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LINEAR INVISCID DAMPING FOR A CLASS OF MONOTONE SHEAR
FLOW IN SOBOLEV SPACES

DONGYI WEI, ZHIFEI ZHANG, AND WEIREN ZHAO

ABSTRACT. In this paper, we prove the decay estimates of the velocity and H' scattering for
the 2D linearized Euler equations around a class of monotone shear flow in a finite channel.
Our result is consistent with the decay rate predicted by Case in 1960.

1. INTRODUCTION

In this paper, we consider the 2D incompressible Euler equations in a finite channel {(m, y):
rzeT,yc [0,1]}:

OV +V -VV+VP =0,

V.V =0,
(1.1) V2t 2,0) = VE(La, 1) =0,
V|t=0 = ‘/0($7y)

where V = (V1,V?) and P denote the velocity and the pressure of the fluid respectively. Let
w=0,V?— 8yV1 be the vorticity, which satisfies

(1.2) wr+V - -Vw=0.

It is well-known that the 2D incompressible Euler equations are globally well-posed for
smooth data [6, 17]. However, the long time behaviour of the solution is widely open. We
refer to [11, 8] for recent relevance results.

We are concerned with the asymptotic stability of the 2D linearized Euler equations around
the shear flow (u(y),0), which is a steady solution of 2D Euler equations. The linearized Euler
equations around a shear flow (u(y),0) take

{ Ow + Lw =0,

(1.3) wli=0 = wo(z,y),

where £ = u(y)0, + u”(y)0,(—A)~L.

The stability of 2-D Euler equations is a very active field in Physics and Mathematics [9],
especially for shear flows [22]. Rayleigh’s inflection point theorem gives a necessary condition
for linear stability of shear flow: u(y) has no infection points [20]. Arnold’s theorem gives a
sufficient condition for nonlinear Liapunov stability of shear flow [1]:

u(y)
u (y)

Lin [13] provided a large classes of unstable shear flows. We refer to [2, 14, 10, 24] and
references therein for nonlinear instability.

0<c < < co < +00.
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In 1907, Orr [19] observed that the velocity tends to zero as t — +oo for the linearized
Euler equations around Couette flow (y,0). In this case, the linearized vorticity equation
becomes

wt + y@xw = 0.

Thus, w(t,z,y) = wo(x — ty,y). Especially, in the case of the infinite channel T x R, the
velocity can be explicitly solved. Indeed, let @ be the stream function, i.e., (V1 V?) =
(Oytp, —021)). Hence,

(1.4) —AY =w.
Since we deduce by taking Fourier transform to (1.4) that
> @0(04,6 + at)
t? Y = T 9 e 0
0t 0,6) = 2 5

which implies that V! decays at t~1, while V2 decays at t 2. In the case of finite channel, Case
[7] gave a formal proof of t~! decay for the velocity. Recently, Lin and Zeng [16] present the
optimal linear decay estimates of the velocity for the data in Sobolev space. More precisely,
if [;wo(z,y)dx =0, then it holds that

L. if wo(z,y) € H,'H,, then

IVl =0(3).

2. if wo(z,y) € Hx_ng, then

1
V2|2 = O(t_g)

Such inviscid damping is surprising for a time reversible system. The basic mechanism
leading to this phenomena is vorticity mixing driven by shear flow, which may be related to
the appearance of coherent structures in 2D turbulence. This behaviour is similar to Landau
damping [12], which predicted the rapid decay of the electric field of the linearized Vlasov
equation around homogeneous equilibrium.

It is a very difficult problem to extend linear damping to nonlinear damping. Mouhot and
Villani [18] made a breakthrough and proved nonlinear Landau damping for the perturbation
in Gevrey class(see also [4]). Motivated by [18], Bedrossian and Masmoudi also proved the
nonlinear inviscid damping of 2D Euler equations around Couette flow in infinite channel still
for the perturbation in Gevrey class. Lin and Zeng [16, 15] also show that nonlinear damping
is not true for the perturbation in low regularity Sobolev spaces.

The goal of this paper is to prove linear damping for the 2D Euler equations around
general shear flow. In this case, there are few rigorous mathematical results. Case [7] gave
the formal prediction for the decay of the velocity by using the Laplace transform and the
leading singularity of the resolvent. Rosencrans and Sattinger [21] gave ¢! decay of the
stream function with a continuous spectrum projection for analytic monotone shear flow.
Stepin [23] proved t~¥(v < pup) decay of the stream function for the monotone shear flow
u(y) € C*H(py > 1) without inflection point. In a very interesting paper [5], Bouchet
and Morita predicted similar decay estimates of the velocity for a class of stable shear flow
with stationary streamlines by using the Laplace transform and an important observation:
depletion phenomena of the vorticity at the stationary streamlines. More precisely, they
formally proved that

w(t,z,y) ~ weo(z,y) exp(—iku(y)t) + O(t™7) ast — +oo,
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where wo (7, y.) = 0 at stationary points y. of u(y).

In a recent paper, C. Zillinger [25] proved the same decay estimates as those of Couette flow
given by Lin and Zeng [16] for a class of monotone shear flow in Sobolev spaces. However,
his result imposed a strong assumption that L||u”||j3. is small, where L is the wave-length
with respect to . Moreover, he also required that the initial vorticity vanishes on y = 0,1 in
the case of finite channel. Thus, the linear inviscid damping is still open for general monotone
shear flow.

The main result of this paper is stated as follows.

Theorem 1.1. Let u(y) € C*([0,1]) be a monotone function. Suppose that the linearized
operator L has no embedding eigenvalues. Assume that fT wo(z,y)dr = 0 and Prwy = 0,
where Pr is the spectral projection to ogq (.C) Then it holds that

1. if wo(x,y) € H;lH;, then

C
VOl < ol

2. if wo(z,y) € H;ng, then

C
2 .
IV*0)e < gl

3. if wo(z,y) € H;lH;f for k =0,1, there exists woo(x,y) € H;ng such that
lw(t,z + tu(y),y) — weollrz2 — 0 as t — +oo.

Let us give some remarks on Theorem 1.1.

e If u(y) has no inflection points, then £ has no eigenvalues. In Remark 6.4, we will
present a sufficient condition on u(y) in the case when u(y) has inflection points so
that £ has no eigenvalues.

e If the wave-length L with respect to z is suitably small, then £ has no embedding
eigenvalues. In Lemma 6.1, we will present a sufficient and necessary condition on
u(y) so that R, has no embedding eigenvalues.

e By Zillinger’s recent result [26], the L?L,HS norm of W (t,z,y) £ w(t,z +tu(y),y) may
blow up. Thus, it is in general unexpected for the H? scattering.

e Our proof strongly relies on the monotonicity of u(y). Thus, it remains unknown
whether the decay estimates predicted by Bouchet and Morita [5] for stable shear
flow with stationary streamlines can be justified.

e Nonlinear inviscid damping is a challenging question even for the analytic perturba-
tion.

2. SKETCH OF THE PROOF

Our proof is based on the representation formula of the solution

o~

w@wziAJWWFmﬁWWww

21

where R, is the Rayleigh operator defined by (3.3). Under the assumption that £ has no
embedding eigenvalues and Prwy = 0, the asymptotic behaviour of the solution is only related
to the continuous spectrum. Thus, we only need to study

- 1 u®) —iatc 1 . -1 . —1\7
¢(t7 «, y) - 2—7T'Z /u((]) € 51_1}514- ((C — € — Ra) - (C + 1€ — Ra) )¢(07 «, y)dC
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To establish the estimates of the resolvent (c—R4) ™!, we need to study the inhomogeneous
Rayleigh equation

u//

d" — ’P —

®:f7

u—=c

B(0) = (1) = 0,

with f = 20@%)  Tndeed, it holds that

ta(u—c)”

lim ((C — 1€ — Ra)_l — (C + i€ — Ra)_l){p\((L «, y)

e—0+
=i lim (®(y,c+ie) — ®(y,c — ie)) = ia®(y, c).
e—0+
Thus, we obtain
~ 1 ruw@ ~
21) dtiag) = 5o [ e eadb(y,c)de
2 u(0)
Formally, if one can show that &)(y, c) € W2l in ¢, then integration by parts gives
~ u(l) ~
Bltay) ~ O [ e Ry, )de ~ O,
u(0)

One of main difficulties is that the solution ®(y,c) of the inhomogeneous Rayleigh equation
has a singularity of order (y — ye)log [y — vye| with y. = u=2(c)(see [7, 5]). Thus, 82®(y, c) ~
ﬁ ¢ L'. This may be the main reason why the authors in [7, 21, 23] only obtained the
O(t™1) decay of the stream function even in the analytic framework.

Indeed, in Section 6 and 7, we will show that a®(y,c) = 2p(c)u(c)(y,c) with p(c) =
(¢ —u(0))(u(1) — ¢) and

Y 1
<Z5(y70)/0 Wdz 0<y<uye,

Iy, c) = v
<Z5(y70)/1 Wdz Ye <y <1,

where ¢(y, ¢) is the solution of the homogeneous Rayleigh equation:

{ ¢ —a’p— 16 =0,
¢(Ye,c) =0, ¢ (ye,¢) = v (ye)-
Thus, ¢(y, ¢) has the behaviour near y,:

;:,((ZCC)) (v —ye)® +o((y — ve)?),

which implies that I'(y, ¢) has the behaviour near y,:

Oy, ¢) ~ v (Ye) (Y — ye) +

I'(y,c) ~a+by—ye)logly — yel,

for some constants a, b.

The goal of Section 4-Section 5 is to obtain various kinds of uniform estimates for the
solution of the homogeneous Rayleigh equations. The assumption that u(y) is monotone
plays an important role. In Section 8, we will establish the weighted H? estimate of p(c),
where we need to assume that £ has no embedding eigenvalues.

Based on the solution formula (2.1), using the weighted H? estimate of y(c) and LP bound-
edness for various kinds of singular integral operators, we will establish the Hg estimate of
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W(t,x,y) = w(t,z + tu(y),y) in Section 9. In fact, we only prove the weighted H§ estimate,
while Hg bound is impossible in general.

With the uniform Sobolev estimates of the vorticity, the decay estimates can be deduced
by following the dual argument introduced by Lin and Zeng [16].

In the appendix, we will establish L” boundedness for various kinds of singular integral
operators, which was used in Section 8 and Section 9.

3. SPECTRUM OF THE LINEARIZED OPERATOR
In terms of the stream function 1), the linearized Euler equations take
(3.1) O AY + u(y) e Atp — u”(y)dptp = 0.
Taking the Fourier transform in z, we get
(05 — )0t = ia(u (y) = u(y)(9; — a®))¢.

Inverting the operator (85 —a?), we find

(3.2) ~Lod = Rad,
1
where
(3.3) Rath = —(02 — o)~ (u (y) — u(92 — a?))9.

It is easy to show that
JoaliaRs) = oa(L).

Let us recall some classical results for the spectrum o(R,,) of the operator R (see [21, 23]for
more details).

The spectrum o(R,,) is compact;

The continuous spectrum o.(R4) is contained in the range Ran(u) of u(y);

The eigenvalues of R, can not cluster except possibly along on Ran(u);

If u(y) has no infection points in [0, 1], then R, has no embedding eigenvalues;
If u(y) has inflection points, then R, has no embedding eigenvalues for a? > «
where

2

max?

Gl W=

1 u”(y) 2
6 WD — smem |0 W) Py
agna:c dZEf _ inf inf fO - (¥)—u(ye) )
eiu” (4e) =0 GEH{ (0,1) Jo 1e()|2dy

Proof of 4. Let ¢ € H?(0,1) N HE(0,1) be an eigenfunction of R, with the eigenvalue
¢ € Ran(u), i.e., Rqa¢ = co, which can be reduced to the well-known Rayleigh equation:

(3.4) (w—c)(¢" — a?p) —u'¢p = 0.
If u”’(u=t(c)) #0, ¢(u=1(c)) = 0 by (3.4). Taking the inner product with % on both sides

of (3.4), we obtain
1 1 1 ‘¢’2
/ ¢" pdy — a2/ || dy —/ u'———dy = 0.
0 0 0 u—=c

Integration by parts gives

_/01

¢1_u/

2 1
¢ hw—a{/|m%zza

u
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which implies that ¢ = 0. Thus, v”(u"'(c)) = 0 if ¢ is an embedding eigenvalue.

Proof of 5. If ¢ is an embedding eigenvalue with eigenfunction ¢, then we have
1 " 1
u
| 167 = S oPdy+a® [ jopay o,
0 u—c 0

2 we have

1 ) ’LL” ) ) 1 )
/Idl————Wh@+at/lmdy#0
0 uU—=c 0

In Lemma 6.1, we will present a sufficient and necessary condition on u(y) so that R,
has no embedding eigenvalues. In Remark 6.4, we will present a sufficient condition so that
R« has no eigenvalues, which in particular implies that R, has no eigenvalues if u(y) has
inflection points in [0,1] and a? > a?,,,.

