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Loop quantum cosmology: The horizon problem and the probaHity of inflation
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Anomaly-free perturbations of loop quantum cosmology aéeedeformed space-time structure, in which
the signature changes when the energy density s p./2. Furthermore, in loop quantum cosmology, one
can obtain an f@ective causal structure only for a low density regipn<( p./2), which gives a natural initial
condition to consider the horizon problem. Choosing thighvalue ato(0) = p./2 in this paper, we investigate
the horizon problem and the probability of inflation in tharfrework of loop quantum cosmology. Two models
are considered: the quadratic inflation and the naturaltiofila We use the Liouville measure to calculate the
probability of inflation which solves the horizon problemmdafind that, for the quadratic inflation model, the
probability is very close to unity, while for the natural iafflon model, the probability is about 35%.

PACS numbers: 04.60.Pp, 98.80.Cq, 04.60.Kz

I. INTRODUCTION finite time to have chances to interact with others, one may
puzzle whether the horizon problem, which inflation theprie
miy to address, exists. To make this question clear, we need
logical model, can solve many long-standing problems such space-time structure of loop cosmology which has been de-

rqwed from anomaly-free perturbations of loop quantum cos-

as the horizon problem, the flatness problem, etc. Inflatio Lo
models can also provide a natural explanation of the stractu _mology recentlyl[1A=17]. Unlike in the standard cosmolog-

formation. However, whether the inflation itself is probais ical model, where the space-time structure is inserteden th

also an important question which many authors have consioi-gzr%ec;lt:)me i?ig:&;gg??;":ﬁ:ﬁi?;'gﬁeztszcﬁgge?ft:ggguse
ered in Refs.|[148]. For considering this question, two prob 9y 9

lems should be addressed: one is to find a starting point t € obtain the theory by quantizing the symmetry reduced sys-

counte-foldings, the other one is to define a measure to calcuso" and we siill miss the full theory of quantum gravity even

late the probability of inflation solutions which give endug in some &ective level. However, because the constraint alge-

e-foldings. The former one is a problem because in classi-bra needs to be anomaly-free for a first-class constraint sys

cal cosmology, due to the existence of the inifal singgfari - 510 Y 100, 18 VAT SREEE ISR RER PR
there is no clear starting point to begin one's counting e&h the modified syace-time structure has an unex écted ' ert
foldings. Since general relativity (GR) is not credible & P P pyop

densities and curvatures, one may take the starting point é{’fh'(.:h may adldress the above puzzling: signature changes at
Planck scale which is reasonable but not clear. For the se Lcritical densityp = po/2. Furthermore, with the help of per-

ond problem, the Liouville measure, established by Gibbonsurg;til?encea?gg?ggﬁc?z?erabw%:r;gar?;é:g:is\gg ;2%%::{; ;[/Ce
Hawking, and Stewart [1], can be used as a candidate meas{rg y . .
now no causal structure exists at high dengity (oc/2).

to calculate the probability. However, in flat, homogeneous . s
isotropic models, the total Liouville measure of the spakce o0 . For_ the above reas_on_s,fmrent from Refs.[l._;!—.L4], our
view is to choose the initial value pt= p./2. With the ef-

solutions is infinite; thus, one needs a regularization ische . . _
eflgz_ctlve causal structure in loop quantum cosmology, we will

As aresult, the obtained measure depends on the choice of ider the hori bl d1th bability of inflati
ergy density when the regularization is introduced [9].16h [ consider the horizon problem and the probability of inflatio
in the framework of loop quantum cosmology.

such choice was taken at the end of inflation wheg ~ 1, i . ! .
This paper is organized as follows: in Sec.ll, we present

while in [2,18], the authors choose the constant densityaserf .
some results of loop quantum cosmology and its anomaly-free

at Planck scale. Their results are quiteatient: the former bati d then introd hoeti |
gives a quite low probability if inflation can produce enoughPerturoations, and then introguce thigeetive causal struc-
ture of loop cosmology which our construction is based on.

