fp and an autohomeomor-

phisms f ∈ Ck(ω
∗, ω∗) lie in the same orbit?

The last question is interesting in light of the fact that cardinality of the range

of a function is not an invariant of orbits of Ck(ω
∗, ω∗): the following observation,

which was pointed out to us by R. Suabedissen, shows that constant maps can lie

in the same orbit as some maps with finite range.

Observation 8.4. Let X be a locally compact zero-dimensional space. For any

clopen partition X = A1 ⊕ . . . ⊕ An and autohomeomorphisms hi : X → X for

i ≤ n,

Ψ: Ck(X,X) → Ck(X,X), f 7→ f ◦ (h1|A1
∪ · · · ∪ hn|An

)

is an autohomeomorphism of Ck(X,X).

Proof. To see that Ψ is continuous, note that by zero-dimensionality, h1|A1
∪ · · · ∪

hn|An
is a continuous map X → X . We know that the compact-open topology is

proper and admissable, and [7, Exercise 2.6.D(c)] says that for proper and admiss-

able topologies on spaces of self-maps, composition is a continuous map. Hence

◦ : Ck(X,X)× Ck(X,X) → Ck(X,X) is continuous. One then easily sees that Ψ

is continuous.

The inverse Ψ−1 : Ck(X,X) → Ck(X,X), f 7→ f ◦
(

h−1
1 |A1

∪ · · · ∪ h−1
n |An

)

is

continuous by the same argument as above. �

Question 8.5. Is the space Ck(ω
∗, ω∗) normal? Is it Čech-complete?

Question 8.6. For which compact zero-dimensional Hausdorff spaces X is the

function space Ck(X,X) Baire? What about X = 2ω1?
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