Let ©Q be a simple connected domain including the spectrum o(R,) of R,. We have the
following representation formula of the solution to (3.2):

However, for a® > o

~ 1 . ~
(3.5) Uit ay) = —/ e = Ra) (0, a, y)de.
21 Jaq
Thus, the large time behaviour of the solution i(t, a,y) is reduced to the study of the resolvent
(c—Ra)L.
4. THE HOMOGENEOUS RAYLEIGH EQUATION

To study the resolvent (c—7R,) ™!, we first construct a smooth solution of the homogeneous
Rayleigh equation on [0, 1]:

(4.1) (u—c)(¢" = a?¢) —u"¢ =0,

where the complex constant ¢ will be taken in four kinds of domains defined by
Dy 2 {c € [u(0),u(1)]},
D, £ {c =c¢ +ie, ¢ € [u(0),u(1)],0 < |e| < 60},

Béoé{c:u(O)—i—eew, 0<e< e, z<0<7}7

Bl = {c=u(1) - e, 0 < e < e,
for some €y € (0,1). We denote
l r
(4.2) Q¢ = Do U D, UB, UBL.

In the sequel, we always assume that u(y) € C*([0,1]) and satisfies u'(y) > co for some
co > 0.

4.1. Functional space and the integral operator. Given |a| > 1, let A be a constant
larger than Cla| with C' > 1 only depending on ¢y and ||ul|ca.

Definition 4.1. For a function f(y,c) defined on [0, 1] x Q,, we define
[y, o)
cosh(A(y — ye))

f(y,c) ‘
cosh(A(y —ye)) |’

d
Iflxe % sup
(yvc)e[ovl] ><DO

d
Iflx & sup
(y,¢)€[0,1]x D¢

)
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fy.0) ‘
cosh(Ay) |’

f(y )
cosh(A(y — 1))

def
[fllx, = sup

(y.0)€l0,1]x BL,

def
Ifllx, =  sup
(1,0)€[0,11x B,

)

where y. = u~'(c,) with
(43) ¢ =Rec force D, ¢ =u(0) force Bio, cr =u(l) force B
Definition 4.2. For a function f(y,c) defined on [0,1] x Q,, we define

2
def _
I£llve D03 A7F07 fllx,.

k=0 |8|=k
def 1

171y = 1A lx + 5 (10211 + 19ef11x)
def 1

1711y = 1 lx, + — (10 £ 11, + 19 11x,)

def 1
1711y = L + 5 (102 x, + 106£11x..)-

Definition 4.3. Let y. = u™'(c,) with ¢, defined by (4.3). The integral operator T is defined

by
o def (Y 1 v N2 /
T'=TooTrp = L aw) — o2, f(z,0)(u(z) — ¢) dzdy,
where
e Yy
Tof(y.0) Y [ f(z. )iz,
Ye
e Yy
Hﬂm@gmﬁjyéﬂwM@—Ww.mkH-

Lemma 4.4. There exists a constant C independent of A such that
C C
IT7lve < Sl 1Ty < g5l fllv

C C
ITAlv < g0y TS, < 50

Proof. We only prove the first inequality. The proof of the other inequalities is similar. A
direct calculation shows

ITofl sup ! /y fz,¢) cosh A(z — y.)dz
ofllxo, = e
0 (y,¢)€[0,1] x Do COShA(y - yc) Ye cosh A(Z - yc)
1 Yy
< sup —/ cosh A(z — y.)dz ||| f|x.
(we)el0,1]xDo [cosh A(y —ye) Jy, ’
1
SZHfHXo’
and
Y—Ye

[T22fllx, < sup
(y,C)E[O,l} ><DO

1
Al htA(y — y.)dt
cosh A(y — ye.) /0 cos (v —ye)d ‘Hf”Xo
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C
SZHfHXov
which imply
C
(4.4) ITflixe < 2511 Fllxo-

It is easy to see that

any(y, C) = T2,2f(y7 6)7
(%Tf(y, C) - 2TO o T2,3f(y7 C) - 2T0 © T172f(y7 C) + Tacf(y7 0)7

and
1 1
Ty k+1flxo <C sup —/ coshtA(y — ye)dt||| f|| x,
H +1 ” 0 (1.0 [0]% Do coshA(y yc) ( ) ” ” 0
<C||fllxo
which along with (4.4) yield
(4.5) 19y, T fllx0 < Sl f 1o + 211010

Using the formula

e + st( .))ds F
Thk+1f(y,c) = / ((ffo yy T s yy yy))ll)s)k)ﬂ
0 c c

we can deduce that

FWe +t(y —ye), C)tkdt,

105 Tk 1 llx0 <C D7 107 Fllxo-
181<2

Then by a similar argument leading to (4.5), we obtain
(4.6) 165, T fllxo < Cllfllxo + G18y.efxo + 521105 f I xo-
Putting (4.4)-(4.6) together, we conclude the first inequality. O

4.2. Existence of the solution.

Proposition 4.5. There ezists a solution ¢(y,c) € C*([0,1] x Q¢, \ Do) N C([0,1] x Q¢,) of
the Rayleigh equation (4.1). Moreover, there exists eg > 0 such that for any € € [0,¢e) and

(4:6) € 0,1] x Oy,
61,9 > 5, |61(y6) — 1] < Clufy) — el

where ¢1(y,c) = f((yy)’f)c, and the constant C' may depend on «.

The proof is based the following lemmas.

Lemma 4.6. Let c € D, and y. = u~'(c,;). Then there exists a solution ¢(z,c) € Y to the
Rayleigh equation

{ ¢ —aPp— 26 =0,
D(Yer0) _ UORY _
U(yyc)—c =1, (u(yy)—6> |y=yc -

H¢||Y < 07

where the constant C may depend on .

Moreover, there holds
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Proof. Let ¢1 = u‘fc, then ¢ satisfies
2,7/ 2 2
((U_ c) <Z51) = a“¢1(u—c)7,

from which, we infer that
2 !

o1(y,c) =1+ /iJ (u(y’c;éi—c)z /ij $1(z, ¢)(u(z) — c)*dzdy’.

This means that ¢1(y, c¢) satisfies
b1(y,¢) = 1+ 2T (y, c).

It follows from Lemma 4.4 that the operator I — a7 is invertible in the space Y. Thus,
b1(y,c) = (I —aT)7 M,

with the bound ||¢1]ly < C, hence ||¢]y < C. O

In a similar way as in Lemma 4.6, we can show that
Lemma 4.7. Let c € Béo. Then there exists a solution ¢(x,c) € Y] to the Rayleigh equation
{ ¢ —a’p— 1 h =0,

=1, (89))0 -0

u(y)—c
Moreover, there holds
I¢lly; < C,

where the constant C may depend on .
Lemma 4.8. Let c € Bf. Then there exists a solution ¢(x,c) € Y, to the Rayleigh equation
{ ¢ —aPp— 0 =0,

zﬁgl)f)c =1, ( o >/|y:l =0.

u(y)—c
Moreover, there holds
12lly, <C,

where the constant C may depend on .

Lemma 4.9. Let ¢ € Dy and y. = u='(c). Then there exists a solution ¢(y,c) € Yo to the
Rayleigh equation

{ ¢ —a’p— g =0,
¢(y07 C) =0, ¢/(y07 C) = u/(yC)’
Moreover, there holds

[¢llve <G,

where the constant C may depend on .
Proof. We rewrite the Rayleigh equation (4.1) as
(@' (u—c) = ¢u) = ®(u — ¢).
Using the boundary conditions ¢(zg) = 0 and ¢'(z) = u/(z0), we get

# W)uly) ~ €)= S @) = [ " (=) u(z) — o)z,

c
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which implies
2

oo /_oz— ’ 2)(u(z) — c)dz
<m> - (U(y)—U(yc))2 /C ¢( )( ( ) )d .

Let ¢1(y,c) = G5 So, ¢1(y.) = 1 and

/
Oé2

Y Y
= zZ,c)lulz) —u 2 z !
) =1+ [ s [ (e 0)u) — ulue) Py

that is,

(47) ¢1 (y7 C) =1+ 012T¢1 (yv C)‘

Then Lemma 4.4 ensures the existence of the solution in Y to the equation (4.7) with the
bound ||¢1]y, < C. O

Remark 4.10. Since T is a positive operator, ¢1(y,c) for ¢ € Dy given by (4.7) satisfies
¢1 (yv C) > 1.

Moreover, the inverse of I — o*T exists in Xo and has the infinite series representation
o0
(I- 042T)_1 = Za%Tk.
k=0

Now we are in a position to prove Proposition 4.5. We define

#°(y,c) for c € Dy,
def | ¢F(y,c) for ¢ € Dy,
oy, 0) = #'(y,c) for c € Béo,
¢"(y,c) for ce B,
where ¢F, ¢!, ¢", ¥ are given by Lemma 4.6, Lemma 4.7, Lemma 4.8 and Lemma 4.9 respec-
tively.
By our constructions, ¢(y,c) € C*([0,1] x Q¢, \ Do). Notice that

Tf(y.c) = (y—ye)’ //[0 . (e + sty —ye), ) Ko (s, t,y, c)dtds,

where

2
Ko(s,t,y,c) — s <u(yc+8t(y yc)vc) C)
w(ye +s(y — ye),c) — ¢

Using the fact that Ky € C(]0,1]3x€,) and |Ko| < s, we conclude that T maps C([0, 1] x,)
+o0

to C([0,1] x Q). Then by using the formula ¢1(y,c) = 3. a®*T*1 for ¢ € Q., and that the
k=0

convergence is uniform, we conclude that ¢1(y,c) € C(]0,1] x Qg,), thus ¢(y,c) € C’([O, 1] x

QEO). Furthermore, Remark 4.10 ensures that there exists ¢y > 0 such that for any € € [0, ¢)
and (y,c) € [0,1] x Q,,

’(bl(yv C)‘ >

Using the integral representation of ¢1(y,c), we have

y oz n _
oo -11a [ [Tty c)\\—z((i))_ “[ay'd:
c Y Yc

N —
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2 2
<Cly = ye|* < Clu(y) — u(ye)]
2
<Clu(y) — /"
This completes the proof of Proposition 4.5. O

5. UNIFORM ESTIMATES FOR THE HOMOGENEOUS RAYLEIGH EQUATION

The goal of this section is to establish some uniform estimates in wave number « for the
solution ¢(y, ¢) for ¢ € Dy of the Rayleigh equation given by Lemma 4.9. Let ¢1(y,c) = %
and y. = u~!(c) for ¢ € Dy.

Without loss of generality, we always assume « > 1 in the sequel.

5.1. Uniform estimates in wave number.

Proposition 5.1. There exists a constant C' independent of « such that for any (y,c) €
[0,1] x Do,

sinh a(y — y.) Csinha(y — y.)
- 27 T <
C'a = ¢(y7 C) — Q ’
sinh a(y - yc) C'sinh a(y - yc)
g IY ,c) < .
Caly—w) = W= T
Moreover, it holds that

0707 61(y. )| < Ca’ T (y,c)
for B+~ <2.
The proof of the proposition needs the following two lemmas.
Lemma 5.2. Let the operator S be defined by
def [ dy’ Vv sinh? a(z — y)u' (2
st [ e v )
Ye sinh a(y - yc) Ye u(z) - u(yc)
Then there exists a constant C' independent of o such that
l+hna

f(z,c)dz.

1S £l oo (0,11x Do) < C
Especially, there exists My > 0 such that for a > My,

1l oo (0,11 x Do) -

1S f Nl oo (0,1 x Do) < §\|f\|Loo ([0,1]x Do) -
Proof. A direct calculation shows

v smh a z—yc) "(z)

Sfllpe d
” fHL ([0,1]x Do) ‘ / smh2 y _ yc /yc — u(yc) f(Za C) z
)

‘/ v s1nh2 alz —ye) u”(z) £z, )z
Ye smh2 a(y —ye) Jy. — Ye fo (z —ye)t)dt ,
1 fely=vel gy 'l sinh? 2
<C-— d oo
<C— /0 S’y /0 ; 2| f 1o (j0,1x Do)

1 [®sinh?2 < dy
<os [ [ e oo

2| sinh?y
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1 aq e—2z
¢l /0 —— 2l oo )

l1+hna
<C 5 £l 2o ([0,1]x Do) -

The second statement is direct. O

Lemma 5.3. Given a > 1, we denote X £ {(y,¢) + |y —ye| < 1,c=u(y.)}. Then there
exists a constant C independent of o such that

1To fl oo (20) <

1
o | fll oo (20)5

e flloesay < S Il (sa)-

Q

Moreover, for +v < 2,
10,02 Tenriflimoma) C - Y 10208 flle(sa)-
Br+m <p+vy
Proof. For (y,c) € ¥, we have
y
f(z,¢)dz

Tof (3, 0) —\
Ye

1
<1y = Yellfllrema) < SllF e,

and

Tk f (y, 0)l =

m / “((z) = 0 f (2, 0)dz

Q

<Cly = yelllo 1 1 fll oo 20y < EHfHLOO(Za)-

Using the formula

(fo yc + St y yc))ds)k
Jo ! (ye + s(y — ye))ds)

a direct calculation gives the third inequality of the lemma. We omit the details here. O

thdt,

T o1 f (Y, €) /fyc t(y —ye), c (

Now let us turn to the proof of Proposition 5.1.

