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We employ the Statefinder hierarchy and the growth rate of matter perturbations to explore the
discrimination of ΛCDM and some parametrization dark energy models including the Chevallier-
Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP), the Padé(I), (II). We find that the

statefinder S
(m)
3 containing third derivatives of a(t) can differentiate CPL and JBP from ΛCDM

and Padé(I), (II). While the statefinder S
(1)
4 involving fourth order derivatives of a(t) has more

powerful discrimination that it can distinguish the Padé(I), (II) from ΛCDM. In addition, we show
that the growth rate of matter perturbations does not play a significant role for discrimination of
such parametrization dark energy models.

I. INTRODUCTION

The late time cosmic acceleration has been supported by many independent cosmological observations, including
the type Ia supernovae (SNIa) [1], large scale structure [2], cosmic microwave background (CMB) anisotropy [3] etc.
Dark energy is believed to have unveiled the mystery of the cosmic acceleration, via the ratio of its pressure and
energy density as well as the equation of state (EoS) parameter w < −1/3. Depending whether EoS is constant or
time-dependent, the dark energy candidates can be divided into many subclasses. The cosmological constant model
(ΛCDM) with w = −1 is the most robust model but with the fine-tuning problem [4, 5] and coincidence problem
[6]. This led to a widespread speculation that the EoS of vacuum energy is not a constant. And then, a number of
dynamic dark energy models have been proposed, such as quintessence [7–9], K-essence [10, 11], phantom [12–14],
Chaplygin gas [15, 16], and so on. On the other hand, the parameterization for the EoS of dark energy is a useful
tool, which has been widely employed to analyse the behavior of dark energy [17–24].

Facing more and more dark energy models, it is significant to discriminate various models. Sahni et al. [25] proposed
a geometrical diagnostic called Statefinder to distinguish numerous dark energy models, such as ΛCDM, quintessence
[25–27], phantom [28, 29], holographic dark energy model [27], Ricci dark energy model [30], and so on. Statefinder
is a pair parameters {r, s} containing the third derivative of the scale factor, a(3)/aH3. Different models will show
different evolutionary trajectories in r− s plane. In addition, another diagnostic named Om(z) [31], constructed from
the Hubble parameter, can also be employed to distinguish the dark energy models. Recently, Arabsalmani and Sahni
[32] introduced a more refined diagnostic called as ’Statefinder hierarchy’, which involves high order derivative of the
scale factor, a(n)/aHn, n ≥ 3. Statefinder hierarchy has a greater ability to distinguish various cosmological models.
Sometimes, some dark energy models could not be discriminated by original Statefinder [33], but the hierarchy could
break their degeneracy [34]. In addition, the growth rate of matter perturbations [32] also could be a supplement for
Statefinder to discriminate cosmological models.

In this paper, we focus on the parametrizations for the EoS of dark energy. So far, there are a large number of
parametrizations in the literature. Whether they could be distinguished will be investigated. We use Statefinder
hierarchy and the growth rate of matter perturbations to compare some previously well-studied parametrizations: the
Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and Padé(I), (II) parametrizations whose
proposal are based on the Padé approximant [24].

In Sec. II, CPL, JBP, Padé(I) and Padé(II) parametrizations for the EoS will be introduced. The Statefinder
hierarchy and the growth rate of matter perturbations are briefly reviewed in Sec. III. In Sec. IV, distinguishing
parametrization dark energy models with the Statefinder hierarchy and the growth rate of matter perturbations will
be presented. The last section will give some conclusions and discussions.
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II. PARAMETRIZATIONS FOR THE EOS

So far, there are a large number of parametrizations in the literature. Among them, the most popular one is the
Chevallier-Polarski-Linder (CPL) parametrization [21, 22]:

wde = w0 + wa(1− a) = w0 + wa
z

1 + z
, (1)

where w0 and wa are constants. It is obvious that at the present epoch w|z=0 = w0 and in the early time w(z � 1) ∼
w0 + wa. Its normalized Hubble parameter for a flat universe is

E2(z) =
H2(z)

H2
0

= Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w0+wa) exp (−3waz/(1 + z)) . (2)

According to Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations [35], the values of parameters
we take are: Ωm0 = 0.288, w0 = −1.17 and wa = 0.35.

