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ANALOGUES OF AUSLANDER–YORKE THEOREMS FOR

MULTI–SENSITIVITY

WEN HUANG, SERGĬI KOLYADA AND GUOHUA ZHANG

Abstract. We study multi-sensitivity and thick sensitivity for continuous
surjective selfmaps on compact metric spaces. Our main result states that
a minimal system is either multi-sensitive or an almost one-to-one extension of
its maximal equicontinuous factor. This is an analog of the Auslander-Yorke
dichotomy theorem: a minimal system is either sensitive or equicontinuous.
Furthermore, we introduce the concept of a syndetically equicontinuous point,
and prove that a transitive system is either thickly sensitive or contains syn-
detically equicontinuous points, which is a refinement of another well known
result of Akin, Auslander and Berg.

1. Introduction

Throughout this paper (X,T ) denotes a topological dynamical system, where X
is a compact metric space with metric ̺ and T : X → X is a continuous surjection.

The notion of sensitivity (sensitive dependence on initial conditions) was first
used by Ruelle [23]. According to the works by Guckenheimer [15], Auslander and
Yorke [6] a dynamical system (X,T ) is called sensitive if there exists δ > 0 such
that for every x ∈ X and every neighborhood Ux of x, there exist y ∈ Ux and
n ∈ N with ̺(T n(x), T n(y)) > δ, where N is the set of all natural numbers (positive
integers). According to [4], it is easy to see that (X,T ) is sensitive if and only if
ST (U, δ) is infinite for some δ > 0 and every opene1 set U ⊂ X , where

ST (U, δ) = {n ∈ N : there are x1, x2 ∈ U such that ̺(T nx1, T
nx2) > δ}.

We define JT (U, δ) ⊂ N to be the complement of ST (U, δ).
The Lyapunov stability or, in other words, equicontinuity is the opposite to the

notion of sensitivity. Recall that a point x ∈ X is called Lyapunov stable if for every
ε > 0 there exists a δ > 0 such that ̺(x, x′) < δ implies ̺(T nx, T nx′) < ε for any
n ∈ N, equivalently, for every ε > 0 there exists a neighborhood U of x such that
JT (U, ε) = N. This condition says exactly that the sequence of iterates {T n : n ≥ 0}
is equicontinuous at x. Hence, such a point is also called an equicontinuity point
of (X,T ). Denote by Eq(X,T ) the set of all equicontinuity points of (X,T ). The
system (X,T ) is called equicontinuous if Eq(X,T ) = X .

The well-known Auslander-Yorke dichotomy theorem states that a minimal dy-
namical system is either sensitive or equicontinuous [6] (see also [14]), which was
further refined in [1, 2]: a transitive system is either sensitive or almost equicontin-
uous (in the sense of containing some equicontinuity points). We recommend [20]
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1Because we so often have to refer to open, nonempty subsets, we will call such subsets opene.
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for a survey on the recent development of chaos theory, including sensitivity and
equicontinuity, in topological dynamics.

Recall that a subset S ⊂ N is called thick if for each k ∈ N there exists nk ∈ N

such that {nk, nk + 1, . . . , nk + k} ⊂ S, and is syndetic if there exists m ∈ N such
that S ∩ {n, n + 1, . . . , n +m} 6= ∅ for each n ∈ N. A thick set has a nonempty
intersection with every syndetic set. The following definitions of stronger forms of
sensitivity were introduced in [21, 22]. A dynamical system (X,T ) is said to be

(1) thickly sensitive if there exists δ > 0 such that ST (U, δ) is thick for any
opene U ⊂ X ;

(2) multi-sensitive if there exists δ > 0 such that
k⋂

i=1

ST (Ui, δ) 6= ∅ for any

finite collection U1, . . . , Uk of opene subsets of X .

In the paper we show that an analog of the Auslander-Yorke dichotomy theorem
can also be found for this stronger forms of sensitivity. Precisely, by using Veech’s
characterization of equicontinuous structure relation of a system [25, Theorem 1.1],
we prove that a minimal system is either thickly sensitive or an almost one-to-one
extension of its maximal equicontinous factor (Theorem 3.1), and thick sensitivity
is equivalent to multi-sensitivity for transitive systems (Proposition 3.2). In partic-
ular, an invertible minimal system is either multi-sensitive or almost automorphic
(Corollary 3.3).

Recall that the concept of almost automorphy, as a generalization of almost
periodicity, was first introduced by Bochner in 1955 (in the context of differential
geometry [8]) and studied by many authors starting from [9], [24], [26].

We extend the notion of equicontinuity by demanding that the set JT (U, ε) is
large. Precisely, we introduce the concept of syndetically equicontinuous points,
which means that for every ε > 0 there exists a neighborhood U of x such that
JT (U, ε) is a syndetic set. It turns out that this new notion of local equicontinuity
is very useful. That is, the refined Auslander-Yorke dichotomy theorem [1, 2] also
holds in our setting (Theorem 3.4): a transitive system is either thickly sensitive
or contains syndetically equicontinuous points.
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2. Preliminaries

In this section we recall standard concepts and results used in later discussions.

2.1. Topological dynamics. Recall that (X,T ) is (topologically) transitive if
NT (U1, U2) = {n ∈ N : U1 ∩ T−nU2 6= ∅} is nonempty for any opene U1, U2 ⊂ X .
A point x ∈ X is called transitive if its orbit orbT (x) = {T nx : n = 0, 1, 2, ...} is
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dense in X . Denote by Tran(X,T ) the set of all transitive points of (X,T ). Since
T is surjective, (X,T ) is transitive if and only if Tran(X,T ) 6= ∅.

The system (X,T ) is called minimal if Tran(X,T ) = X . In general, a subset
A of X is invariant if TA = A. If A is a closed, nonempty, invariant subset then
(A, T |A) is called the associated subsystem. A minimal subset of X is a nonempty,
closed, invariant subset such that the associated subsystem is minimal. Clearly,
(X,T ) is minimal if and only if it admits no a proper, nonempty, closed, invariant
subset. A point x ∈ X is called minimal if it lies in some minimal subset. Zorn’s
Lemma implies that every closed, nonempty invariant set contains a minimal set.
Observe that by the classic result of Gottschalk, x ∈ X is minimal if and only if
NT (x, U) = {n ∈ N : T nx ∈ U} is syndetic for any neighborhood U of x.