Proof. Let My be given by Lemma 5.2. The case of a < Mj is a direct consequence of Lemma
4.9, which implies that

1< |¢1(y,0)| <O, Oy —wel <oy, )| <Cly —vel, |050¢1(y,0)] <C

for any (y,c) € [0,1] x Dy, where the constant C' depends on M.
Thus, it suffices to consider the case of a > Mj. It is easy to check that the solution ¢(y, c)
satisfies

(sinh2 oy — ye)( 9, ) ))/>/ = sinh a(y — yc)u

sinh o(y — ye
Let §Z~51 (y,c) = M, then qz~51 (y,c) satisfies

sinh a(y—yc)
y / Y a2 o " _
dy / sinh” a(z — y.)u’(2) 31(z, c)d.
Ye u(z) - u(yc)

1 (y, ) = ' (ye) +/

Ye sinh? a(y — ye)
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Lemma 5.2 ensures that
d1(y,c) = (I —9) (W (ye))
with the bound
C < 41(y,c) <C forany (y.c) € [0,1] x Dy,

which implies the first part of the proposition.
Next we prove the derivative estimates. Thanks to u/(y) > co, it holds that for any y, 2
with ’y - yc’ < ’Z - yC’a

(uly) — O < (u(z) — ) = ulwe)
Thus, for (y,c) € ¥,
y z
71001 < | o= |, 00 = P sy

c

Yy
g/kz—%Mﬂﬂuwm>
Ye

<5l fllim e
This means that o7 is a contraction mapping from L>®(X,) to L>(X,). Thus,
61l 0o 20y < 1T = &®T) M| poo (s < 2.
On the other hand, we have
Byt (y,c) = a*Tr 201 (y, ),
Dyyd1(y, ) = =20 (y)Ta 301 (y, ¢) + B(y, ¢),
then it follows from Lemma 5.3 that for any (y,c) € 3,
10y61(y, )l < Ca,  [Byyo1(y, c)| < Ca.
Now we deal with the derivative estimate in ¢ variable. Recalling that
$1(y,¢) = 1+ *Ti(y, o),
OTf =2IvTo3f — 2T0Th 2 f + TO.f,
we obtain
De1(y, ¢) = 20°ToTa 301 (y, ¢) — 20°ToTh 261 (y, ) + @*TIehr(y, ¢),
0y0:01(y, ¢) = 20° Ty 31 (y, ) — 20° T 261 (y, ©) + & Ta 20c1(y, ¢),
and

261 (y, ¢) =2020:.ToTa 301(y, c) — 2020:.ToT1 201 (y, ) + a*0.T 1 (y, )
2
e}

3/ (ye)
+ 202 T T 30001 (y, ¢) — 20° Ty Ty 20001 (y, ¢) + * T2 1 (y, c),
which along with Lemma 5.3 ensure that
10ct ]| poe(s0) =T = &*T) 7 22Ty To 301 (y, €) — 207 Ty T 261) || 1o (52,
SC(6¥2HT0T2,3¢1HL°°(ZQ) + 02HT0T172¢1HL°°(Ea))
<Cal[¢1]lL=(z,) < Ca,

=20°Ty0:T2,361(y, ¢) — 22T T1 201 (y, ) +
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and
10y0cdr || Lo 0y + 102601 || o (52) < C®.
Finally, let us consider the case of |y — y.| > é Using the fact that

sinh a(y — y.)

|¢1(y,c)| <C a(y — yc)

< Ccosha(y —ye),

)

QIr

Csinhaly —y.| > cosha(y —y.) —1  for |y—y.| >

we infer that

o y
Oyn(0) = [ @) — o)z
! (u(y) — u(ye))? Jy.
«@ v
<C O sinha(z — ye)(z — ye)dz
(& Ye
h - Je
_C|COS T;y_ yy| ) | < COZQSl(y,C).
Using the equation
2u’
o+ —— ) = ooy,
we obtain
07¢1] < Ca’oy.
— Oyd1 _ 01

To estimate the derivative in ¢ variable, we introduce f 5 and g = o It is easy to
see that d.f = Jyg and

(0*0:f) + 207’ f =0,

which gives

acf(yvc) = 8@/9(% C) - 2 2 /y ¢%(27 C)u/(z)f(’z?c)dz = 2 ((ﬁu'f),

__c S o5
o(y,¢)? Jy, o(y, c)?
For |y — y.| > é, % — 1~ ¢7 and 9,01 (y,c) has the same sign as y — y.. Then

C y
009(0.0)| = 10:1 0. 0)| 7 | n(z.0)0.6 (2,00
) yc
¢1 (y7 C)2 —1 C
<C < ,
T o) Tyl
from which, it follows that
C
l9(y, c)| < < Ca,
’y - yc’
and thus,
’ac(m’ < CO(¢1, ‘8yac¢l‘ < Ca2¢l-
We have

2 = c) = — ! L(Z’Cy 2z 0) ) (2)dz
10,0 = 0ydeafy. ) = 2 |0 (GE p (o) Ju' ()
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which implies

Ca
2 f(y. 0l < ———
166w Y — el
Thus, we obtain
Ca
|0c9(y, c)] < — < Ca? 0241 < Ca’éy.
The proof is finished. O

Lemma 5.4. There exists a constant C independent of o such that for any (y,c) € [0,1] x Dy,

%(% — 1> < ¢i1(y,c) —1 g(;'(% _ 1>7

[¢1(y, ¢) — 1] < Ca®(y — ye)*d1(y, ©),

where ¢ = u(ye).

Proof. We have

/

y Yy
d1(2) (u(z) — u(ye 2dzdy'
/yc —uyc)) /y (2l =)

>C-t % /y, sinha(z —y.)(z — yc)dZdy/

Ye (y - yC) Ye

a(y—ye) i
:C’_l/ cosh z B sml;zdz

z z

_—1sinha(y —ye) -
R QT R

and

042

-1= ’ y 2)(u(z) —u 2dzdy’
o)1= [ o [ o)) )Py

Ye

Y y'
sinha(z — y.)(z — yo)dzdy'
<0 [ e | simhote — ) — ey

C/a(y Ye) cosh z B sinl;z
0

dz

z

(smhay Ye) 1)
a(y — ye) '

This gives the first inequality.
Thanks to dy¢1(y,c) > 0 for y > y. and 9,¢1(y,c) <0 for y < y., we have

(bl(yac) > ¢1(Z7C)7 ‘U(Z) - C‘ < ’u(y) - C’
for |y — ye| > |z — ye|. Then we get

et [ oy ) P
‘le(yvc) HS /yC /yc ¢1(y7 )( ( ) )
<Ca’ly —yc[¢1(y, ) < Ca’luly) —ulye) Pdi(y, o).

The second inequality is proved. O

dy dz
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Remark 5.5. We also need a more precise estimate for ¢1(y,c) — 1:
¢1(y,¢) =1 =a(y — ye)’ / o ¢1(ye + 5ty — ye), K (ye + 5(y — Ye), Ye, t)sdtds

:()42 (y - yc)2T(¢1)(yv C)v

where y. = u~t(c) and

(fo (ye + st(y — yc))als)2t2
(fy v/ (We + 5(y — ye))ds)’
Using the fact that ||KHC§,yC,t < C and ¢1(y,c) > d1(z,¢) for |y — ye| > |2 — ye|, we get by
Proposition 5.1 that
T (¢1)(y,0)| < Cr(y,c),
0y T (¢1)(y, )| +|0:T (¢1)(y, ¢)| < Cadi(y,c),
05T (&1) (s )| + 82T (1) (y, )| + 3y T (d1)(y, )| < CaPpu(y, ).

5.2. Uniform estimates for good derivative.

K(yv Ye, t) -

Proposition 5.6. There exists a constant C' independent of « such that for any (z,c) €
D() X D(),

(0 + 0c) 1 (u™(2),0)| < Ca?(y — ye) o1,

10 + 0e)* 1 (u™ ' (2), )| < CaP(y — ye)? coshaly — ye),
where y. = u~t(c) and y = u=1(2).
Proof. A direct calculation gives

(02 + 0e)pr (u™ (2), )

a2

w(2)
(o2 / (uly') = ¢)261(y/, )y ——

u'(u=1(2))

2 ) 1 Y 2 /
+ 2% / e / " () - oo,y

/

o2 u!(2) R B ,
2 /C )~ ? /C (u(t) — )1 (t, c)dtdy
+a2T( c@bl)( _1('2)76)

1(2) 1
o C) / (u(s') = 000 (0 Wl
1

2 l(z 1 Y _\2 !
—« /yc )—6)2)u’(y’) /yc (u(t) — ¢)*¢1(t, c)dtdy

2 “1@; 4 I
« /yc ) = F /yC at((u(t) c)) 700 dtdy’,

Integration by parts and taking into consideration the boundary condition, we obtain

(02 + 0e)r (u™ ' (2). )

+ T (0ep1) (u (), )

/
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o?

— u’l(z) ANEEPAY / / 1 2 —1
o / () — Fon (s I s + 0P T 00 ().

o s [t s
z ,c)dz
(u(y’ Ye

+ 042/y 71(2 1 2)8y/ (u’(y’) /: (u(2') — c)%p1 (¢, c)dz/> dy’

DTN AN SN T CI0|
/y <u<y'>—c>2“ =y |,
2 ) 1 v Y o1(2 0N
o / o MGG L
1

Y
=0T (Du) (™ <>,c>+a2/yu@ ——l

+ a2 /y :Ll(z) m /y y (u(2') - c)2ay(¢;ffz,;))dz'dy’
=a*T(@eb1) (07 (2), ) + 0T (8 () Toa(on) ) (w7 (2), 0
+a?1(0 <¢1>)(u_1( ).¢)
=0T (0061 + 50,01 ) (w7 (2), ) + 0T (9 () Toa6n) ) (™ (2), )
+a T(qbl@y(E))(u_l(z),c).

This shows that
(I - azT) (az@bl + 8c‘lsl) (u_l(z)’ C)
= 2Ty (0, () Toan)) (w™ (2),0) + *T (610, () ) (7 (2), )

where the right hand side is bounded by a?T'¢;. Recall that T is a positive operator. Thus,
we have

(8 + D)1 (u"(2), ¢)|
< (I —a?T)7! |:042T0 (ay (%)ng(%)) (u™'(2),0)
+ a2T<¢18y (%) > (u(2), c)]

< c((f - OPT)—la?T(pl(

(5.1) < C(oﬁT(I - a2T)_21‘ < C‘ ika%Tkl‘.

Using the fact that (u(z) — ¢)? < (u(y’) — ¢)? for |z — ye| < |y — ye|, we obtain

= y; yu2—622’ !
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1
§(y yc) :
A simple iteration gives
which implies
[ee] o0 1
L 2ka1‘< . — )2l
1; o1 <Coly — 4e) 3 (o~ 3e)

<Cal(y — ye) sinh oy — ye)
<Co*(y — ye)’¢n,

which together with (5.1) gives the first inequality.
Now we prove the second inequality. We have

(0. + 80)2¢1 (u_l(z)’ c)
= 02(9. + 0)T(Ded1) (™ (2), 0) + a2(D + 0)Ty (ay (5)%(%)) (™ (2), ¢)

020+ 27 (2,( %)) ' (2). o).

Let F(y,c) be a function with (UIFZ/(;’LCC))Q — 0 as y — y.. Then we have

ufl(z) 1 ) ,
(0, + 8,) /y T e

_ P9 v Fo)
= (Z — 6)2 ( ) ( ) (u(y/) _ C)2u/(y/)

ul(2)

Ye
o L 7 ((a)ro)re [ o (agtorr e oo
+/y“(z )8F(y ce)dy'
/yc ))26y< (y’))dy/ ! /yjl(Z) (u(y’)l— c)? <u’(1y’)8yF(y,’ C)> ay

| o 0P )y
+ — 0 , C .
() —ep eI

Similarly, we have

ul(z)
(0- +0,) / o) - Py
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u1(2) u=1(2) ¢
= [ oy o+ [ 0K - oty

. u'(y')
With the above equalities, we can deduce that
(0: + 9c) ( 1(z), C)

ul(2)
2a2/ )T2 2( c¢1)(ylac)dy,+042/ ng(@?qﬁl)(y,’c)dy/
ve Ye
’ L Ve [ AR SV S
“+ « /yc T2 2¢1 y C) <a (u/(y/) )) dy + « /yC T2,2¢1(y ,C)may(u/(y/) )dy
w1 (2)
+2a /yc ’LL/ y/))T (@J(il))(y C)dy +2a /C T22<88 (¢1))(y C)dy

+ o? Z T22<8y<ui@y — >) Y, e)dy'.