e-foldings, while the latter gives almost one probability fo ) ;
In Sec.lll, we use thefBective causal structure to consider

inflation.
: _ .. the horizon problem. In Sec.lV, the measure is derived from
In loop quantum cosmology (LQC), big bang singularity he Liouville measure of a canonical system. In Sec.V and

isfrelgplved [jl% ]3.'1]‘ One t():atrll_l_stacrjt_ cqgnt_ing thehnugmer 98ec.VI, we consider the quadratic inflation model and nhtura
e',‘? !ng and define a probability distribution at the boenc hnflation, respectively. In Sec.VIlI some conclusions akegi
[12,/13] or the remote past before the bounce [14], where bot

methods support inflation in the quadratic inflation model.

However, because in a bouncing world, any particles have |n—“. RESULTS OF LOOP QUANTUM COSMOLOGY AND

ITS PERTURBATIONS

Inflation, as a necessary supplement to the standard cos
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spatially flat isotropic model of LQC, one has to first intro-
duce an elementary ceW and restrict all integrations to this
cell. One can fix a fiducial flat metrRy, and denote the vol-
ume of the elementary celV by V; in this geometry. The
gravitational phase space variables are the connectipasd
the density-weighted triads?, which can be expressed as

A, = eV, Y00} and E? = pv,*/® \/% Ogf,

where (Oa)ia, Oe;’") are a set of orthogonal co-triads and tri-

(1)

ads compatible witlqy, and adapted to the edges of the
elementary celfV. The basic Poisson bracket is given by

{c, p} = xy/3, wherex = 87G, G is the Newton’s constant and

v is the Barbero-Immirzi parameter. The matter phase spac%

variables are) andp,, whose Poisson bracketfig, ps} = 1.
LQC generates two main classes feetive corrections to
the constraints, called the inverse-volume correctiomstha

holonomy corrections. In this paper, we focus on the holon

omy corrections. In the-scheme of holonomy corrections
[10], we have the fective constraint:

Cur = _i(sin(u_c)

ky?\  u

P

mw+ﬁww,

)2 VB @

whereV(¢) is the potential of the scalar field,= +/A/p, and

Loop quantum cosmology is the symmetry reduced version
of loop quantum gravity, and it utilizes key elements of full
theory. But when one inserts linear perturbations, anagali
appear and the modified constraints do not form a closed al-
gebra. For eliminating these anomalous terms, one needs to
add some “counterterms”. As a result, the constraint alyebr
is deformed, which can be seen from the Poisson bracket of
two scalar constraints

(HINJ], H[N;]} = QD [%aa((sNz—aNl) .®

whereQ = cos(d) = 1 - 2o/pc. In general relativity, as we
know, the factolQ = 1; thus, LQC deforms the constraint al-
ebra. A surprising thing is at high density (wher p./2),

< 0, which means space-time is more like Euclidean space
where the factof2 in the Poisson bracket between two scalar
constraintsis-1 [15]. The deformed space-time structure also
affects the perturbations equations ( in conformal time

Ve — Qs — ?VS(T) =0, ()

S(T)

wherevg are the scalar or tensor Mukhanov-Sasaki vari-
ables. Whem) < 0, the equations become elliptic would
make the perturbations instable if one considers these prob
lems as initial-value problems, which will destroy the back

A relates to the minimum nonzero eigenvalue of the area opeground dynamics. The argument for the instability of the
ator from the full theory (LQG). For convenience, we use thelnitial-value problem can be seen in Ref[[18], and a strict

following variablesb := uc and the volume of the elementary
cell 'V = p¥2 whose Poisson bracket §b, V} = 471Gy VA.
In these variables, the constraint becomes:
C ——i(VSinz(b)+p—$+(VV( ) )
T T y2A 2V 2

Using the constraint and the equatiordfandg, one can get
a modified Friedmann equation as the following form

_8C (1_£)
3p pc’

H? 4)
whereH is the Hubble factoy, the energy density of the mat-
ter content, expressed as= 1¢2 + V(¢) andp; = =3

ky?A T
0.410p [10]. !
The equation of motion af takes the standard form:
. .av
¢+3H¢+%—O. (5)

Sinceb decreases with timel® = —4zGy VA¢? < 0, one can
view b as an internal time which will be important in defining
the measure in Sec.IV.