A transitive system (X,T ) is called an E-system [14] if it admits an invariant
probability Borel measure µ with full support, that is Tµ = µ and µ(U) > 0 for all
opene U ⊂ X . Note that a nonminimal E-system is sensitive [14, Theorem 1.3].

2.2. Extensions and factor maps. Let (X,T ) and (Y, S) be topological dynam-
ical systems. By a factor map π : (X,T ) → (Y, S) we mean that π : X → Y is a
continuous surjection with π◦T = S ◦π. In this case, we call (X,T ) an extension of
(Y, S) and (Y, S) a factor of (X,T ), we also call π : (X,T ) → (Y, S) an extension.

Each dynamical system admits a maximal equicontinuous factor. In fact,
this factor is related to the regionally proximal relation of the system. The re-
gionally proximal relation Q+(X,T ) of (X,T ) is defined as: (x, y) ∈ Q+(X,T )
if and only if for any ε > 0 there exist x′, y′ ∈ X and n ∈ N with
max{̺(x, x′), ̺(y, y′), ̺(T nx′, T ny′)} < ε. Observe that Q+(X,T ) ⊂ X × X
is closed and positively invariant (in the sense that if (x, y) ∈ Q+(X,T ) then
(Tx, T y) ∈ Q+(X,T )), and the quotient by the smallest closed, positively invariant
equivalence relation containing it is the maximal equicontinuous factor (Xeq, Teq)
of (X,T ). If (X,T ) is minimal, then Q+(X,T ) is in fact an equivalence relation
by [5, 7, 11, 25] and [17, Proposition A.4]. Denote by πeq : (X,T ) → (Xeq, Teq)
the corresponding factor map. Remark that (Xeq, Teq) is invertible, when (X,T )
is transitive, because each transitive equicontinuous system is uniformly rigid [14,
Lemma 1.2] and this implies invertibility.

Let X be a compact metric space and let φ : X → Y be a continuous surjective
map. Denote by Y0 ⊂ Y the set of all points y ∈ Y whose fibers are singletons.
The set Y0 is a Gδ subset of Y , because

Y0 = {y ∈ Y : φ−1(y) is a singleton} =
⋂

n∈N

{
y ∈ Y : diam(φ−1(y)) <

1

n

}

and the map y 7→ diam(φ−1(y)) is upper semi-continuous. Recall that the function
f : Y → R+ is upper semi-continuous if lim sup

y→y0

f(y) ≤ f(y0) for each y0 ∈ Y .

If Y0 ⊂ Y is a dense subset, then we call φ almost one-to-one. If π : (X,T ) →
(Y, S) is an almost one-to-one factor map between topological dynamical systems,
then we also call (X,T ) an almost one-to-one extension of (Y, S). Recall that if a
dynamical system (X,T ) is minimal, where X is a compact metric space, then the
map T : X → X is almost one-to-one [19, Theorem 2.7].

Remark 2.1. Here we take the definition of almost one-to-one from [10, 19], as
we shall use this one in Proposition 4.2 and in the construction of Example 3.6.
Note that the denseness of π−1(Y0) in X, used heavily in [3], is a sufficient but not
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necessary condition; and these two conditions are equivalent, when π is a factor
map between minimal systems (see Proposition 2.3).

A pair of points x, y ∈ X is called proximal if lim inf
n→∞

̺(T nx, T ny) = 0. In

this case each of points from the pair is said to be proximal to another. Let
π : (X,T ) → (Y, S) be a factor map between dynamical systems. We call π proximal
if any pair of points x1, x2 ∈ X is proximal whenever π(x1) = π(x2). Note that any
almost one-to-one extension between minimal systems is a proximal extension.

Recall that the natural extension (X̂, T̂ ) of (X,T ) is defined as

X̂ = {(x1, x2, . . . ) : T (xi+1) = xi and xi ∈ X for each i ∈ N},

T̂ : (x1, x2, . . . ) 7→ (Tx1, x1, . . . ),

with a compatible metric d given by

d((x1, x2, . . . ), (x
∗
1, x

∗
2, . . . )) =

∑

n∈N

̺(xn, x
∗
n)

2nM
with M = diam(X) + 1.

Then (X̂, T̂ ) is an invertible extension of (X,T ) with a factor map π̂ : (X̂, T̂ ) 7→
(X,T ), given by (x1, x2, . . . ) 7→ x1. Observe that

(
n∏

i=1

Ui ×
∞∏

n+1

X

)
∩ X̂ =

(
n−1∏

1

X ×
n⋂

i=1

T−(n−i)Ui ×
∞∏

n+1

X

)
∩ X̂

for any opene U1, . . . , Un ⊂ X , and all such subsets form a basis for the topology

of X̂. Applying this fact, it is not hard to check from the definitions that (X,T )
is minimal (sensitive, thickly sensitive, multi-sensitive, respectively) if and only if

(X̂, T̂ ) is minimal (sensitive, thickly sensitive, multi-sensitive, respectively).

2.3. Other concepts. A continuous map φ : X → Y is called almost open if φ(U)
has a nonempty interior in Y for any opene U ⊂ X . Recall that if a system (X,T )
is minimal then the map T : X → X is almost open [19]. It is easy to see that
all of sensitivity, thick sensitivity and multi-sensitivity can be lifted from a factor
to an extension by an almost open factor map by the method used in the proof of
[14, Lemma 1.6]. Note that any factor map from a system containing a dense set
of minimal points to a minimal system is almost open, as each factor map between
minimal systems is also almost open [5, Theorem 1.15].

Lemma 2.2. Let π : (X,T ) → (Y, S) be a factor map between minimal systems. If
Y1 ⊂ Y is a dense subset, then π−1(Y1) ⊂ X is also a dense subset.