Jassal-Bagla-Padmanabhan (JBP) parametrization [23] is a variant of CPL parametrization

wde = w0 + wa
z

(1 + z)2
. (3)

The parameter w0 is dominant at both low and high redshifts: w(z = 0) = w0 and w(z � 1) ∼ w0. The normalized
Hubble parameter is

E2(z) = Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w0) exp
(
3waz

2/2(1 + z)2
)
. (4)

The best-fit values of parameters we take are: Ωm = 0.288, w0 = −1.21 and wa = 1.28 [36].
In fact, the above two models could be regarded as the Taylor series expansion or variant, while the Padé approxi-

mant often gives better approximation [37]. Wei et al. [24] introduced two parametrizations for the EOS of dark energy
based on the Padé approximant, and confronted them with the observational data. In addition, some advantages of
these EoS parametrizations have been demonstrated, such as they could work well at z ∼ −1 where CPL and JBP
diverge. The type (I) Padé parametrization is

wde =
w0 + (w0 + wa)

1 + (1 + wb)z
, (5)

where w0, wa and wb are constants. In the flat FRW universe, its normalized Hubble parameter is

E2(z) = Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w0+wa+wb)/(1+wb)

(
1 +

wbz

1 + z

)−3(wa−w0wb)/[wb(1+wb)]

. (6)

The values of parameters are constrained from observational data as: Ωm0 = 0.280, w0 = −0.995, wa = −0.02, and
wb = −0.052 [24].

The type (II) Padé parametrization has been proposed as

wde =
w0 + w1 ln a

1 + w2 ln a
, (7)

where w0, w1 and w2 are all constants. Its normalized Hubble parameter is

E2(z) = Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(w1+w2)/w2 [1− w2 ln (1 + z)]
3(w1−w0w2)/w2

2 . (8)

The best-fit values of parameters are given as: Ωm0 = 0.280, w0 = −0.996, w1 = 0.200, and w2 = −0.139 [24].

III. THE STATEFINDER HIERARCHY AND THE GROWTH RATE OF PERTURBATIONS

A. The statefinder hierarchy

Now, we adopt the assumption of a flat and homogeneous Friedmann-Robertson-Walker spacetime. In this case,
the scale factor a(t) describes the dynamics of universe, which can be Taylor expanded around the present time t0 as
follows

a(t)

a0
= 1 +

∞∑
n=1

An(t0)

n!
[H0(t− t0)]

n
, (9)
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where

An ≡
a(n)

aHn
, n ∈ N, (10)

a(n) is the nth derivative of the scalar factor a(t) with respect to time. In fact, −A2 is called deceleration factor q.
A3 is the jerk ”j” [38] as well as the famous Statefinder ”r” [25] which is used to discriminate cosmological models
[39–42]. A4 is the snap ”s” and A5 is referred to as the lerk ”l” [43]. For the ΛCDM, all the An parameters could be
expressed as the functions of the deceleration parameter q, or the matter density parameter Ωm.

A2 = 1− 3

2
Ωm,

A3 = 1,

A4 = 1− 32

2
Ωm, etc, (11)

where Ωm = 2
3 (1 + q) and Ωm = Ωm0(1 + z)3/E2(z) for ΛCDM. While the general forms of Eqs. (10) could be

rewritten as

A2 = −q = 1− (1 + z)
1

E

dE

dz
,

A3 = (1 + z)
1

E2

d[E2(1 + q)]

dz
− 3q − 2,

A4 =
−(1 + z)

E3

d[E3(2 + 3q +A3)]

dz
+ 4A3 + 3q(q + 4) + 6. (12)

And then, Arabsalmani and Sahni [32] proposed the Statefinder hierarchy Sn which can be defined as [44]

S2 = A2 +
3

2
Ωm,

S3 = A3,

S4 = A4 +
32

2
Ωm, etc. (13)

Obviously, the Statefinder hierarchy is always equal to 1 for ΛCDM during the entire evolution of the universe

Sn|ΛCDM = 1. (14)

These equations make it possible to define a null diagnostic for ΛCDM, since for evolving dark energy models some
equalities of Sn may be deviate from unity, which exactly could be a diagnostic tool.

For n ≥ 3, using the relationship Ωm = (2/3)(1 + q) which is valid in ΛCDM, we can define an alternate form of
the Statefinders

S
(1)
3 := S3,

S
(1)
4 := A4 + 3(1 + q), etc. (15)

S
(1)
n is similar to Sn, as S

(1)
n |ΛCDM = 1. And then, it also can be a diagnostic. Certainly, the pair {Sn, S(1)

n } is
expected to differentiate varieties of cosmological models.