The perturbations of background is needed even for a ho-

mogenous model because the causal structure oflibetiee

space-time is not apparent in the homogenous part while its

proof of the instability of a special elliptic equation caa b
seen in Ref.[19]. For understanding this problem, the astho
of Ref.[18] proposed a mixed-type characteristic problem r
cently while Mielczarek [20-22] supposed a possible second
order phase transition happeningat p./2. Note that the au-
thors in Refl[2B] have considered the tensor power spectrum
of cosmological perturbations with initial conditions ioged
aroundp = pc/2, where they find the cubic shape of the ini-
tial power spectrum gt = p¢/2 is favored. In this paper, we
only consider the background dynamics, but for the consis-
tence with perturbations, we think taking the expandingsgha
atp = pc/2 as the initial time is appropriate even for back-
ground dynamics. Furthermore, that the perturbation equa-
tions having characteristics gives dfieetive causal structure
only whenp < p¢/2, which has be used in Refs.[18]) 21]: in
conformal timer, the propagating velocity = g—: of any in-

formation should be less thaviQ which agrees with classical
theory wherp <« p¢. For later convenience, we will use the
proper time; thus, the propagating velocity satisfies

dx Va

P (8)

Using this formula, one can define the particle horizon

t
du (D) = at) fo Vo

a(t’)dt ’

9)

perturbation e_quations contain the key e!ements. Anomalyghere time 0 denotes the initial time with= pe/2 and the
free perturbations with holonomy corrections have been deangular—diameterdistance

rived in the series of papers, Refsl[15-17]. We only present

their conclusions, and then get the causal structure whikh w
be useful in our consideration.

Vo

a(t) ',

to
da(t) := a(t) ft (10)
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wherety means today. the Planck units@ = # = ¢ = 1). It may be noted that
the number 69 is indeed related to &8oldings in the liter-
ature (e.g.,.[25]), which is needed for an exponential iitftat
. THE HORIZON PROBLEM IN LOOP QUANTUM to solve the horizon problem at Planck energy density (i.e.,
COSMOLOGY choosep; = pp), but which is unnecessary because at the end
of inflation, the density; <« pp. Here we get the number
One can see that if we use the horizon of LQC defined irbecause of choosing the Planck units; however, interdgting
the last section, the horizon problem of cosmology in the-sta if the e-foldings is defined to contain not only inflation pe-
dard model becomes more severe. As we know, in the stamiod but also the period before inflation, then the resulthef
dard model of cosmology, the relation of density with thdesca numerical calculations in Secs.VI and VII will show that&3

factor is foldings is precisely the least number for solving the hamiz
3 4 problem.
P+ 0m (@) +QR(@) , (11)
Po a a
. IV. THE MEASURE OF SPACE OF SOLUTIONS FROM
“wry O 8nG
where the subscript “0” denotes the current vajue,= e LIOUVILLE MEASURE

and from observation [241Q, ~ 0.685,Qy =~ 0.315,0Qr =
9.2x 10°° andHp = 67.31km-s1- Mpc™. In loop quantum

| b h ) ¢ ic th .. Before considering some concrete models, we need to de-
cosmology, because the equation of matter Is the same Withhe a natural measure to measure the probability of inflation

classical theory [see EQI(5)], we still suppose the refaio  pe | jouville measure, first used i [1], is a candidate sahiem

Eq.(11). By using the modified Fridemann equation in[Bq.(4)y, the canonical framework as in Sec.ll, we have the symplec-
we can find that the ratio between the particle horizon anc!ic two-formw = —L—dV A db + dp, A d¢. For this con-

the angular-diameter distance in LQC is smaller than génera 4Gy VA~ T ) _
relativity straint system, physical points are on the constraint saffa