Proof. If the conclusion does not hold, then U ⊂ X is an opene subset, where U is
the complement of the closure of π−1(Y1) in X . Thus π(U) has a nonempty interior
in Y by [5, Theorem 1.15], and hence π(U) ∩ Y1 6= ∅ by the denseness of Y1 in X ,
which implies U ∩ π−1(Y1) 6= ∅, a contradiction with the construction of U . �

Now we can prove the following

Proposition 2.3. Let π : (X,T ) → (Y, S) be a factor map between minimal sys-
tems. Denote by Y0 the set of all points y ∈ Y whose fibers π−1(y) are singletons.
Then Y0 is a dense subset of Y if and only if π−1(Y0) is a dense subset of X.
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Proof. It suffices to show the denseness of π−1(Y0) in X when Y0 is dense in Y .
Denote by Y1 the set of all points y ∈ Y such that S−1(y) is a singleton. Then
Y1 ⊂ Y is a dense Gδ subset by [19, Theorem 2.7]; and hence so is S−n(Y1) ⊂ Y
for each n ∈ Z+, whose denseness in Y follows from Lemma 2.2. Now set

Y∗ = Y0 ∩ Y∞ with Y∞ =
⋂

n≥0

S−n(Y1).

We have that Y∗ ⊂ Y is a dense Gδ subset by the assumption of Y0.
Let y ∈ Y∗, and assume π−1(y) = {x∗} by the definition of Y0. It is clear that

Sy ∈ Y∞ ⊂ Y1, in particular, S−1(Sy) = {y}. Now if x ∈ X satisfies π(x) = Sy,
and take x0 ∈ T−1(x), then S(πx0) = π(Tx0) = Sy, which implies π(x0) = y and
hence x0 = x∗, thus x = Tx0 = Tx∗. That is, π−1(Sy) = {Tx∗}, which implies
Sy ∈ Y0 and hence Sy ∈ Y∗. This show that Y∗ is a positively invariant subset of
Y , and hence π−1(Y∗) is a positively invariant subset of X . Finally applying the
minimality of the system (X,T ) we obtain the denseness of π−1(Y∗) in X , and then
the denseness of π−1(Y0) in X . This finishes the proof. �

We also use the following concepts by Furstenberg [12]. Let S ⊂ N. The set
S is called a central set if there exists a topological dynamical system (X,T ) with
x ∈ X and open U ⊂ X containing a minimal point y of (X,T ) such that the pair
(x, y) is proximal and NT (x, U) ⊂ S. The set S is called a difference set or shortly
∆-set if there exists {s1 < s2 < . . . } ⊂ N with S = {si − sj : i > j}. The set S is a
∆∗-set if it has a nonempty intersection with any ∆-set. Note that each central set
contains a ∆-set [12, Proposition 8.10 and Lemma 9.1]; and if (X,T ) is a minimal
system, then NT (U,U) is a ∆∗-set for any opene U ⊂ X by [12, Page 177].

3. Dichotomy of multi-sensitivity for transitive systems

The Auslander-Yorke dichotomy theorem states that a minimal system is either
sensitive or equicontinuous (see [1, 2, 6, 14]). The goal of this section is to provide
an analog of the Auslander-Yorke theorem for multi-sensitivity (see Theorem 3.1,
Proposition 3.2 and Theorem 3.4), which is the main result of this paper.

Our dichotomy is stated firstly for minimal thickly sensitive systems as follows.
Remark that recently Ye and Yu introduced and discussed block sensitivity and
strong sensitivity for several families, and obtained results similar to Theorem 3.1
for these sensitivities [28]. We defer the long proof of it to Section 4.

Theorem 3.1. Let (X,T ) be a minimal system. Then (X,T ) is not thickly sensitive
if and only if (X,T ) is an almost one-to-one extension of (Xeq, Teq).

As shown by the following result, for transitive systems thick sensitivity is equiv-
alent to multi-sensitivity. Observe that Moothathu pointed out firstly in [22] that
multi-sensitivity implies thick sensitivity.

Proposition 3.2. If (X,T ) is multi-sensitive, then (X,T ) is thickly sensitive.
Moreover, if (X,T ) is transitive, then the converse also holds.

Proof. First assume that (X,T ) is multi-sensitive with a sensitivity constant δ > 0,
and take any opene U ⊂ X . Let k ∈ N. For each i = 0, 1, · · · , k, we choose opene
Ui ⊂ T−iU such that max

0≤j≤k
diam(T jUi) < δ. By the assumption of δ we may select

nk ∈
⋂k

i=0 ST (Ui, δ). Moreover, from the construction of U0, U1, . . . , Uk one has that
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nk ∈
⋂k

i=0 ST (T
−iU, δ) and nk > k. Obviously, {nk−k, . . . , nk−1, nk} ⊂ ST (U, δ),

which implies that (X,T ) is thickly sensitive with a sensitivity constant δ.
Now we assume that a transitive system (X,T ) is thickly sensitive with a

sensitivity constant δ > 0. Let k ∈ N and U1, . . . , Uk be opene sets in X .
Take a transitive point x ∈ Tran(X,T ). Then there exists ni ∈ N such that
T nix ∈ Ui, where i = 1, . . . , k. So, we may get an opene U ⊂ X such that
T niU ⊂ Ui for every i = 1, . . . , k. By assumption there exists s ∈ N with

{s, s+1, . . . , s+n1+ · · ·+nk} ⊂ ST (U, δ), and then one has s ∈
k⋂

i=1

ST (Ui, δ). This

shows that (X,T ) is multi-sensitive with a sensitivity constant δ. �

Let (X,T ) be an invertible system. Recall that x ∈ X is an almost automorphic
point of (X,T ) if T nkx → x′ implies T−nkx′ → x for any {nk : k ∈ N} ⊂ Z, where
Z is the set of all integers. The system (X,T ) is said to be almost automorphic if

X = orbT (x) for an almost automorphic point x ∈ X . The structure of minimal
almost automorphic systems was characterized in [24]: a minimal invertible system
is almost automorphic if and only if it is an almost one-to-one extension of its
maximal equicontinuous factor (Xeq, Teq).

Thus, directly from Theorem 3.1, we have the following

Corollary 3.3. Let (X,T ) be an invertible minimal system. Then (X,T ) is not
multi-sensitive if and only if it is almost automorphic.

We are going to link thick sensitivity with local equicontinuity of points by
introducing the concept of syndetically equicontinuous points of a system.