Except for the parameter r, the original Statefinder constructed another parameter s ≡ r−1
3(q−1/2) [25]. In analogy

with s, Li et al. [44] defined the second member of the Statefinder hierarchy as follows

S(2)
n =

S
(1)
n − 1

α(q − 1/2)
, (16)

where α is a constant. That is to say, the original Statefinder pair {r, s} is {S(1)
3 , S

(2)
3 } with α = 3. Corresponding,

the S
(2)
4 can be defined as

S
(2)
4 =

S
(1)
4 − 1

9(q − 1/2)
. (17)

For ΛCDM, {S(1)
n , S

(2)
n } = {1, 0}, and then pairs {Sn, S(2)

n } and {S(1)
n , S

(2)
n } are looking forward to be useful.
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FIG. 1: The evolutions of the E(z) and q(z), respectively, versus redshift z.

B. The growth rate of matter perturbations

The fractional growth parameter ε(z) [45, 46] could be a supplement for the Statefinders, which is defined as

ε(z) :=
f(z)

fΛCDM (z)
, (18)

where f(z) = d ln δ/d ln a is the growth rate of linearized density perturbations. It could be parameterized as [47]

f(z) ' Ωγm(z), (19)

γ(z) ' 3

5− w
1−w

+
3

125

(1− w)(1− 3
2w)

(1− 6
5 )3

(1− Ωm(z)), (20)

where w is the EoS parameter of dark energy. If w is a constant or varies slowly with time, the above approximation
will work reasonably well. The Ref. [32] has demonstrated that the fractional growth parameter ε(z) can be used

combining with the Statefinder hierarchy to define a composite null diagnostic: {ε(z), Sn} or {ε(z), S(m)
n }. Indeedly,

it is quite effective, as DPG, ωCDM, and ΛCDM have been differentiated in Ref. [32]. For ΛCDM, γ ' 0.55 [47], and
ε(z) = 1, so {ε(z), Sn}={1,1}.

IV. DISTINGUISHING PARAMETRIZATION DARK ENERGY MODELS WITH STATEFINDER
HIERARCHY

Fig. 1 displays the evolutions of the E(z) and q(z) for ΛCDM, CPL, JBP, Padé(I), Padé(II). It is shown that
these models can not be distinguished completely. In other words, they are highly degenerate. Therefore, the
current observational data for E(z) could not distinguish or eliminate these cosmological models. We expect that the
Statefinder hierarchy takes advantage of its powerful discrimination to break the degeneracy of these models.

The evolution trajectories of S
(1)
3 and S

(2)
3 with Ωm are given in Fig. 2. Large values Ωm → 1 represent the early

universe (z � 1), while small values Ωm → 0 correspond to the future universe (z → −1). It is obvious that the
degeneracy among ΛCDM, CPL, JBP is perfectly broken in the present epoch. But the deviations between ΛCDM

and Padé(I), (II) are so small that they could not be distinguished. The discrimination of S
(2)
3 is similar as that of

S
(1)
3 .
Due to S4 as fourth derivative hierarchy is higher than S3, it should be more powerful to distinguish models. As

shown in Fig. 3, Ωm − S(1)
4 can not only differentiate CPL, JBP, but also distinguish Padé(I), (II) from ΛCDM.

Although it could not differentiate Padé(I) from (II) at present epoch, this can definitely be realized in the future.

In perspective of transverse comparison, the discrimination of S
(1)
4 is better than S

(2)
4 . Compared with S

(2)
3 in Fig.

2, we find that the Statefinder S
(2)
4 does not bring obvious promotion of discrimination. Naturally, S5 and higher

derivative hierarchy are expected to have more powerful discrimination. In the early universe, almost all these models
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FIG. 2: The evolution trajectories of S
(1)
3 and S

(2)
3 with Ωm. Large values Ωm → 1 represent the early universe (z � 1), while

small values Ωm → 0 correspond to the future universe (z → −1). The vertical gray band centered at Ωm0 = 0.3 roughly stands
for the present epoch. The points on line are the current values of corresponding model.
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FIG. 3: The evolution trajectories of S
(1)
4 and S

(2)
4 with Ωm.

are nearly degenerate into the ΛCDM model. In other words, the Statefinder hierarchy could not distinguish such
models in high-redshift region. However, in the future, the evolutions of those models can be differentiated, especially

in S
(1)
4 − Ωm.