Ye

Note that
¢1 )

021 + 0, ( ) (¢1)) +20.0,(%
= (0. + 0201 (0™ (2),0) + 20, (@) (0 + 061w~ (2).0)
2
+ aj(@)% + (@(@)) o1.
Thus, we obtain

(0: + 86)2¢1 (u_l(z)a c)

= azT(@ T ac>2¢1 (W™ (2).)) (w7 (2), ) + 207Dy (9, (ﬁ)w@ +0)61(u7(),0)))
u!(2)
T2 2@1 y C) (6 (u/(l /) ))2dy/ + o2 /C T 2¢1(y, ) ( )82(u 1y) )dy/

e
vt [

>T272 ((bl@y(%))dy’ + 2a2T(8y (%) (9. + 8.)1 (u=(2), c))

Yy
27 | 2 $1 5. (2 ?
o y(;)? +(a(z)) o
Then by using the estimate
|0y + )i (u™ (), ) < C[(I = a®T) " T,
and the fact that 7" is a positive operator, we deduce that
Dy + 0e)? 1 (u™" (), €|
< C|(I - ’T) 'a®T| + C|(I — o®T) 'a®T(I — &*T) T |
< C|a®T(I — o®T) 21| + C|(o®T)*(I — o*T) 21

< Caly — o) sinha(y — o) + €| S (k + 1)k +2)(a>7)21]
k=0
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< Claly — ye) sinhaly — ye) + a*(y — ye)? coshaly — ye)).-
This deduces the second inequality. O

6. THE INHOMOGENEOUS RAYLEIGH EQUATION

In this section, we consider the inhomogeneous Rayleigh equation

"
" — 2o =

(6.1) u—c
®(0) = (1) = 0.

Let ¢(y, ¢) be the solution of the homogeneous Rayleigh equation given by Proposition 4.5,
and ¢y (y,c) = 94:¢) We denote

u(y)—c"
1,7 —
(6.2) I, £ p.v./o %dy,
e 1 1
(63) R R TR Coor R

for ¢ € Dy and y. = u~!(c).
The following lemma gives a sufficient and necessary condition so that R, has no embed-
ding eigenvalues.

Lemma 6.1. Let A(c) = u(0) — u(1) — p(c)Iz + v/ (y.) p(c)Il3 and B(c) = mp(c) W) here

u/(yc)2 Y
p(c) = (¢ —u(0))(u(l) — ¢). Then c € Dqy is an embedding eigenvalue of R if and only if

Ac)? +B(c)? = 0.

Proof. Let ¢ = u(y.) be an embedding eigenvalue of R,. We know that uv”(u~!(c)) = 0, thus
B(c) = 0. Next we show A(c) = 0. In such case, A(c) = 0 is equivalent to the Wronskian
Wle1, @2;¢c] = 0, where p1(y,c) and ¢o(y, c) are two linearly independent solutions of the
Rayleigh equation

(6.4) O —alp— = 0.

Indeed, thanks to u”(y.) = 0, we can construct a smooth solution ¢(y,¢) of (6.4) with the
boundary conditions ¢(0,¢) = 0 and ¢’(0,¢) = 1. Moreover, we have

—C

Wlep1, 025 ¢l = ¢(1,¢).

Let ¢(y, c) be a solution of (6.4) given by Lemma 4.9 and ¢;(y,c) = % Then ¢(y, ¢) has
the following representation formula

(P(ya C) = ¢ (07 C)@(% C)?
where B(y, ¢) is given by

_ _ 0.0 o
é1(y,c) Y/ (y.) — u'(2)
+ 2L u(y) — (o) ~ /0 e

1
z,c)?

o 0)(uy) = )u0) =) [ (s 1)
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Then we find that ¢(1,c¢) = 0 is equivalent to

0 =p(1,¢) = ¢1(0,c)@(y, ¢)
009600 ) o
TN (u(1) —u(0)) 7 (o)

! 1 1
~010.0011.p(0) [ s (s
_ ¢1(07C)¢1(176)

u'(ye)

It remains to show that if A(c)? + B(c)? = 0, then ¢ must be an embedding eigenvalue of
Ra. The equality A(c)? + B(c)? = 0 implies that v”(y.) = 0 and ¢(1,¢) = 0. Then ¢(y, c) is
a non zero solution of (6.4) with boundary conditions ¢(0, ¢) = ¢(1,¢) = 0. This means that
¢ is an embedding eigenvalue of R,, with eigenfunction p(y, ). g

c c Ly —a
¢1(O7 )¢1(17 )p(c)/o (iiy(c:y)) — C)(;J) dy

— 1)dy

A(e).

Remark 6.2. For ¢ € C\ Dy, let p(y,c) be the solution of (6.4) with ¢(0,¢) = 0 and
inh

©'(0,¢) =1, then p(y,c) is analytic in ¢, and le oy, c) = w. For ¢ € Q¢, \ Do, we
c—00 (0%

have
Y 1 ,
P(0.0) = 60.0(0.0) [ sz,

i particular,

1
1
o(l,¢) = ¢(0,c)o(1, ¢ / —dy.
(1,¢) = 6(0, c)g( )Oqs(y,c)g
Lemma 6.3. If R, has no embedding eigenvalues, then there exists e > 0 such that for any
cE Qel \DO; (10(176) 75 0.

Proof. Let ¢, be defined by (4.3). We claim the following uniform convergence:
1. for ¢ € {Imec > 0} N Dy,

| 1 , .
P(Cs)/o mdy — m(A(Cr) - ZB(Cr)) as Ce = Cr;

2. for cc € {Imc <0} N D,

| 1 ) .
P(Cs)/o mdy — m(A(CT) +iB(cr))  as ce = ¢

3. for ¢, € Bio U B!

€0’

| u(0) —u(1) s e s e
p(CE)A e T T W ce

By definition of p(c) and ¢1(y, ¢), we have

1
1
w(l,¢c) =—p(c)p1(0,c)p1(1, ¢ / ———=dy for ce Q. \ Do.
(1,0) (€)91(0, )¢ ( )qu(y’c)g o\
It is easy to show that A(c) and B(c) are continuous in Dy. This along with the above claims
implies that ¢(1,c) is continuous in Q.,. Thus, the conclusion follows from Lemma 6.1.
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Now let us first prove claim 1. Let ¢, = ¢ + ie with € # 0 and ¢ € Dy and y. = u~'(c). We

write
L |
Ce —d
p( )/0 ¢(y,66)2 Y
1 dy

= p CE /
) )y )~ cPnocc?
! dy 1 1 1
:pcg/i—l—pce/ —1)dy.
€ J, G —ep +7 ), P e )
By Lebesgue dominated convergence theorem, we get
! 1 1 ! 1 1
lim —1)dy :/
0 Jo (uly) —ce)? <¢1(y,cs)2 ) o (u(y) —o)? <<b1(y,c
Thanks to u/(y.) > ¢ > 0, we have

1 dy
o) [ G ey

L1
L m“l —1,).

Thanks to |W| > ce? > 0, we get

- 1>dy — 1l

(e u(O)(@@) —ed " _ (ec—u(O)((@) —c) _ (ce —u(0)(u(l) ~ )
' u(y) — cc 0 u(0) = cc u(l) — cc
= u(0) — u(1).
Set g(y) = u'(y) — u'(ye) — s (y) (uly) — ¢). Then g(y.) = 0 and ¢/(yc) = 0.
_ ! u/(y) - u/(yc)
la=p(e) || o
ey [F W) W) [T )(uly) =)
~+te) || ) Cap e [ oy e

Because of |¢'(y)| = |9'(y) — ¢'(ye)| < Cly — yel, we get

L gy ) Log(y)
A(Mw—qu%p'ﬂ<mw—@”y

Thus, we deduce that as € — 0+,

Yy —o), [T e e
p(CE)/o (u(y) — ce)? Ay =l E)/u(O)—cs 2

= p(ce)In a0) e, + ie(u(0) — u(1))

— (¢ —u(0))(u(1) —¢)In Z(—l)uzo(): +im(c — u(0)) (u(1) — ¢)
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This shows that

Iy — p(c)1la +im u/
u

So, we have as € — 0+,

L | 1 " (ye
pled) [ Srsgty — s (u(0) = (1) = plo)Th = im 22 (0)) + ples

This shows claim 1, and the proof of claim 2 is similar.
Let us prove claim 3. Let ¢, = u(0) + ee? with e > 0. Similarly, we write

1 1
plc) /0 S
1

1 d 1 1
=06 | gy e+ ||ty e Groep ~

1 1 . .
Because COEAE ( P 1) is uniformly bounded, the second term tends to zero. For the

first term, we write as above

! dy a 1 -
#e) || e = w®

It’s easy to see that
I} = u(0) — u(1).
For I, we have

; . u(1) u’ ’LL_l 2)) — o
Ta] =[ee®(u(1) — u(0) - ec®) / (u='(2)) — /(0

w() (2 —=u(0) — cei?)2 (u™) (2)dz

(1)-u(0) B
SCe/ dz

0 V(2 + €cos )2 + €2sin? 6
<Ce|lne] -0 ase—0.

For the case of ¢, € B!, the proof is similar. O

€0’
Remark 6.4. If A(c) <0 and B(c) =0 for ¢ € Dy, then Rq has no eigenvalue.
Indeed, under this assumption we can find 0 < e; < 1 such that for any ¢ € Qc, \ Do,
inh
o(1,¢) & (—00,0]. Since p(1,c) is analytic for c € C\ Dy, and ¢(1,¢c) — S e

we can find R > 2 such that ¢(1,¢) € C\ (—o0,0] for |c| > R. Then by residue theorem,
the number of roots of ¢(1,¢) for ¢ € C\ Dqy equals to the number of roots of ¢(1,¢c) for
c € Br\ Q,, which equals to(count multipilcity )

(1,
j{ j{ c(P c) j{ j{ O:In (1, c)de.
27TZ dBg 8Q 1 C 27TZ dBr 8Q

Let z = ¢(1,¢). Force E?BR, In z is the analytic function deﬁned in C\ (—o00,0] such that
Inz =In|z| +iargz for |z] >0, —7 < argz < m. For ¢ € 08, by our assumption, if we
take €1 small enough, such that In(z) = In|z| +iarg z for |z| > 0, —7 < argz < w. Thus, we

deduce that
7{ j{ O:In (1, c)dc
2mi Jopn  Joa.,

for ¢ = o,
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Proposition 6.5. Let c € )¢, with €; as in Lemma 6.3. Suppose that R, has no embedding
eigenvalues. Then we have the following representation formula for the solution of (6.1):

B /¢ /¢yc JUr el e /¢yczdy,
where y. = u~'(c,) with ¢, deﬁned by (4.3) and
Ji i Iy 040 )dy'd:
fol Wdy '

Proof. Let ¢(y) be a solution of the homogenous Rayleigh equation

"

ule) =~

¢ —atp— ¢ =0,
u—c

then the inhomogeneous Rayleigh equation

"
{(I)"azi) Y e—y,

is equivalent to

DN/
2 — =
{ (90 (@)) fe.
¥(0) = (1) = 0.
This gives our result by integration and noting that p(c) is well-defined by Lemma 6.3. [

Next we study the convergence of the solution ¥ (y,c) with f = W Tetce Dy and

za(u c)”

ye = u~'(c). We introduce

. (y ) ¢fo ¢(chf of(y dy/dz+ui0¢f0 Wdy 0<y<y,,
’ qbfl ¢(z02f @f dy’dz—l—,ui C¢f1 (02 dy Ye <y <1,

and
B £ o(u0) [ o ¢zu 3 | ot o) £ w0y
Br(0) 2 (1) [y [0/ ) )
where
g = L i (ye)p(e)Th — p(c) el r
T eu(0) — (1) — p(o)llz — imp(e) 3752 + ' (ye)p(e)lls
1 w<><mumm%@w
,u_(c) - - u” (ye) )
@ u(0) —u(l) — p(c)lly + imp(c ) W (Yo )2 + ' (ye) p(c)1l3
with
w c)dy'
(6.5) IT (wp) —pv/ f oly zc)2 )ydz.
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Lemma 6.6. Suppose that f(y,c) is a Lipschitz function in y € [0, 1] with

|f(y7c) - f(Z,C)| < C|y - Z| fOT (y,z,c) € [07 1]2 X D€07
and f(y,ce) uniformly converges to f(y,c) for cc = ¢ +ie,c € Dy as € — 0. Then it holds
that for 0 <y <y,
[V flzel) Y fz0)
— Y + i€ ————dz — y—yc/ ———=dz
oerio [Tt = 0w [

as € tends to zero.
Proof. Thanks to 0 < z <y <., then |z — y.| > |y — y.| and
(f(z,c0) = fyerc))y — ye +ie)| _ 2 —yel(ly — z0f* + €)'/
(z — ye +i€)? |2 — ye|? + €2
which together with Lebesgue dominated convergence theorem gives

Y Z,Ce) — ¢y Ce Y z,¢) — e

On the other hand, we have

<C <C,

N 1 Y — Yo + i€
— Y + i€ ——dz=—"""—+1
e )/0 (Y — e + i€)? —Ye + i€
Y 1
— (y—y / —dz
W) f T
as € tends to zero. Then the lemma follows easily. O
Proposition 6.7. Let ®(y, c) be a solution of (6.1) given by Proposition 6.5 with f = w‘j&fﬂ)

for wg € L?(0,1). If Ry has no embedding eigenvalues, then it holds that
L. for any (y,yc) € 0,1] x [0, 1],
lim ®(y,cc) = D4 (v, ulye)), lim D(y,cc) = P_(z, u(ye)),
e—0+ e—0—
where c. = ¢+ ie and ¢ = u(y.).
2. for any y € [0,1],

. N . ry
Jim D(y, cc) = Pi(y), Jim Dy, cp) = ©r(y),

I _ 10 _ 10 T 3
where Ce = U(O) + e’ and CZ; - ’I,L(l) — €€’ fOT 0 S [5, 7]
Proof. Let us first prove the first statement. To show the convergence of pu(cc), we consider
1
o szay Jy 97y, codydz
1 1
Jo sty
1
p(ce) Jo giay Jo, 0F (Y, c)dydz

_ e ‘

p(ce) fO ¢(y,c€)2 dy

By the claims in the proof of Lemma 6.3, it suffices to deal with the numerator of y(c), which
is decomposed as

1 z 1 z
plce) /0 ﬁ 6F(y, co)dydz =p(c.) /0 ﬁ y o1 ()22 g

z,¢e)* Jy, i

plee) =
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N b ? I
o) [ s | () — 122

2,¢e)? ve
Uy Py
woled [ e g ~ Ve
[z g

! Yo Qv Y
Foled) [ e

Using the inequality |¢1(y, ce) — 1| < C(|ly — ye|> + €2) and Lebesgue dominated convergence

theorem, we get
SR S & wo(y)
e | sms | @rted 0= dyas

2, ¢ )? Ve

1 w
—0t0) [ sz | @t~ 2y

z,c)?

and

Ve, oy LR ey
ped || e e e~ V% 0 | e G

as € tends to zero. Similar to the proof of I in Lemma 6.3, we have

L[z el gy Lz e gy wolye) .
e | () — e 7 PO | (@ — 2 TP iy ™

as € — 0+. Thus, we obtain as € — 0+,

1 1 z
P(Cs)/o P ) 5 o f(y, ce)dydz

- 1)dz

z wo(y)¢1(y,0) ¢1 Y,¢) dy

— p.v.p(c / Ju. e dz—I—p(c)%m

- —é (Z’p(c)lh(wo) —p(0) wO(ycl “)'

Similarly, we have that ¢ — 0—,

! 1 N 1/, wo (Ye)
06 [ ez | o1 cddudz —  (ipth + o) S5V ).