We say that x ∈ X is syndetically equicontinuous if for any ε > 0 there exists a
neighborhood U of x such that JT (U, ε) is a syndetic set. Denote by Eqsyn(X,T )
the set of all syndetically equicontinuous points of (X,T ). Then Eqsyn(X,T ) ⊃
Eq(X,T ). Since a thick set has a nonempty intersection with every syndetic set,
one has readily that if (X,T ) is thickly sensitive then Eqsyn(X,T ) = ∅, equivalently,
if Eqsyn(X,T ) 6= ∅ then (X,T ) is not thickly sensitive.

Recall the Auslander-Yorke Dichotomy Theorem from [6] as follows, supple-
mented by some results from [14] and [2].

Auslander-Yorke Dichotomy Theorem. Let (X,T ) be a transitive system.
Then exactly one of the following two cases holds.

Eq(X,T ) 6= ∅: Assume that there exists an equicontinuity point for the sys-
tem. The equicontinuity points are exactly the transitive points, i.e., Eq(X,T ) =
Tran(X,T ), and the system is almost equicontinuous. The map T is a homeomor-
phism and the inverse system (X,T−1) is also almost equicontinuous. Furthermore,
the system is uniformly rigid meaning that some subsequence of {T n : n = 0, 1, . . . }
converges uniformly to the identity map on X.

Eq(X,T ) = ∅: Assume that the system has no equicontinuity points. The
system is sensitive.

Similarly, we have the following dichotomy. We call the system (X,T ) syndeti-
cally equicontinuous if Eqsyn(X,T ) = X .

Theorem 3.4. Let (X,T ) be a transitive system. Then either (X,T ) is thickly
sensitive and so Eq

syn
(X,T ) = ∅, or Tran(X,T ) ⊂ Eq

syn
(X,T ). In particular, if

(X,T ) is minimal then it is either thickly sensitive or syndetically equicontinuous.
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Proof. It suffices to show that, if (X,T ) is not thickly sensitive then Tran(X,T ) ⊂
Eqsyn(X,T ). Let δ > 0. By the assumption there exists opene U ′ ⊂ X such
that ST (U

′, δ) is not thick. Equivalently, there exists syndetic N ⊂ N such that
̺(T nx1, T

nx2) ≤ δ whenever x1, x2 ∈ U ′ and n ∈ N . Now for any x ∈ Tran(X,T )
there exists m ∈ N with Tmx ∈ U ′ and hence there exists open U ⊂ X containing
x with TmU ⊂ U ′. In particular, ̺(Tm+nx, Tm+nx′) ≤ δ whenever x′ ∈ U and
n ∈ N . That implies x ∈ Eqsyn(X,T ), as m+N is a syndetic set. �

Note that the dichotomy Theorem 3.4 does not work when the system (X,T ) is
not transitive. The following example is due to an anonymous referee of the paper.

Example 3.5. There exists a system (X,T ), which is not thickly sensitive, such
that Eq

syn
(X,T ) = ∅.

Construction. Let (Y1, S1) be the full shift homeomorphism on two symbols, that
is, Y1 = {0, 1}Z and S1 : (yi : i ∈ Z) 7→ (yi+1 : i ∈ Z). We take a fixed point e1 ∈ Y1.
Let (Y2, S2) be the identity map on the one-point compactification of the discrete
space N with e2 ∈ Y2 the point at infinity. Now we set (X,T ) to be the factor of
the product system (Y1 × Y2, S1 × S2) by collapsing (Y1 × {e2}) ∪ ({e1} × Y2) into
a fixed point e ∈ X . Then (X,T ) is the required system:

By the construction of X , for each δ > 0, there exists p ∈ N such that Y1×{p} ⊂
X is an open invariant subset with diam(Y1 × {p}) < δ, in particular, the set
ST (Y1 × {p}, δ) = ∅ is not thick. This implies that (X,T ) is not thickly sensitive.

Let x ∈ X . By the construction of X , there exists q ∈ N such that any neighbor-
hood of x has a nonempty intersection with Y1×{q}, and set δx = 1

2diam(Y1×{q}) >
0. It is easy to check that, for each neighborhood U of x there exists NU ∈ N such
that diam(T nU) > δx for all n > NU , in particular, the set JT (U, δx) ⊂ {1, · · · , NU}
is not syndetic. This shows x /∈ Eqsyn(X,T ), and then Eqsyn(X,T ) = ∅. �

The following examples show that for a transitive not thickly sensitive system
(X,T ) the nonempty set Eqsyn(X,T ) may be very complicated. Note that by [14,
Theorem 1.3] each non sensitive E-system is necessarily a minimal equicontinuous
system.

Example 3.6. There exists a sensitive, not thickly sensitive system (X,T ) such
that Tran(X,T ) ( Eq

syn
(X,T ) = X. In fact, the constructed system (X,T ) is a

nonminimal E-system.

Construction. We take a Toeplitz flow (Y, S) which is a minimal invertible system
with positive topological entropy. See [10] for the construction of such a system. Let
πeq : (Y, S) → (Yeq, Seq) be the factor map of (Y, S) over its maximal equicontinuous
factor. Then πeq is an almost one-to-one extension between minimal systems. And
hence (Y, S) is not thickly sensitive by Theorem 3.1, and πeq is a proximal extension.

By the classical variational principle (see for example [27, Theorem 8.6]) we
choose an ergodic invariant Borel probability measure ν of (Y, S) with positive
measure-theoretic ν-entropy hν(Y, S). Let ν =

∫
Z
νzdη(z) be the disintegration of ν

over the Pinsker factor (Z,D, η, R) of (Y,Bν , ν, S), where (Y,Bν , ν) is the completion
of (Y,BY , ν) and BY denotes the Borel σ-algebra of Y (for the construction of such
a disintegration see for example [12, Chapter 5, §4]). Set λ =

∫
Z
νz × νzdη(z),

which is in fact an ergodic invariant Borel probability measure of (Y × Y, S × S)
with positive measure-theoretic λ-entropy and λ(X \∆Y ) > 0 by [13], where ∆Y =
{(y, y) : y ∈ Y } and X ⊂ Y ×Y is the support of λ, that is, X is the smallest closed
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subset of Y × Y with λ(X) = 1. It is easy to see that (X,S× S) forms a transitive
system having a nonempty intersection with ∆Y , denoted by (X,T ). Then X ) ∆Y

by the minimality of (Y, S). Additionally, if (y1, y2) ∈ X then πeq(y1) = πeq(y2),
and hence y1 and y2 are proximal (as πeq is a proximal extension). In particular,
if (y1, y2) ∈ X is a minimal point of (X,T ) then y1 = y2, and so ∆Y is the unique
minimal subsystem contained in (X,T ).