We plot the evolutionary trajectories of {S(1)
3 , S

(1)
4 } to compare these models in Fig. 4. The result is similar to

S
(1)
4 − Ωm. The deviations of ΛCDM, CPL and JBP are quite large at present epoch, especially the current values

of CPL and JBP are so large that they run over the figure, which indicates such models could be distinguished well.
The Padé(I) and Padé(II) could be distinguished from ΛCDM at the present epoch but the discrimination between
them will only appear in the future.

The composite null diagnostics {ε(z), S(1)
3 } and {ε(z), S(1)

4 } are also employed to distinguish these dark energy
models, which is shown in Fig. 5. In Refs. [32, 34, 44, 48], these diagnostics played a very important role in

discriminating a number of dark energy models from ΛCDM. In {ε(z), S(1)
3 } panel, CPL and JBP can separate from

other models, while ΛCDM, Padé(I) and Padé(II) could not be discriminated at the present epoch. In {ε(z), S(1)
4 }

panel, the result is better. The ΛCDM is differentiated from Padé models, while Padé(I) and (II) are still difficult to
be distinguished between them at the present epoch. Thinking of Fig. 2, the third and fourth order derivatives have
given the similar effective results. This indicates that the supplement of Statefinders, the fractional growth parameter
ε(z), does not play a significant role for discrimination of such parametrization dark energy models.
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FIG. 5: The composite diagnostic {ε(z), S(1)
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4 }, respectively. The current values are marked by dots.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we explore the discrimination of some parametrization dark energy models including CPL, JBP,
Padé(I), (II) and ΛCDM. They are highly degenerate in z − E(z) and z − q(z), so they can not be distinguished
in this scale. And then, we use Statefinder hierarchy and the growth rate of perturbations to discriminate such

parametrization dark energy models. By using S
(m)
3 , which contains third derivatives of a(t), the CPL and JBP could

be distinguished from ΛCDM and Padé(I), (II), while the three models mentioned later can not be distinguished from

each other. We also use the composite diagnostic {ε(z), S(1)
3 } to plot their trajectories. The result can not be improved

obviously. Naturally, the higher order derivative S
(1)
4 has more powerful discrimination. It can not only differentiate

CPL, JBP, but also distinguish Padé(I), (II) from ΛCDM. Although it could not differentiate Padé(I) from (II) at

present epoch, this can definitely be realized in the future. Another Statefinder S
(2)
4 does bring degeneration instead of

promotion of discrimination. The corresponding composite diagnostic {ε(z), S(1)
4 } has also been considered, while the

results obtained are similar to {Ωm, S(1)
4 }. This indicates that the supplement of Statefinders, the fractional growth

parameter ε(z), does not play a significant role for discrimination of such parametrization dark energy models. In
conclusion, CPL, JBP, Padé and ΛCDM could be discriminated at present epoch, and the discrimination of Padé(I),
(II) can only be realized in the future. Statefinder hierarchy is a pretty useful and effective method. Using this
method, some parametrization dark energy models can be distinguished from ΛCDM or even from each other.

Now, let us review these parametric forms of EoS. As previously mentioned, the CPL can be regarded as the Taylor
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series expansion of EoS w with respect to scale factor a to first order. The second item of Eq. (1) represents the
deviate degree from w0 (ΛCDM could be regarded as the special form of w0 = −1, so we consider the deviation of
parametrization models from ΛCDM in the following). Similarly, the second item of Eq. (3) can also be seen as a
deviation from ΛCDM. Since the squared term in denominator, this deviation should be larger than the deviation
between CPL and ΛCDM. These deviations could be expressed in evolution trajectories of Statefinder hierarchy, the
deviation of JBP from ΛCDM is larger than CPL in any figure. In mathematics, a Padé approximant is the best
approximation of a function by a rational function of given order [37]. In addition, the Padé approximant often gives
better approximation of the function than truncating its Taylor series [37]. The Padé(I), (II) are all based on the
Padé approximant. If we take ΛCDM as the standard, the superiority of Padé parametrizations could be reflected in
figure of Statefinder hierarchy because they are the most difficult to be distinguished from ΛCDM. However, on the
other hand, the Padé parametrizations with superiority have three free parameters which is one more than CPL and
JBP.
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