This shows by Lemma 6.1 that

[\

(6.6) u(ce) — px(c) as e—0=+.

Next we show the convergence of 1(y, c.). Using the formula

¢(y7 CE) :(u(y) - u(yc) - Z‘6)(251 (y7 CE)
1
:((y - yC) / u/(yc + t(y - yc))dt - i6)¢1(y7 CG)7
0

we deduce from Lemma 6.6 that as ¢ — 0,

v |
¢(y,ce)/0 W@—W(%C)/g pYon )zdy,
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Y 1 N / ! Y 1 z / /
oy, <o) /0 et . oW ez — o0.0) /0 o L oo

for y. >y > 0, and
1

v o1 y )
¢(yace)/l Wdyﬁdyac)/l Wdy,
<b(y,ce)/1 SR ), ¢f(y,cg)dydz—>¢/1 7(1)(2,6)2/ of(y'sc)dy'dz,

Ye
for y. <y < 1. This finishes the proof of the first statement.
The second statement is similar just by noting that in this case, we have

p(cd) — 0, p(c) —0
as € — 0+. O

7. REPRESENTATION FORMULA OF THE SOLUTION

Let T,/Z)\(t, a,y) be the solution of the linearized Euler equations

00 = (3}~ 0®)7 (") — u(y)(@} ~ ) D = ~Ra?

with the initial data

(0, 0,y) = (o = 95)'Go(e, ),
where Wo(a, y) = Frwo. We know from (3.5) that

~

Bty any) = —— /8 o= Ra) D0,

211

where () is a simple connected domain including the spectrum o(R,) of R,.

o~

Note that Par, %(0,a,y) =0 if Prwy = 0. Thus, we have

~

1 —iate -1
w(taaay) = 2_ / e ! (C_ Ra) 11/}(07047y)dca
™ J o2,

where Q. defined by (4.2) with e sufficiently small.

Let ®(c,y,c) be the solution of (6.1) with f(a,y,c) = % It is easy to see that

(¢ — Ra)~1(0, 0, y) = iad(a, y, ).
This gives

~

1 .
(7.1) Y(t,a,y) = —/ a®(a,y,c)e” " *de.
27 00,

Since L(thus, R,) has no embedding eigenvalues, Lemma 6.3 ensures that there are no
eigenvalues of R, in {2, for € small enough. Then it follows from Proposition 6.7 that

N 1 .
»(t, a,y) :—/ a@(a,y,c)e_““tdc

= lim —/ a®(a,y, c)e " dc
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where

(H-(©) — 14(c)B(y. ) / ’ ﬁdz 0<y<ye

(n—(c) = Py, c /<25 dz ye<y<1,

with y. = u(c), and ¢(y, ¢) is the solution of (4.1) given by Proposition 4.5.
We denote

A £ u(0) —u(1) = p(e)Tz + ' (ye) p(e)ILs,

B 2 sl

ce p<c>%m D 2 4/ (4o)(e)TTy (B0).

where p(c) = (¢ — u(0))(u(l) — ¢), and II;,1I5 and II3 are given by (6.5), (6.2) and (6.3)
respectively. Then we have

_ 2AC+BD , 2
(7.3) p—(c) — py(c) = a AT pe ple)ulo).
8. SOBOLEV REGULARITY OF (c)

In this section, we study the regularity of p(c) defined by (7.3). The result is stated as
follows.

Proposition 8.1. With the same assumptions as in Theorem 1.1, there exists a constant C
independent of v such that

1. L? estimates
C, .
loull 2 < EHWO(O% M2,
[ullz2 < Cllwo(a, )| g2
2. W2 estimates

10c(pr)ll 2 < Cll@o(ev, )l 1,
10cpll L2 < C(1+ a)l|ao(e )l -

3. W22 estimates

102 (o)l 2 < C(1 + )| @o(a, )|l g2,
1002 (o) |12 < Cll@o(, )|l -
Proof. Let us first estimate 11y, Il and II3. Recall that

Wo (e y 1y, c)dy’
1T, (@) —pv/ f 5 dz,
o(z,c)

_ P(y) — u'(ye)
ta=p. [ S
1 1 1
s :/0 w = e~ )
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By a change of variable, II; can be written as
1Ty (@) (¢) = L1 (@o(a,u™ ) (u)).
Then Lemma 11.4, Lemmall.9 and Lemmall.10 ensure that
(8.1) |T0(@0) | ,» < Cll@o(a,)llzr,
(8.2) [0 (pIT1 (@0)) [ 1p < Cll@o(et, )l
(8.3) 182 (p° 1L (@0))]| 1, < Cll@o(, ) llw2-
Let y. = u~!(c) in the sequel. We rewrite Iy as
L[ (y)dy
IIx(c) :p.v./o (2(2)7—0)2(&
- 1 / (Jy (2 + t(z = ye))dt)?

dz
fo "(z+t(z — ye))dt)?

1 L—/(2) [, " (y)dy
+ ——Dp-V. 5 4
' (ye) 0 (u(z) = ¢)
1
£y + ———1g0.

' (Ye)

It’s easy to see that
Mo poe + [|0II0,1 || oo + (021101 || Lo < C.
We rewrite Il o as
Mho(e) = [ O @) Y ()
u(0) D
= — xpo(¢)H (u" (u™ ) (w1 xpy ) (c)

# ) (N 2) (Y (2 2—71 U(O)u"u_lz w1 (2)dz
o) L 0T T [ e e e

from which and Lemma 11.5, it follows that
Mool e + 10c(pla2)| e + 102 (p*T2.2) | L < C.
Thus, we deduce that for any p € (1, 00),
(8.4) Ma[|ze + [[0c(pl2) | 1o + 107 (p*112) | 10 < C,
(8.5) |pMa | oo + [|0(p°112) || Lo < C.
We get by Lemma 5.4 that

= [ c>2<1 )
(#) 1
= / (v — ye)? ¢1y(y,6)2 >dy

Sola /a“ yﬂ’;<m_1>dy

—oye sinh? Y Y

1/2 1 inh
ZC_loz/ 19 (M - 1>dy 2 C_lOé,
o sinh®y Y

dc
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and
II5( d
| 3 | / 2 ¢1 v, C) > Yy
(1 y) 1 sinh y
< —1)d
_C'a/_ayc ysinhy( Y > 4
1 1
<Cu« 1—1—/ — + ———dy) < Ca.
< ly|>1 y?>  ysinhy )
This gives
(8.6) C~ o < |1I3(c)| < Cov.

By Remark 5.5, we have

o) =0 [ o= (o~ )

! 1 1 1
:/0 _8y<(U(y) — C)2> u'(y) <¢1(y70)2 N 1) dy
! 1 1
+ | wwr=a e~ )
o*T(P1)(y, C)(<25

_ 0)+1)
qbl y,¢)?u! (y fo +t(y — yc))dt‘y=0
1

1 1
* /0 (aly) — o (80 + o) Grae)
1 \/

and

2L o) = T (61) (3,0 (61 (v
80113( ) —8c<¢1(y C)2u (y ) Olu(

1
o (o= )a(“u'zy) )( <1c>2>dy

! 1 /
+/o<u<y>—c>2< )a(mc 1)dy

9 ( ’T (1) (. c><<z>1<y ¢)+ 1) ‘1 >
61 (y, 002 (ye) o @ (Yo + ty — o))t 1v=0

1 1 1 1
W) — P =t >ay><¢1<y,c>z)\y:o

1 1 /1 yy 1 1
~ (uly) — o) u/(y)( "(y )) <¢1(y,0)2 _1>‘y=o
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1 1 ey ) .
+ ), ww o <u'<y>) (0 + u/(y)ay) ()

! 1
[ =t w? G
1 1 .
+/0 (u(y) _C)2< (u’(y )) <¢1 (y,c )dy

! 1 1 11
+ | = Gey) G+ (W)dy'
Then by Remark 5.5 again, Proposition 5.1 and Proposition 5.6, we obtain
(8.7) 0105 < Ca?,  [|02T05]| e < Ca?,  (|0.(p?0cI13)]| e < Cav.
Now let us turn to the estimate of p(c).
mp(c)s(c)wo(e,ye)  mp(e)lla(e)@o (e, ye)

ule) = A? + B2 B ' (ye) (A% 4+ B2)
m(w(0) — u(1))@o(e, ye) | mu"(ye)plli (@o)(c)
u'(ye) (A% + B?) u'(ye)(A? +B?)

By Lemma 6.1, A2 +B? > C~!. Thus, by (8.6), we get
A+ B2 > CH(1+ ap)* + p?).
Thus, by (8.1), (8.6) and (8.5), we get
1 ~ ~
iz <C(1+ =Ml zee + (oM o0 ) |G (@, )| 2 + CTh|2 < Cll@o (@, ) 2
Using the inequality (1 + ap)? 4 p?> > C~(pa)* for k = 1,2, we can deduce that
C -
loullzz < —ll@o(er, )|z

The H! estimate of u(c) is similar. Here we just show the estimate of one term.

ac( le(ao)(c)) _ OlpIli(@0)()) _ pILi(Go)(c)De(A% + B)

A? 4 B2 A% + B2 (A% 4 B2)2
We infer from (8.2) and (8.6) that
e (pIl1 (Wo)(c)) -
‘ W‘ S Cllwo(ar, )| 2

Notice that
10c (A% + B2)| <[2A (0.t () p(e)TT5) — De(p(c)12)) + 2BA,B|
<CO(A? + B2 (1 + |0c(p(e)1L3)] + |pLL3] + |9 (p(e)112)))
Thus, by (8.1), (8.7) (8.4) and Sobolev embedding, we get

pll1 (@o)(c)0. (A% + B?)
[

L2
o)1)

<ol s S

< Call@o(e, )|

~ 1 ~
oML @0) 4 + C (10T Ta | = + ||z ) oTTy @o)l 2

L4
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which gives

Jo- (P55

The H? estimate of pu(c) is similar. We left it to the interested readers.

< Caf@o(e, )l

L2

9. UNIFORM SOBOLEV ESTIMATES OF THE VORTICITY
Recall that @(t, o, y) satisfies
QB + il + i = 0,
{ W= = Fwo(a,y).
This is equivalent to

(eiat“(y)@(t, «, y))t = —jaetotu) u”(y)lzj\(t, a,y).

Integration in ¢ gives

t
MGt o, y) = Bola,y) — i’ (y) / T W (r, o, y)dr.
0

We denote W (t,z,y) = w(t,r + u(y)t,y). We find that
W(t, a,y) = MGt a,y).
Then we get by (7.2) that

W _ 5 _d(y) [ (0 —p()p(e)T (y. ©)
W(tv «, y) - WO(a7 y) T /u(o) u(y) s de
& aofany) — 0wy r),

where

v .
<b(y,c)/0 Wdz =To(y,c) 0<y <y,
I(y,c) =

Yy 1 N
<z5(y,6)/1 ¢(ch)2dz =Ti(y,0) ye<y<Ll

We have the following uniform estimates in Sobolev space for W (t, z,y).
Proposition 9.1. With the same assumptions as in Theorem 1.1, it holds that
IWOll =115 < Cllwoll -
IW Ol < Clwolly- -
HP(U(y))ag?W(t)HH;ILg < CHWOHHngg'
Proof. The proof is split into three steps.