Now we check that the system (X,T ) satisfies all required properties. Clearly,
(X,T ) is a nonminimal E-system. Moreover, it is an almost one-to-one extension
of a minimal equicontinuous system (Yeq, Seq) (because πeq is almost one-to-one
and πeq(y1) = πeq(y2) for all (y1, y2) ∈ X), and hence not thickly sensitive by
Proposition 4.2. In fact, we can also obtain it directly from the definitions.

Now let us check Eqsyn(X,T ) = X . Let x ∈ X and y0 ∈ Y , and hence y0 ∈
Eqsyn(Y, S) by Theorem 3.4. Take a compatible metric ̺1 over Y , and a compatible
metric ̺((y1, y2), (y

′
1, y

′
2)) = max{̺1(y1, y′1), ̺1(y2, y

′
2)} overX for y1, y

′
1, y2, y

′
2 ∈ Y .

Then for each δ > 0 there exists open UY ⊂ Y containing y0 and syndetic N ⊂ N

such that ̺1(S
ny, Sny0) ≤ δ whenever y ∈ UY and n ∈ N . Thus ̺1(S

ny1, S
ny2) ≤

2δ whenever y1, y2 ∈ UY and n ∈ N , and finally ̺(T nx1, T
nx2) ≤ 2δ whenever

x1, x2 ∈ (UY × UY ) ∩ X and n ∈ N . As ∆Y is the unique minimal subsystem of
(X,T ), there existm ∈ N and open U ⊂ X containing x with TmU ⊂ (UY ×UY )∩X ,
and so ̺(Tm+nx, Tm+nx′) ≤ 2δ whenever x′ ∈ U and n ∈ N . This implies x ∈
Eqsyn(X,T ), because m+N ⊂ N is syndetic. The construction is done. �

Example 3.7. There exists a nonminimal E-system (X ′, T ′) which is not thickly
sensitive, such that Tran(X ′, T ′) ( Eq

syn
(X ′, T ′) ( X ′.

Construction. Let (X,T ) and (Y, S) be the systems as constructed in Example 3.6,
and we take (X ′, T ′) to be the system constructed by collapsing ∆Y into a fixed
point p0 of (X,T ). Then the fixed point p0 is the unique minimal point of (X ′, T ′).
Let π : (X,T ) → (X ′, T ′) be the corresponding factor map.

Now we check that the system (X ′, T ′) satisfies all required properties. It is easy
to see that (X ′, T ′) is an invertible nonminimal E-system. Then X ′ \ Tran(X ′, T ′)
is a dense subset of X ′ (see [18]), and hence X ′ \ Tran(X ′, T ′) ) {p0}. Moreover,
the factor map π is almost open. This implies that (X ′, T ′) is not thickly sensitive,
because (X,T ) is not thickly sensitive. In fact, π : X \∆Y → X ′ \ {p0} is a homeo-
morphism. Therefore we obtain that Tran(X ′, T ′) ( X ′ \ {p0} ⊂ Eqsyn(X

′, T ′), as
Eqsyn(X,T ) = X .

Finally we are going to show that p0 /∈ Eqsyn(X
′, T ′) and hence Tran(X ′, T ′) (

X ′\{p0} = Eqsyn(X
′, T ′) ( X ′. Let x∗ ∈ X ′\{p0} and set 0 < δ < dist({x∗}, {p0}).

Let U0 ⊂ X be any open set containing p0 and m ∈ N. By shrinking U0 we may
choose open U∗ containing x∗ such that dist(U∗, U0) > δ. We take opene W ⊂ U0

such that (T ′)−jW ⊂ U0 for all j = 0, 1, . . . ,m (as T ′p0 = p0), and then

N(T ′)−1(U∗, U0) ⊃
m⋃

j=0

N(T ′)−1(U∗, (T
′)−jW )

⊃ {n+ j : n ∈ N(T ′)−1(U∗,W ), j = 0, 1, . . . ,m}.

Thus NT ′(U0, U∗) = N(T ′)−1(U∗, U0) is a thick set, because N(T ′)−1(U∗,W ) 6= ∅

by the transitivity of (X ′, (T ′)−1) (as (X ′, T ′) is an invertible transitive system,
(X ′, (T ′)−1) is also transitive from the definition). And hence ST ′(U0, δ) is a thick
set, as T ′p0 = p0. In particular, p0 /∈ Eqsyn(X

′, T ′). The construction is done. �



9

Theorem 3.4 from [19] says that any irrational rotation of the two dimensional
torus has an almost one-to-one extension which is a noninvertible minimal map of
that torus. By Proposition 4.2 any of these above mentioned noninvertible mini-
mal maps on the torus is syndetically equicontinuous, and by the Auslander-Yorke
Dichotomy Theorem any noninvertible minimal map is sensitive. But we still have
the following open question.

Question. If a syndetically equicontinuous system is uniformly rigid then is it
equicontinuous?

4. Proof of Theorem 3.1

In this section we present a proof of our dichotomy Theorem 3.1.

Lemma 4.1. Let π : (X,T ) → (Y, S) be a factor map and let y0 ∈ Eq(Y, S) be a
minimal point such that π−1(y0) = {x0}. Then x0 ∈ Eq

syn
(X,T ). In particular,

(X,T ) is not thickly sensitive.

Proof. Let δ > 0 and let ̺Y be a compatible metric over Y . We take open W ⊂ X
containing x0 such that diam(W ) < δ. As {x0} = π−1(y0), there exists open
V ⊂ Y containing y0 such that π−1(V ) ⊂W . Let ε > 0 be small enough such that
{y ∈ Y : ̺Y (y0, y) < 2ε} ⊂ V . Since y0 ∈ Eq(Y, S), there exists ε ≥ κ > 0 such
that ̺Y (S

ny, Sny0) < ε whenever ̺Y (y, y0) < κ and n ∈ N. Take V ′ = {y ∈ Y :
̺Y (y0, y) < κ}, U = π−1(V ′) ∋ x0 and set S = NS(y0, V

′). Note that S is syndetic,
because y0 is a minimal point. Let n ∈ S. Then Sny0 ∈ V ′, additionally, if y ∈ V ′

then ̺Y (S
ny0, S

ny) < ε and so ̺Y (y0, S
ny) < 2ε, that gives SnV ′ ⊂ V , and hence

T nU = T nπ−1(V ′) ⊂ π−1(SnV ′) ⊂ π−1(V ) ⊂W.

Summing up, for each δ > 0 there exist open U ⊂ X containing x0 and a syndetic
set S ⊂ N such that ̺(T nx0, T

nx) < δ for all x ∈ U and any n ∈ S (recall that ̺
is the metric over X). That is, x0 ∈ Eqsyn(X,T ). �

Similarly, we can provide proof of the following result, which is in fact Lemma
6.3 from [16].

Proposition 4.2. If (X,T ) is an almost one-to-one extension of a minimal
equicontinuous system, then it is syndetically equicontinuous.

In order to prove the another direction of Theorem 3.1, we make some prepara-
tions. Let π : (X,T ) → (Y, S) be a factor map between dynamical systems. Recall
that π is proximal if any pair of points x1, x2 ∈ X is proximal for (X,T ) whenever
π(x1) = π(x2). The following result should be well known, but we fail to find a
reference and hence provide a proof of it here for completeness. This variant of a
very short proof was kindly communicated to us by Joseph Auslander and works
for systems of any acting group.

Lemma 4.3. Let πi : (Xi, Ti) → (Yi, Si), i = 1, 2 be factor maps between dynamical
systems. If both π1 and π2 are proximal, then the product factor map π1 × π2 :
(X1 ×X2, T1 × T2) → (Y1 × Y2, S1 × S2) is also proximal.

Proof. Let a pair of points (x1, x2), (x
∗
1, x

∗
2) ∈ X1 × X2 with πi(xi) = πi(x

∗
i ) for

i = 1, 2. We will show that this pair is proximal. In fact, take a minimal point
((z1, z2), (z

∗
1 , z

∗
2)) from the orbit closure of ((x1, x2), (x

∗
1, x

∗
2)) in the system (X1 ×

X2 ×X1 ×X2, T1 × T2 × T1 × T2). Then (z1, z
∗
1) is a minimal point in the system
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(X1×X1, T1×T1), and π1(z1) = π1(z
∗
1) and hence (z1, z

∗
1) is proximal, which implies

z1 = z∗1 . Similarly z2 = z∗2 . In particular, (x1, x2) and (x∗1, x
∗
2) are proximal. �

Then we have the following

Proposition 4.4. Let π : (X,T ) → (Y, S) be a factor, not almost one-to-one map
between minimal systems, where (Y, S) is invertible. Then inf

y∈Y
diam(π−1y) > 0.

Moreover, if π is also proximal, then (X,T ) is thickly sensitive.

Proof. As (Y, S) is an invertible minimal system, it is not hard to show that π−1(y)
is not a singleton for any y ∈ Y . Let us first prove that d := inf

y∈Y
diam(π−1y) > 0.

Let ψ : Y → [0, diam(X)] be given by y 7→ diam(π−1y), and hence for each
y ∈ Y one has ψ(y) > 0 as π−1(y) is not a singleton. Since the function ψ is upper
semi-continuous, Ec(ψ) - the set of all points of continuity of ψ, is a residual subset
of Y (see for example [12, Lemma 1.28]). Suppose that d = 0. So, there exists a
sequence of points yi ∈ Y such that lim

i→∞
ψ(yi) = 0.

Let yc ∈ Ec(ψ) and ε > 0. There exists open V ⊂ Y containing yc such that
|ψ(yc)−ψ(y)| ≤ ε whenever y ∈ V . Since (Y, S) is minimal, there existsm ∈ N with
m⋃
j=0

S−jV = Y . By taking a subsequence (if necessary) we may assume that {yi :

i ∈ N} ⊂ S−kV for some k ∈ {0, 1, . . . ,m}. Since lim
i→∞

ψ(yi) = 0, in other words,

the diameter of π−1(yi) tends to zero, the diameter of π−1(Skyi) = T kπ−1(yi) also
tends to zero. Therefore lim

i→∞
ψ(Skyi) = 0, which implies that ψ(yc) ≤ ε by the

construction of V and m. Finally ψ(yc) = 0, a contradiction.

Take 0 < δ <
d

6
. Now assume that π is proximal. We shall prove that (X,T )

is thickly sensitive with a sensitivity constant δ. Let x∗ ∈ X and m ∈ N and
take open U ⊂ X containing x∗. Let V ⊂ U be an open set containing x∗ with
max

0≤i≤m
diam(T iV ) < δ. Since a factor map between minimal systems is almost

open [5, Theorem 1.15], therefore for each i = 0, 1, . . . ,m we can choose yi ∈

int(π(T iV )) (the interior of π(T iV )), ui ∈ π−1(yi) with dist(ui, T
iV ) >

d

2
− δ

(because diam(T iV ) < δ), and set

Wi = {x ∈ X : ̺(x, ui) < δ} ∩ π−1(int(π(T iV ))) ∋ ui.

Obviously, dist(Wi, T
iV ) >

d

2
− 2δ > δ for each i = 0, 1, . . . ,m.