Step 1. L? estimate
Let ¢(y) € C§°(0,1) with |l¢||,2 = 1. A direct calculation gives

1
/0 T (1) (t, y)p(y)dy
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- / ! / ) (et @)= — 1) p(c)u(e)I'(y, c) dep(y)dy

u(y)—c
/ /u@ (079 — Do(QOLW:9) 4. ay
U( )—c¢

/ / (0079 — DAL W) g
(y) U( )~

c

u(1) it(u(y)—c)a _
:/ p(c)u(c)/ (et D0, 9eW) ) 4.

w(0) uly) —c
u(1) ve (et(ul®)=9) — 1)To(y, ¢)p(y)
—1—/ ple)pu(e / : dydc
o (c)u(c) ; w(y) —c

u(1) T v
= cule eit(uy)—c)a _ c z c
‘/u@ ple)ul )/yc< D= 1) (. )/1 e ) L dep(y)dyd
u(1) c
; / PO / " (it Do (ys e / e dude

" it(u(y)—c)
= it(u(y)—c)a
N / / #(z,0)2 / D)(y)é1(y, ¢)dydzde

U(l) ,
= / p(c)u(e)e-mﬂr(<u—1>',soou—lem% Vo0 s

Then by Lemma 11.7 and Proposition 8.1, we get

/01 T(w)(t y)e(y)dy < Cllp(e)p(@)ll=llellz < Cllwo(e, )l z2-
This gives
W@l gr-12 < Cliwoll gz
Step 2. H! estimate

Let ¢(y) € C§°(0,1) with |||/ 2 = 1. Then we have

1 1
/ 0, T o) (1, ) o y)dy = — / T(o)(t )¢ (v)dy
0 0

u(1) 1 1 y' it (u(y)—c) , ’
_ it(u ca _ 1 dudv' d
/u(m p(c)u(c)/o oy, c)? /y . St dydyde

“ -1y -1\ _ita(z—c — 1
:/u(O) p(C)M(C)T<(u Y, (pou™), eI (u ), W)(C)dc

u(1) , 1y B 1
- [ e (Wt (pouY. et o), s

o ) (c)dc.
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We get by Lemma 11.2 that

1
/O Oy T (o))t 1) p(y)dy

u(1) u(1)
—— [ pen@o.Lilpou et [ plen(e)Late ou e
u(0) u(0)
u(1) ) )
+ / p(c)u(c)de (e L1 (pou e ) (c))de
u(0)
u(1) , ,
_ / ,o(c),u(c)e_’to‘cﬁg(goou_le’to‘z)(c)dc
u(0)
N /u(l) (C) (C)e_itacB( ° u—leitaz) (C)dc B /u(l) (C) (C)B( 5 u_l)(C)dC
2(0) P\C)H P 4(0) pLC)p P
u(1) u(1)
— [ Capeue)eatpou@de+ [ ploue)taloou ) e)de
u(0) u(0)
u(1) . .
- /(0) A (p(e)u(c)) (e7™ Ly (p ou™t(2)e" ) (c))de
u(1) , ,
— / p(C)M(C)e_ZtaCEQ((pOU_1€Ztaz)(c)dc
u(0)
u(1) ' , u(1)
[ et e Bloou e @de~ [ plehueBleo u(e)de
u(0) u(0)

Thus, by Lemma 11.10, Lemma 11.9 and Proposition 8.1, we obtain

1
/anT(pu('))(t,y)cp(y)dy

< 119 (p()(@) g2 (11 0 w2 + L2200 u™) | 2)
+ Cllopll 2 (€206 0 w™ )z + 122" 0 w™) |2
+11B(p 0w llp2 + 1B p 0 u |2 )
< CJ9e(p(e)u(e)) |2 + Clppll > < Cll&5 (-
This gives
HW(t)HH;lH; < CHWOHH;lH?}-
Step 3. H? estimate
Let ¢(y) € C§°(0,1) with ||¢|/z2 = 1. Then we have

1
| o) o) e ety

1
_ /O T(pu(-)) (t, )92 (9 (y)p(uly))) dy
u(1)

1 1 Y () —c)r ,
- _L(O) p(C)M(C)/o oy, c)? /yc (el( W=ae 1)85(90(1/)14’@(1/)))%(@/,c)dydy de,
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where

¢2 / (W)= — 192 (o(y)p(u(y))) 1(y, c)dydz

_ —1\/ it(z—c)a - 1
:qr((u D' (02 (pwe(u() o u™ ) (@™, (79 — 16y (u <>>W>

We denote F(z,¢) = ¢1(u™'(2),¢), G(z,¢c) = ¢1(u,1(z) 3 and h(z) = p(u"'(2))p(z). Using
the fact that
(fog)yg"

(fog) =(flog)d, (fog)=(f"o9)d)+ g

we deduce from Lemma 11.1 and Lemma 11.2 that

1 z
p(c) /0 ﬁ /x O(e“(“(y)_c)“ — )02 (¢(y)p(u(y))) b1(y, c)dydz

z,c

—1\/ " it(z—c)a 1
= (AT (™)', ", (e Uy G)
u—l "
T( zt(z ca 1) (((u_1))/)2F7 G)
_ agr( gitlz=c)a _ 1)F11)’F’ G)
zt z— c @ 1
ple)T( (! B0 =10, + 0 (g ), G)
T (Y, W, (@5 1) (ufl),F, (0- +2,)C)
T( // h/ pit(z—c)a _ 1) (u_ll)/F’ G)
/ zt z c « 1
n 1530( - 1)WF, G)
/ zt z c « 1
n 1531( - 1)WF, G)
— it(z—c (u_l)//
()9 T((u o () G)
+ p(c)T((u_l)’ h, (€"G=9% _1)(@, + 0.)( ()" F) G)
s 14y z c ((u‘l)’)2 ’
-1 it(z—c)a (u_l)”
+ ()T (Y, b (e )y (2: +0.G)
u—l "
+p(c)T<(u_1) h, (et=°) 4)%1@ G)
— By ((u—l)/7 h ( it(z—c) 1) (5_11))//;2177 G>
—1y\/ it(z—c)a (u_l)//
—IBSl((u Y, h, (et==0) “Veh G).
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This gives
o | 1 e/ :<e“<“<y>—c>a — DO (p(m)p(u())) 61 (9, c)dydz
- p(c)@cT<(u_l)/, B, (et _ 1)ﬁF, G)
n Bo((u_l)/, W, (etE=0a 1)~ _ o G) + B, ((u—l)', K, (eit=9 _ 1) (ufl),
+ E1(h) + p(c)0:Ea(h),
where
N i
e ) e
e
Ly (hem (u= ,) £3<h(u—11)’)
— ey (h(z)e (ufl),) 5 (he) =
+ ol Ly (W) (=5)") = e (=) ).
and

Za(h) =e 0Ly ((2)e™ ((u_l),)z) — L (h(fi—_ll )),';2)
1

By Lemma 11.10 and Lemma 11.9, we have
(9.1) [E1(M)llz2 + IE2(R)]| 2 < CllAll2 < Clle]l 2.

Using Lemma 11.3, we write

Bo ((ut), W, (M9
+ B ((w ), I, (10—
= 0.By ((u—l)’, h(eitE=da 1)
+ 081 (w1, (e

o BO ((’LL_I)/, h, (eit(z—c)a o 1)

(u™ )
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1

B ((u—l)/7 h, (eit(z—c)a _ 1)( )

F(‘)G)

~ B () (e~ 1) s 0.+ 0. 9:C)

~ By () A~ 1) s 0.+ 0. 0.C)

- Bg((u_l)’, h(eF=e _1)( (ui),)’, F, &G)

_B, ((u—l)’, h(et—a _ 1)(ﬁ)’, F, 8CG)

. <u—1>'<z<i)>ig<u<o>,c> /u:m B 1) _11)/ Ple, o)z
o (T EITUD /C““’ R T

= CE4(h) + E3(h)
It follows from Lemma 11.8 that

= - C
(9.2) [Es(Mlle2 < Cllelle,  1Za()llze < —llollz2-
«

Using Lemma 11.1, we write

p(c)@c']l‘((u_l)’, h/, (eit(z—c)a N 1) 1 F G)

'
— QT (™)' WP~ 1), . G)
= (DD (W) b (17 = 1)(0,+0,) (= F). §)
- p(c)acT((u_l)', h, (€= _ 1)ﬁF, (9 + az)G>
—ple )a;[r(( Wb, (e _ 1)ﬁﬂ Q)
1 ( pit(z— C)a_l)ﬁF’ G>
1 Zt Z c)o 1
G "Dt 6)
(2[4, ] (o0 (u_ll),) (122 (s (o0 - 1) L) )

- 1 - 1
it(z—c)a it(z—c)a
— p(€)BuLn (h(e (z=0)a _ 1) u_l),) — p(€)DuL <h(e (=) _ 1) ) )
1 t(z—c)a 1
+ p(c)@cp8<h(e 1)( Ty )
£ p()0:E5(p) + pOz (PE6()) + pOcEr(h).
This together with Lemma 11.11, Lemma 11.10 and Lemma 11.9 shows that
(9-3) 1E5(0)llz2 + IZ6(0)l L2 + [[E7 (W)l L2 < Cllollz2-
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Thus, we obtain

/ )T (o)) 1,5 )y
/ Z1(1) + p(c)0.Za(h) + Ealh) + 0,Za(h)
+ple >ac_5< )+ p02(pZo(9)) + pO.Zn(h) ) de
/ H(O)Z1(h) — Delpm)Za(h) + p(c)Zs(h) — Za()eps
— 0c(p)Z5(0) + p(c)0Z (p)Ee () — De(pp)Er(h)de,

which along with (9.1)-(9.3) and Proposition 8.1 yields

()95 T (o) (¢, y)ll 2 < CllGo(ex, )| m2-
This implies

|]p(u('))8§W(t)|]H;1H§ < CHWOHHngg'

The proof of the proposition is completed. O

10. PROOF OF THEOREM 1.1
This section is devoted to the proof of Theorem 1.1.

10.1. Decay estimates. With the uniform Sobolev estimates of the vorticity, the decay
estimates of the velocity are similar to [16]. For the completeness, we present a proof. By
the elliptical estimate, we get

VL2 < Cllwll -1
We get by duality that

Woles _ sw | [ ooty
C5os llell <1 -
(10.1) <C sup Z/ gp(a,y)W(t,a,y)e_ia“(y)tdy‘.
weCE, el g1<1 la|#£0 0
Integration by parts gives
1 - —iau(y)t P 1
| T Wt ase 0ty =B W (t.a.v)
0 pla, s & —ZOét’LL/(y)(’D ) y 0
1 —iau(y)t =N t
_/ e ay(@(a,y)W(,a,y))dy
0o —at w'(y)
)

Lemiou@)t Bl )W (t, a,y)
- _/0 —iat 8y( u'(y) )dy,

from which and Proposition 9.1, we infer that

IV(#)ll2 <Ct sup IW O g1 g 1ol 2 11
peCE, el <1 y

gCt—luonH;lH;.
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Also we get from (10.1) that

V()2 <€ sup WO 1 22 el 2
e, llellgr<1 Y

<Cllwoll1 2.
Recall that —AV? = 9w and V2(z,0) = V2(1,y) = 0. We define
—~AY=V2%  9(t,x,0) =Dt x,1)=0.
We get by the elliptic estimate that
9]l 2 < CIV?| 2

Integration by parts gives

V32, = // Opwidrdy = Z / ioe o (t a y)g\(t,a,y)dy

|0
¥ / e—iou(y)t W(t,a,y)ﬁ(t,a,y)> i
= u'(y)
Ly o (W(t,a,y)g(t,aay)> '
a0 wét? % ' (y) y=0
—zau(y 1 W(t, a, y)g\(h «, y)
) |§;;0/ Ciat? (Jay< u'(y) >>dy

By Sobolev embedding and Proposition 9.1, the first term on the right hand side is bounded
by

_ 1 —~
Ot 3 ~IIW (o)l [0t . )
|| £0

72 < Ct2llwoll g2 [V 2-

Using Proposition 9.1 again and Hardy inequality, we get

5, <$ay<W(t, ajzyvﬂ)(t, a,y) ))

I(t, o, y) ‘
p(u(y))

+ 010, W (¢ .9)3 [0t 0. p)] 1y

<Cllp(u(y) W (¢ 0.9)] 3
Ly

2
Ly

+CIW (@)l [0t . 9)]|
<Clwoa, Mz |90t
This implies that the second term is bounded by
Ot woll o a1V
Thus, we show that

”V2”L2 < Ct_2”w0HH;1H§'
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10.2. Scattering. We only prove H! scattering. The proof of L? scattering is similar. Sup-
pose that wy € H,'H,. Let {w(()n) Jn>1 € H,'H} be a sequence such that wé") — wo
in H 1H§. Let w(™(t,z,y) be the solution to linearized Euler equation with initial data
w(()n) (z,y). Then w™ — w in L*(H;'H}). Thanks to Wt(n) = " (y)9,)™ | we get

t
W (t,2,y) = w™(0,2,y) — / u" ()00 ™ (s, 2 + suly), y)ds.
0

By the decay estimate, we have

C . m
‘|am¢(n)(s7x7y)||L%y < <t>2Hw0 HH;lHS
Letting t — oo, we get

n n > n n : 172
Wt z,y) — w™(0,2,y) —/0 W ()0 (s,x + su(y),y)ds = w in H'L2.