Note that since (X,T ) is minimal, the set of all minimal points of the system
(Xm+1, T (m+1)), the product system of m+ 1 copies of (X,T ), is dense in Xm+1.
Hence we can take a minimal point (v0, v1, . . . , vm) ∈ W0 ×W1 × · · · ×Wm of the
system (Xm+1, T (m+1)), and let xi ∈ T iV with π(xi) = π(vi) (because π(vi) ∈
π(T iV )) for each i = 0, 1, . . . ,m. Since the factor map π : (X,T ) → (Y, S) is
proximal, by Lemma 4.3,

π′ : (Xm+1, T (m+1)) → (Y m+1, S(m+1)), (x′i : 0 ≤ i ≤ m) 7→ (π(x′i) : 0 ≤ i ≤ m)

is also a proximal factor map. In particular, ((x0, x1, . . . , xm), (v0, v1, . . . , vm)) is
proximal (under the action T (m+1)), and thus

S = NT (m+1)((x0, x1, . . . , xm),W0 ×W1 × · · · ×Wm)
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is a central set and contains a ∆-set by [12]. Finally S ∩ N 6= ∅ where N =
NT (V, V ) ⊂ NT (TV, TV ) ⊂ · · · ⊂ NT (T

mV, TmV ) is a ∆∗-set [12]. Now for any
n ∈ S ∩ N and each i = 0, 1, . . . ,m, on one hand T nxi ∈ Wi as n ∈ S, and hence
T n+iV ∩Wi ∋ T nxi as xi ∈ T iV ; on the other hand T n+iV ∩ T iV 6= ∅ as n ∈ N ,
therefore diam(T n+iV ) ≥ dist(Wi, T

iV ) > δ. Thus

ST (U, δ) ⊃ ST (V, δ) ⊃ {n+ i : n ∈ S ∩N , i = 0, 1, . . . ,m},

which implies that (X,T ) is thickly sensitive by the arbitrariness of U and m. �

The following lemma is just a reformulation of [25, Theorem 1.1].

Lemma 4.5. Let (X,T ) be an invertible minimal system and x, x′ ∈ X. Then
(x, x′) ∈ Q+(X,T ) if and only if for every open U, V ⊂ X containing x and x′,
respectively, there exist n1,m1 ∈ Z such that T n1x, T n1+m1x ∈ U and Tm1x ∈ V .

Now let us show that it is also true for any (not only invertible) continuous
minimal map. Recall that S ⊂ N is an IP set if there exists {pk : k ∈ N} ⊂ N with
{pi1 + · · ·+ pik : k ∈ N and i1 < · · · < ik} ⊂ S.

Lemma 4.6. Let (X,T ) be a minimal system and x, y ∈ X. Then (x, y) ∈
Q+(X,T ) if and only if for every open U, V ⊂ X containing x and y, respectively,
there exist n,m ∈ N such that T nx, T n+mx ∈ U and Tmx ∈ V .

Proof. Firstly assume that, for every open U, V ⊂ X containing x and y, respec-
tively, there exist n,m ∈ N such that T nx, T n+mx ∈ U and Tmx ∈ V . From
the definition it is readily to obtain (x, y) ∈ Q+(X,T ), for instance by taking
x′ = x, y′ = Tm(x).

Now assume (x, y) ∈ Q+(X,T ) and take open U, V ⊂ X containing x and y,

respectively. Recall that (X̂, T̂ ) is the natural extension of (X,T ) and π̂ : (X̂, T̂ ) →

(X,T ) is the associated factor map. Hence Q+(X,T ) = (π̂ × π̂)Q+(X̂, T̂ ) by [17,

Lemma A.3]. In particular, there exist (x∗, y∗) ∈ Q+(X̂, T̂ ) and open U∗, V∗ ⊂ X̂
containing x∗ and y∗, respectively, such that π̂(x∗) = x, π̂(y∗) = y and π̂(U∗) ⊂ U ,

π̂(V∗) ⊂ V . Since (X,T ) is minimal, (X̂, T̂ ) is an invertible minimal system, and

then by applying Lemma 4.5 there exist n1,m1 ∈ Z such that T̂ n1x∗, T̂
n1+m1x∗ ∈

U∗ and T̂m1x∗ ∈ V∗. Moreover, we choose open W ⊂ X̂ containing x∗ such that

T̂ n1W ⊂ U∗, T̂
n1+m1W ⊂ U∗ and T̂m1W ⊂ V∗. Since (X̂, T̂ ) is minimal, x∗ is

recurrent in the sense that T̂ lkx∗ tends to x∗ for a sequence of positive integers
l1 < l2 < . . . , and so N

T̂
(x∗,W ) is an IP set by [12, Theorem 2.17]. Hence there

exist p1, q1 ∈ N such that

n = n1 + p1 > 0,m = m1 + q1 > 0 and {p1, q1, p1 + q1} ⊂ N
T̂
(x∗,W ).

Thus T̂ nx∗, T̂
n+mx∗ ∈ U∗ and T̂mx∗ ∈ V∗. Therefore T

nx, T n+mx ∈ U and Tmx ∈
V by the above construction. This finishes the proof. �

With the help of Lemma 4.6, using an idea of the proof of [24, Lemma 2.1.2] we
obtain the following result, which is of independent interest.

Proposition 4.7. Let (X,T ) be a minimal system and x, y ∈ X. Then (x, y) ∈
Q+(X,T ) if and only if NT (x, U) contains a ∆-set for any open U ⊂ X containing
y.
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Proof. Sufficiency. Let U ⊂ X be an open set containing y. Since NT (x, U)
contains a ∆-set by the assumption, there exists {s1 < s2 < s3} ⊂ N with
T s3−s2x, T s2−s1x, T s3−s1x ∈ U . Let x′ = x, y′ = T s2−s1x and m = s3 − s2 ∈ N.
Then Tmx′, Tmy′ ∈ U and (x, y) ∈ Q+(X,T ) by the arbitrariness of U .

Necessity. Assume (x, y) ∈ Q+(X,T ) and take open U ⊂ X containing y.
Choose positive real numbers η and ηk, k ∈ N such that η =

∑
k∈N

ηk and Bη(y) ⊂ U ,

where Bη(y) denotes the open ball of radius η centered at y. By applying Lemma
4.6 to Bη1(x) and Bη1(y), there exist n1,m1 ∈ N such that

T n1x, T n1+m1x ∈ Bη1(x) and T
m1x ∈ Bη1(y).

Fix a δ > 0. Applying Lemma 4.6 to Bδ(x) and Bη1(y), we have n2,m2 ∈ N such
that T n2x, T n2+m2x ∈ Bδ(x) and Tm2x ∈ Bη2(y). Since δ can be selected small
enough, we can require additionally

max
0≤r≤n1+m1

̺(T r+n2x, T rx) < η2 and max
0≤r≤n1+m1

̺(T r+n2+m2x, T rx) < η2.