By Proposition 9.1, {W (™}, is a Cauchy sequence in L$° (H;'H}). Thus, W is a Cauchy

sequence in H IH?}, then w™ = lim,, s wéz) e H; IHZ}.
11. APPENDIX

11.1. Multilinear singular integral operators. The multilinear operator T is defined by

] W (¢ g(2)F(z c)d
R I

where f, g are functions defined on Dy and F,G are functions defined on Dy x Dy.
The multilinear operator By and B; are defined by

def (u(1) —c)f(u(0)) [°
Bo(f, g9, F,G)(c) = ¢ —u(0) /u(o)

def (¢ — u(0))f(u(1))
u(l) —c

G(d,c)f(d)dd,

9(2)F(z,¢)G(u(0), c)dz,

B1(f,9, F,G)(c) =

Lemma 11.1. [t holds that
0c(p(O)T(f, 9. F, G)(c)) = ( )T(f,d', F,G)(c) + p(c)T(f, g, (0: + 0c) F,G)(c)
)I(f, 9. F, (9: 4 0.)G)(c)
)T(f', 9. F,G)(c) + p'()T(f, 9, F,G)(c)
- IB%o(f,g, F,G)(c) = Bu(f. 9, F, G)(c).

u(1)
[ sre oo, aa

pLc

/\/‘\

pLc

Proof. Thanks to
ple) = p() = (¢ = (¢ + e = u(0) — u(D))
we get
p(c)T(f, g, F,G)(c)
= p.v. /U(l) (¢ +c—u(0) - U/(l_)) ch/ 9(2)F(z,c)dz G
u(0) d—c
u(®) ¢ z zZ,c)az
+p‘v./ Je 9(2)F(z,c)d

/

w(0) (¢ —c)?
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A direct calculatlon shows

(f gc_zcdz>

- (f 9(z ) fc 9/ c)dz n fcd 9(2)(0, +8Z)F(z,c)dz’
and
ff 9(2)F (2, c)dz
ae( = o )
__ <f 9(=)F > JE g @F G Adz | g(2)(0: +0.)F (= )dy
G —c) <c —c>2 @ o |

Thus, we obtain

8c(p(C)T(f7 9, F7 G)(C))
W [ g(x)F (2, c)dz

b o (8c+3cr)<G(c',c)f(c')(c'+c—u(0)—u(l)))dc'
Y p. / 1:0()1) Ji g((j)f S;c)dz (0 +00)(G(c . ) F ()l ) de!
Fo (0()” Ji s PN LTS O G )+ = ul0) = w1
vo [ (0()” J: o) MO B G ) ot

Py PTG o f (ol e
u(0) (¢ —o)
(¢ —u(0)f(u(1)) [0
u(l) —c /c g(z)F(Z7 C)G(u(l), C)dZ
n (c —u(1))f(u(0))

p— /u:O) 9(2)F(z,¢)G(u(0), c)dz.
Then the lemma follows by using
(¢ =)0 + ) ((¢ + ¢ = u(0) —u(1)) f() + 0 (f()p(c))
= () () + ple) f(<),
and p(c) — p(d) = (¢ — ¢)(¢ + ¢ —u(0) — u(1)). O
By Lemma 11.1 and (9, + 8,.)e"**=¢) = 0, we can deduce that
Lemma 11.2. It holds that
p()T(f.g " *CTIF, G)(c) =p(c)De (e " *“T(f, ge" %, F, G))(¢)
— p(e)e T (f, ge"*, (0; + Oc) F, G) (c)
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— ple)e T (f, ge"** , F, (0. + 0.)G)(c)

o p(c)e—itoccv]r(fl7 geitow7 F, G)(C)

+ e "Bo(f, 9", F,G)(c) + e " Bu(f, 9", F, G) (o).
Lemma 11.3. It holds that

050(f.0. F.G)e) =Bo( .9, F,0.6)(c) - LGOS | :0) o) F 2, c)dz

+Bo(f,g', F,G)(c) +Bo(f. g, (0- + 0.)F,G)(c),

u u(0),¢) [
0B1(/,9.F,G)(0) =Bl f.g. F0.G)e) - IO [T g0y ga:

+B1(f,q,F,G)(c) + Bi(f, g, (0. + 0.)F, G)(c).

Proof. The lemma follows by a direct calculation. O

Next let us introduce some linear operators. Let ¢(y,c) be the solution of (4.1) given by
Proposition 4.5 and ¢4 (y,c) = 2.9 We define

u(y)—c*
e N _ 1
L1(g)(c) d:f’]I‘<(u Y. g,.¢1(ut,c), W)(C),
def,

L2(g)(c)

N _ 1
T((U Y. g9, (0:+ ) (u,c), W)(C)

—1v/ _ 1
F (@™, g.01(u70), (0 +00) (=) ) (©
-
@1(U_1,C)2
def,

L3(g)(c) =T<(U_1)/,9, (0: 4 0?1 (w0, W) ()

+ (@™, g 01 o),

+ 2T (u_l)/,g, (0: + 0c) 1 (u_l’ c),(0: + 80)(m)) (c)

+H20((@ )0, 01 070, 02+ 2 (55 m) ) ©

We also introduce the linear operators

B(g)(c)

def 1

Bo((u_l)lygy ¢1(u",0), W)(C)
v _ 1

+IB31((U Y., 01wt 0), W)(C)a

def.

Bi(9)(0) “Bo (w19, (0 + 0)n (™0, 3 ) (e)
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+ B, ((u‘l)’, 9, (0= + )1 (u™", ), m> (c)

1
)

+Bo((u!

By () 0,1 >W@+@ﬂa@%;ﬁ0@
C
(6

g (251 )7 (az +a€)(

1
) g, ¢1(ut,e), W)(C)

1
L9, d(uTe), W)(C)-

+

By

+ B

Lemma 11.4. It holds that

de(pL1(g)) = p(c)L1(g") + o' () L1(g) + p(c)Lalg) + B(g),
pOeLa(g) = pLa(g’) + pL3(g) — Bi(g),

and
02(p*L1(9)) =2p"pL1(9) +4p' pL1(d') + 20'0'L1(9) + 49'pLa(g) — 20'B(g)
+p*Li(g") + 20°L2(g') — pB(d') + p°L3(9) — pBilg) — 0c(pB(g))-
Proof. The lemma can be proved by using Lemma 11.1. We omit the details. O

11.2. Boundedness of singular integral operators. Let H be the Hilbert operator which

is defined by
/
c) = p.v./ /()
c—
The maximal Hilbert transform H* is defined by

5@ = swp 1S, 1f) = [ 1) o

/
le—c/|>e € — €

We denote
Hf(¢) £ xpo(e)H(fxDy)(c)-
Lemma 11.5. Suppose that f € H?(Dy), then it holds that for any p € (1, 00),
IHf e < CIf]lze,
lpHf lwie < Cll fllwie,
10*HE lw2e < C|lf w2
Proof. Thanks to
“W p(e) — p(¢)
0) c—c

u(1)
:/‘ (w(0) + u(1) — e — &) f(c)de,
u(0)

mmﬂoz/ f()ded

we deduce that

(11.1) 10clp, Hf||zr + 102[0, H] f]l e < C|f|l e
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We have
u(1) / / c—u(0) _
&(p.v./ Mdd) Zac<p.v / ple - Z)f c—2) )
u(0) c—=¢ c—u(1)
—u(0) _ u(1)
:p.v./ (pf)(c—2) ——~dz = p.v. / dc,
c—u(1) z

from which and LP boundedness of Hilbert transform, we infer that

c<P.v. /U(l) 7'0(6/)]0(6/)616/)

(0) cC—¢C

- (p.v. /U(l) 7'0(6/)2'}056/) dc’)

(0) cC—¢C

|, < Cls) e,

|, < Coll ()l

which along with (11.1) gives the lemma. O

Lemma 11.6. There exists a constant C' independent of € € (0, (u(1) — u(0))/10) such that
for any p € (1,00)

BiC
sup / f N EEC © e < Ol fllze,
e {\c cf\>5}m[u(0) w(1)] (C—C) p
O [ f)de
D.0. dc <C .
H u(0) (C_ c )2 Lp ”f”LP

Proof. For u(0) < ¢ < u(0) + €, we have
u(1) [¢ d u(1)
Rt
cte (C —-C ) cte

__# u(l u(l)&
= u(l)—c/c f(z)dz + - / fz d2+/+e Z_cdz.

For u(0) + € < ¢ < wu(l) — ¢, we have

u(1) c—e [
/ + f UG VR dc’

c—c)

/+s / c —c /C/ f(2)dzdd
:_m/;(1 f()dz—l—l/ dz+/u<1 /Cﬁf_

- % ’ f(z)dz + f(z)dz.

c—e c— U(O) u(0)
For u(1) —e < ¢ < u(l),

o Mdc :/c / f(z)dzdd

wo) (¢ —c)?
P— / f(z dz——/ f(z d+/(0€j(_z)cdz.
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Thus, we obtain

/ 1S f(2)dz
{e—¢/|>en[u(0),u(1)] (€ —¢)?

+<# ) f(z)dz—1 ) f(z)dz>><[g,u(1)}(0)

C—U(O) u(0) € Je—e

_ <ﬁ /CU(I) f(z)dz — l/C-l-ef(z)dz>X[u(o),u(l)_d(c),

Taking € — 0+ and using the fact that  [* f(y)dy — 1 fw+6 f(y)dy — 0, we deduce

D[ f(2)dz

p-v. Wdc’ = — XD, (¢)H(fXD,)(c)

u(0)
1 c 1 u(1)
+ a0 a0 Lo f(z)dz — 7@4(1) — /c f(z)dz.

With the above identities, the boundedness in LP follows from LP boundedness of Hilbert
transform, maximal Hilbert transform and Hardy-Littlewood maximal function. O

dc = —xpy(c)H (fXxD,)(c)

11.3. Boundedness of multilinear singular integral operators.

Lemma 11.7. There exists a constant C independent of « such that for any p € (1,00),

_ 1 /
2 |r(feaw™a s, S QO+ 17 Tl
Proof. We write
1
T(f,g,ﬁbl(u c), m)(c)
D6 w (2)0) ~ Dz
o~ <c—c>2¢1<u TRl

D[ g(2)d f(C’)—f(C) )
T oo (@ =0 b i(@), 0"

) [ 9(2)dz (61w (¢),0) + Dr (™ ()0 = 1) .,
+f ”/ﬂc detinpy (@ —c)? o1 (u-1(c), 02 I

fc g z /
+5) /ﬂc,_c%m @ = (a1 (@), 2

u(1) fcc/g(z)dz , fcc/g(z)dz ,
+ f(c)p-v. /u(O) Wdc —f(c)p.v./{ L —dc

@—e>11nD, (¢ —¢)?
é[l + - Is.
Step 1. Estimate of Iy
We infer from Remark 5.5 that
b e [T L 9 ) )P T () (o 2). )
w(0) (C — )21 (u=1(c), c)?

f(chdd.
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For |z — c| < |d — ¢|, we have (u™1(2) —u"1(c))? < C(¢ — ¢)?. And by Remark 5.5,

T(¢1)(u(2),¢) < Cohr(u'(2),c) < Copr(u=t(c),e).
Then we infer that

1
< Ca? . /
i < Ca?|f|1. / /' )l gy

from which and Proposition 5.1, it follows that

! |y_yc| Y
0 ¢1(y,c)

a(l_yc) y2 AYe y2
<o [T s [M )il
0 sinh y 0 sinh y

<Clfllze=ligllzee-
And by Proposition 5.1 again, we get

Ml <Clfl /q/%a{/“ym<w IR CED R
1 Ll — Lo g y Slnha(z _ y ) y yC
// ( ) i
o[ e %w DQMM ﬁmmg
< 2 . ” "
Ca ||f||L / |g |/ /// smha )dyCdZdy

o N " / / L_yc)d dy.dy”.
+C?||fllL /0 lg(u(y"))| o Jysinha(z —y.) ey

\I;| <Co?||f||Leollgl e

Using the fact that

z sinh 5 1 1
< “z
sinhz = sinhz = cosh§ = e2

+00 ay
- / / €2 W) dzdy,
ay 0

+oo 1 1
<2 / ezW=ve) _ =3V qy, < 8.
ay

we deduce that

Y 1
2 a(z = ye)
“ /0 /y sinh a(z — y.) dyedz

This shows that
1l < Cllfllzeellgllr-
Then by the interpolation, we get
[T1llze < Cllfllz=llgl zr-
Step 2. Estimate of I
Thanks to ¢ (u=1(2),c)? > 1, we have

Ddz e
I <
= C/n o—c  dilu (@),
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ulf ‘d

u(0)

, z
<C[[ Lo e —dc < C||f'l|zllgllze--

For L' estimate, we write

/u(l) fcc ‘g(z)]dzdc, - f lg(2)|d= /+/u(1) fcc ]g(z)\dzdc,

0) d—c N wo)y ¢ —c d—c

c z dd u(1) u(1) 1 4
= [ o[ i [ [ ac

¢ - u(1) u(l) —c
[t O [ g =

u(O) cC—Zz zZ—C

from which, it follows that

u(1) ¢ d u(1) u(1) B
| [ O < [ e s [ e M e
u(0) c—c L (0) c z—c
u(l u(1) _ u(1) z 1) —
S/ |9(Z)|/ In Ciu()dcdz%—/ |g(z)|/ In u(l) Cdedz
u(0) 2 c (0) u(0) zZ—cC
<CllgllL:-

This gives
2]l < Cllf llzeellgll 2
By the interpolation, we get
2]l < Cllf'llLellgllr-
Step 3. Estimate of I3
By Lemma 5.4, |¢1(u=' (), c) — 1| < a?(¢ — ¢)?¢p1(u=1(c'),c). Then we have

/

Bl <calflis [ [ lg@ldae
{Ogc’—cﬁg}ﬂDo c

L+ Co?|f~ / l9(2)|dzdd

{0<e—e'<1ynDo J !