We continue the process by induction. Put lk =
k∑

i=1

(ni +mi) for each k ∈ N. Then

there exist nk+1,mk+1 ∈ N such that Tmk+1x ∈ Bηk+1
(y),

(4.1)
max

0≤r≤lk
̺(T r+nk+1x, T rx) < ηk+1 and max

0≤r≤lk
̺(T r+nk+1+mk+1x, T rx) < ηk+1.

Set pk = mk + nk+1 and sk = p1 + · · ·+ pk for every k ∈ N. Then, for all i ≤ j,

̺(T pi+···+pjx, y) = ̺(T
mi+

j∑
k=i+1

(nk+mk)+nj+1

x, y)

≤ ̺(T
mi+

j∑
k=i+1

(nk+mk)+nj+1

x, T
mi+

j∑
k=i+1

(nk+mk)

x) +

· · ·+ ̺(Tmi+(ni+1+mi+1)x, Tmix) + ̺(Tmix, y)

< ηj+1 + · · ·+ ηi < η (using (4.1)).

So, NT (x, U) contains the ∆-set {sj − si : i < j} from the construction. �

Recall that πeq : (X,T ) → (Xeq, Teq) is the corresponding factor map of (X,T )
over its maximal equicontinuous factor.

Proposition 4.8. Let (X,T ) be a minimal system. Assume that πeq : (X,T ) →
(Xeq, Teq) is not proximal. Then (X,T ) is thickly sensitive.

Proof. Since πeq : (X,T ) → (Xeq, Teq) is not proximal, there exists a pair of
points x1, x2 ∈ X , which is not proximal, such that πeq(x1) = πeq(x2) (and hence
(x1, x2) ∈ Q+(X,T ), as (X,T ) is minimal). Then d := inf

n∈N

̺(T nx1, T
nx2) > 0.

Take 0 < δ <
d

3
. We are going to prove that (X,T ) is thickly sensitive with a

sensitivity constant δ > 0. Since (X,T ) is minimal, it suffices to show that ST (U, δ)
is thick for any open U ⊂ X containing x1.

For any m ∈ N take open sets V ⊂ U and W containing x1 and x2, respectively,
such that max

0≤i≤m
max{diam(T iV ), diam(T iW )} < δ. By the above construction

min
0≤i≤m

dist(T iV, T iW ) > δ. Since (x1, x2) ∈ Q+(X,T ), NT (x1,W ) contains a ∆-

set by Proposition 4.7, and hence has a nonempty intersection with N , where
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N = NT (V, V ) ⊂ NT (TV, TV ) ⊂ · · · ⊂ NT (T
mV, TmV ) is a ∆∗-set by [12, Page

177]. Therefore for every n ∈ NT (x1,W )∩N and i = 0, 1, . . . ,m we have: T n+iV ∩
T iW ∋ T n+ix1, because T

nx1 ∈ W ; and T n+iV ∩ T iV 6= ∅, because n ∈ N . That
gives diam(T n+iV ) ≥ dist(T iW,T iV ) > δ. Thus

ST (U, δ) ⊃ ST (V, δ) ⊃ {n+ i : n ∈ NT (x1,W ) ∩ N , i = 0, 1, . . . ,m},

which implies that (X,T ) is thickly sensitive. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. If πeq is almost one-to-one, then (X,T ) is not thickly sensi-
tive by Proposition 4.2. Now assume that (X,T ) is not thickly sensitive, then πeq
is proximal by Proposition 4.8, and then πeq is almost one-to-one by Proposition
4.4 (as (Xeq, Teq) is an invertible minimal system). This finishes the proof. �

As a corollary of Theorem 3.1, we have the following

Proposition 4.9. Let π : (X,T ) → (Y, S) be an almost one-to-one factor map
between minimal systems. Then (X,T ) is syndetically equicontinuous if and only if
so is (Y, S).

Proof. By Theorem 3.4, it suffices to prove that (X,T ) is not thickly sensitive if
and only if so is (Y, S). As a factor map between minimal systems, π is almost open
by [5, Theorem 1.15], and so if (X,T ) is not thickly sensitive then so is (Y, S), as
the thick sensitivity can be lifted from a factor to an extension by an almost open
factor map by the method used in the proof of [14, Lemma 1.6].

Now assume that (Y, S) is not thickly sensitive, and then the factor map π∗
eq :

(Y, S) → (Yeq, Seq), the factor map of (Y, S) over its maximal equicontinuous factor
(Yeq, Seq), is almost one-to-one by Theorem 3.1. Set π∗ to be the composition
factor map π∗

eq ◦ π : (X,T ) → (Yeq, Seq). Denote by Y1 (Y2, Y0, respectively) the

set of all points y1 ∈ Yeq (y2 ∈ Yeq, y0 ∈ Y , respectively) whose fibers (π∗)−1(y1)
((π∗

eq)
−1(y2), π

−1(y0), respectively) are singletons. Then Y2 is a dense Gδ subset

of Yeq, and Y0 is a dense Gδ subset of Y . This implies that Y0 ∩ (π∗
eq)

−1(Y2) is

a dense Gδ subset of Y by Lemma 2.2, and then π∗
eq(Y0 ∩ (π∗

eq)
−1(Y2)) is a dense

subset of Yeq. Note that π∗
eq(Y0 ∩ (π∗

eq)
−1(Y2)) ⊂ Y1. In fact, for any y∗ ∈ π∗

eq(Y0 ∩

(π∗
eq)

−1(Y2)) ⊂ Y2, we take y0 ∈ Y0 with π∗
eq(y0) = y∗, then (π∗

eq)
−1(y∗) = {y0} as

y∗ ∈ Y2, and hence

(π∗)−1(y∗) = π−1 ◦ (π∗
eq)

−1(y∗) = π−1(y0)

is a singleton as y0 ∈ Y0. Thus we have the denseness of Y1 in Yeq, and then (X,T )
is not thickly sensitive by Proposition 4.2. This finishes the proof. �
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