/

min{c—l—é,u(l)} c
<C| o | | late)azae

Cc c
c

—i—C”f”Looa2/ / lg(2)|dzdc,
max{c—%,u(O)} c

from which, it follows that

[13]|oe <C|f]| L=

o / lgllz= ¢ — clde
{le'—c|<1}nDy

<O fllze=llgllzee,

LOO

and

/

) u(l)  pmin {c—l—é,u(l)} c ,
Il <ca®|fl=( [ [ [ otz
u(0) c c
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u(l) pc c
+/ / |g(z)|dzdc/dc>
u(0) Jmax {c—é,u(O)} c
—c ) u(1) z l  Vded
<Calfllu=( f Vo | . (c+ ~—2)dedz
u(l
+/ \/ +z— c)dcdz)

<C|fllz==llgll -
Thus by the interpolation, we get
[ Ls]lze <CI|.fll Lo llgllzr-
Step 4. Estimate of Iy
We infer from Proposition 5.1 that
L ol ) ()
é1(u=1(),c) — sinha(u=1 () —u=t(c))’

which gives

a?lu”'(¢) —u'(c)]
I <C o0 o0 dc’
<Ol [, ol i e
* 2z
<Clfla~lgle~ [~ iz
<C|fllz=liglizee,
and
Ll <C2||f Loo/ / / g(c)|—————5dc dzdc
H ”L H H {|z— c\> I{z>c}N[u(0),u( ‘ (Z) C)
u(1)
+Ca2||f||Loo/ / /| L iddzde.
{lz—cl> 1 3n{z<c}n[u(0),u(1)] (u~ (2)7 c)?

By a change of variable, the first term is bounded by
1 2

Yy Q
C| fllzee / / / g(u(y"))|———dy'dy" dy.
171 {Ju(y")—c|>L Intu(y) >c}m[ou ye lotut ))‘¢1(@/”,C>2

< O|lf I~ / g(u())] / / S dudy
0 1

< Clifllze=ligler,
where we used the fact that ¢y (y c)>C~ 1M so that

a(y//
‘ / / ¢2 dy”dyc

< !
C/ /,smhay—y)dydyc
ay’
<c / / ¢~/ dydy, < C.
ay

The estimate of the second term is the same. This gives
[allr < Cllfllzesllgllze-
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Thus, the interpolation gives
[Lallzr < ClfllLoe gl -
Step 5. Estimates of I5 and I
Lemma 11.6 ensures that
1 5]lze + [ Zsllr < CIf[[Loellgllzr-
Putting the estimates in Step 1-Step 5 together, we conclude the lemma. O

Lemma 11.8. There exists a constant C independent of « such that for any p € (1,00),

1Bo(f, pg, F,0cG)||r + [[B1(f, pg, F', 0:G)|| v
+ HBO(faga (82 + 8C)F7 G)”Lp + HBl(f7g7 (az + 8C)F7 G)”LP < CHf”Loo”gHLp7

where F(z,¢) = ¢1(u=1(2),¢) and G(z,¢c) = W We also have

1
1B(pg)llrr < EHgHm.

Proof. We only prove the estimate of By, the estimate of B, is similar. We get by Proposition
5.1 that

o C
[Bo(5,90. 0.0 < Ol i | Il
from which, it follows that
2

2
o’y
|Bo(f, pg, F, 0.G)|| ;. <C yilﬁ)u Snhay

[fllzeellgl zoe

<Cflle gl

1 1 )
[Bolf,pg. F0.G) o <Clfll [ latlaz [ <2 dy
0 0

sinh ay
<[l fllze=Nlgllzr-

We get by Proposition 5.6 that
a?(c—u(0 ¢
Bo(f.9.(0: + 207, G)(0) <Ol e [ Jy(a)ias
$1(0,¢)  Ju(o)
which implies that
1Bo(f,9,(0: + 0c)F,G)llLee < || fllLoellgllLee,
HBO(fv 9, (8,2 + 8C)F7 G)HLl < C||f||L°° ||.gHL1 :

Then LP estimate follows by the interpolation.
Notice that

@ c @ u(1)
aB(p0)| < € / o=+ 0o / l9(2)d=.

Then LP estimate of B(pg) can be deduced in a similar way. O
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Lemma 11.9. There exists a constant C' independent of « such that for any p € (1,00),
1B()l|zr + 10e(pB(@) | 2e + [0~ Blpg) e + [1B1(9)l|2r < Cllgll -
If g(u(0)) = g(u(1)) = 0, then we have
1pB(g")||Lr < Cllg||Lo-

Proof. The estimate of ||B(g)||z» follows from L? boundedness of Hardy-Littlewood maximal
function.
Step 1. Estimate of ||0.(pB(9))||z»

It suffices to consider By. By the definition of B, we have
1
_1 . —_—
8C<p(C)BO(f7g7¢l(u ()70)7 ¢1(0,C>2>>

‘ $1(u"'(2),¢) (u(1) — 0)* f(u(0))g(c)

= 2(c —u(1))f(u(0)) L(O) 9(2) 61(0, )2 dz+ ¢1(0, ¢)?
c u_l zZ),C
+ (u(1) = ¢)* f(u(0)) /(0) g(z)ac<%)dz.

The LP estimate of the first two terms are obvious. So we only consider the last term, which
is bounded by
@

Clfle [ lotutu)l 5 [ tatutwpian

where we used Proposition 5.1. Thus, L* norm of the last term is bounded by
2,2

2
A" Ye

dy < o
v < Ol = e

C sup lgllzoe 1 £l zee

y6[071} Sinh ay
while L' norm is bounded by
2

1 1 a?y.
C||f||L°°/0 |9(U(Z/))|/ dyedy < C||fl|lze=llglL1-

ye Sinhay.

This implies by the interpolation that
10:(pB(g)l2» < CligllLo-
Step 2. Estimate of ||p~'B(pg)| L»
Using the fact that
(11.3) p1(u(2),¢) < p1(u(),¢) for |z—c| <|d -,

we deduce that

P B O] <y [, 9EE —nO)w) e

C c C u(1)
S oo O ], 9

from which and LP boundedness of Hardy-Littlewood maximal function, we infer that

107 B(pg) | » < Cllgl|Le-
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Step 3. Estimate of ||B1(g)|z»
By Proposition 5.6, we have
(8 + D)1 (u™(2),0)| < Coa®(z — )*1(u™(2), ),

‘(az + 00/ !

20, _ o)2
< Coa”(z —¢) o (2), 02

Ewe)
¢1(u(2), ¢)?
which along with (11.3) gives So we have

C c C u(1)
Bi(g) < WA(O) le(y)ldy + m/ lp(y)|dy,

from which and L? boundedness of Hardy-Littlewood maximal function, we infer that

1B1(g)ll» < CllgllLe-
Step 4. Estimate of ||pB(¢')]| 12
Using the boundary condition of g, we get

¢ ul(2),c
POB() =) =0 w0) [ o) 2D

u(1) uw(2), ¢
e a0y ) [ g2 B
C©da ()
@1(0,6)2
0.61(u1(2).
) g(z o1 (10 dz

Then by Proposition 5.1, we obtain

v acosha c ! acosha(z — y.
B <Cla@]+C [ latu) = EET s v o [ gt EE T g

with ¢ = u(y.). Thus, we have

sinhay. sinha(l —y,.)
lpB(g)l <Clgli= + Clglle fgpo(@m 2 hi(L0? )

<Cllg|l e~
On the other hand, we have

Ye acosha Ye
1p()B(g) |11 <Cligllzs +C / / 0() ) dody,
+C’/ o acosha( yc)dzdyc
Ye ( )
<Cllgll +Cllgl / Zeoshz,
— i izt o sinh?(2)
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<Cllgllr-
By the interpolation, we get

lp(e)B(g)l|ze < CllglLe-
The proof is completed. O

Lemma 11.10. There exists a constant C' independent of « such that for any p € (1,00),

1£1(D e +[1L2(9 e + [[1£3(lIr < Cligll e

Proof. The estimate of ||[£1(g)||z2 follows from Lemma 11.7. Now we consider La(g). It
suffices to consider the first two terms in the definition of £2(g). By Proposition 5.6, both

terms are bounded by
Ca? /U(l ‘/ |dz‘ ——dc.
¢1(u=1(c), )

With this, the proof is the same as I in the proof of Lemma 11.7.
Next we consider L£3(g). It suffice to estimate the following terms

(.9, (0 4+ 010 0), =3 ) (0

¢1 (u_lv C)2
/ - 1 A
(9. 0170, 0+ 007 (o) ) (0 2 Lh(o).

By Proposition 5.6, we have
(02 + 8e)* 1 (u™"(2), )| < Ca*(u™(2) —u™"(¢)? cosha(u™ () —u™H(e)),

and

O+ g

which imply

u(l) e cosh a(u™ () —u=e
el < 0ot [ ] [ s Rt

Thus, we obtain

cosh z
1L hw<0/‘ ZOR gl < Cllglee,

and

smh2 (z —ye)

4 Ca? / /1a Z—Ye) COSha(Z_yc)dzdydy
0o Jy sinh? oz — . ¢

1 1
wa5<g>uL1s;cn12J£ |g<y>|]f J/ oz = ye)eoshalz = ye) g g

Yy

Y

<Cligl

where we used M <= /2 for z > 0. By the interpolation, we get

h2
1£2(9)llze < Cllgllze-
This completes the proof of the lemma. O
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Lemma 11.11. There exists a constant C' independent of « such that for any p € (1,00),

L1, P19l Lo + 10c[L1, pl(g)l| e < Cllgllze-

Proof. We have

0e[L1, plg =L1((pg)") + La2(pg) — %B(pg)
—p'L1(g) = pLalg") — pLa(g) + Blg)
=[L1,p)(g") + L1(p'9) + La2(pg) — %B(pg)
—p'Li(g) — pLa2(g) + Blg)-

Thus, by Lemma 11.9 and Lemma 11.10, it suffices to consider [L1, p|(¢).
Since

(£, A)(e") (©) = /

Let f(c,c) = (u(0) +u(l) — ¢ —¢)(u1) (). ©1 can be rewritten as

) () ((0) +u(l) — ¢ — )Y ()
b /u(m ¢ —c o1 (u1(d),0) e

u(l) o(d
:(U(O)—i-u(l)—2c)(u—1)’(c)p_v'/ 9(<)

u(0) c —cC

dc

— (u(0) + u(1) — 2e) (Y (c)p.v. / 9(¢)

Don{le’—e|>1} € — ¢
“W g(d) f(de) = flee)
+/u(0) d—c ¢1(u7l(cd),c) “
+/ g(c) fle,0) dc

D

on{le—c/>1) ¢ —cdr(uml(c), c)

d uw ), e) —
e [ o) () -1,

onfle—c<iy € — ¢ d1(u(c),0)

The LP boundedness of the first two terms follows from LP boundedness of Hilbert transform.
The third term is trivial since |f(c/,¢) — f(c,¢)| < C|¢ — ¢|. The fourth term is bounded by
C lg(u(y)) W—_Wdy_

[0,1]n{|z—0|> 0} sinh a(y — ye)
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Thanks to K1(2) = agpas X(eo,+o00] (@2) € L', we get
|/ o) o
c

Don{le—e|>1} ¢ — cd1(u(c), )

The last term is bounded by

<Clllg o ul * K s

Lr
<C||g[lLr-

C/ g()a?|d — cldd
Doﬁ{\c’—c|§é}

Thanks to K»(z) = a®zx(91(az) € L', we get
H/ ( )(bl( ( )76)_1dcl
/
Dor{le—cj<ty € —¢  d1(uml(¢),c)

This shows that

<Colllg| * Ka||r»
Lp

<Collgll -

1©1lzr < Cllgllze-

For ©, term, we have

[ lg(u(z))ldz oy — y,)
< C
O2(e)] = Ca/ y—ye  sinha(y —y.)

9

from which, it follows that

L[V gl oo dz a(y —ye)
@ C oo <C04/ Ye " <
1©2()llz~ < o Y—Y. sinha(y—uy.)

1 a(y — ye)
; vy
<Callgl. /0 Saboly 50"

<C||gll=|] |, < Cligllzes,

s1nh z

and

4 dz _
102(¢)[11: <C / / Jue 9@z _aly —y)

Y= Ye smha(y Ye)

< /0 lg(u(=)ldz] / / Sty < Clalo.

By the interpolation, we get

1©2(c)l[zr < CligllLe-

Thus, we obtain

1L, pl(g)llzr < 191(0)llzr + 1©2(c)l| e + 1£1(p'9)lr < CllgllLr-

This completes the proof of the lemma.
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