Cerr = 0. By restrictingw ontol’, one getsulr = md(V/\
du (t) fot :ngt fajt:o) £ ayo db + d ((V\/Ky% sirf(b) — 2V(¢)) A d¢. Because decreases
) | oy > with time, one can vievb as an internal time; thus, for every
ﬁ mdt Lao e da

TE fixed b, Wl pocong = * \/% siré(b) — 2V(#)dV A dg. Thus,

e a% . at any fixedb, dup = \/% sirA(b) — 2V(g)dV A dy can be

T = 4R’ (12) usegl as a natural mee}sure_for the space of solutions of the con
fa 230 A straint system, for its invariance with timie, However, some

subtle problems appear: on the one hand, the total volume of

which means the horizon problem is more severe than GRspace of solutions would be infinity under this measure. This
Inflation theory tries to address the horizon problem byriase s because the range of variabieis infinite [It is worth men-
ing a scalar field to drive an almost exponential expansien betioning that the range af may also be infinite for some spe-
fore transforming into a hot universe dominated by radmtio cial potentialV(¢), but we will not consider this case in this
The horizon problem is solved whelp(t;) > da(t1), where  paper]. On the other hand, the volume of element d&lbr
t; denotes the time of the end of inflation. If we suppose thehe scale factoa is a gauge quantity. One can cure these by a
reheating process did not produce marfpldings, then the  trick used in|[12]: by introducing a Cuﬁ)[%,fv*] of v, and
angular-diameter distandg att; can be approximated by[25] integrating out this variable, one can get a new measureeof th

<

as solutions’ space
o vQdt © dt V.
da(ty) = ag — =& = ~ fvi Ghto
t n a dizp o *q/.
= a f . i f‘l’f% Ghto
& g2H, \/QA +Qu (%)% + Qr(2) 6 -
s <\ = sir(b) — 2V(¢)d¢ = [¢ldg,  (14)
L 3221 320 (Mo (13) ’
Ho ag Ho R Hi ’

which is independent of the cdfoV*. But as the authors of
where we have used approximatiacRs=~ 1 in the first sim Ref.[7] said, such a measure depends on the choice ofttime
equality becaus@(t) < p1 < pc whent > t;, and in  When integrating out volume. We can also see this thing by
the second and third sim equalit%, ~ 0. So, for solving comparing the probability of two small regions, for instanc

) 32 1/4 (Ho\L/2 [¢1, p1+6¢1] and [p2, ¢2+05¢7] attimeb. Suppose they become
the horizon problem, we neet(t) > 5Qg (H_l) 18 [y, d1+61] and [Bo, po+5¢o] at timeb. In order to use the in-

1/4 i iouVi i ;
o N variance of the Liouville measure, introduce volume vagab
In ( VHidy (tl)) > In (3'2(H§) ) = 69, where we have used V for the two regions¥1, Vi + AV;1] and [Va, V2 + AV,]



at timeb, satisfyingAV; = AV,. Suppose the cell volumes
expand by some factoe$™: ande®™: at timeb, then we have
the simple relationaV; = VAV, andAV, = eNAV,,
because the equation of¥ does not depend on varialslé:
dny _ —pci';@. Then,

db
Prolp([¢1, ¢1 + 0¢1])

Prolp([¢2, ¢2 + 6¢2])

pl6p1  |$2l6p1AV1

, |@2lops  Ipalog2A Vs

_ |p1l6g1AV1 _ Prolg([¢1, 1 + 6¢1]) €M
621630V, Prolp([$2, 2 + 662]) €%

where we have used the property thes¢AV is invariant
with time in the third equality. Thus, if one who gets the mea-
sure at timeb finds equal probability of region 1 and region 2,
another person who gets the measure at bwél find region

1 is more impossible than region 2§ > N,. So when to
integrate out volume is crucial, especially for a systemirgv
both inflation solutions and noninflation solutions. Ounyjie

.(15)

in this paper, is to take the time integrating out volumes at

the starting time of the Universe, and LQC has such a startin
time, when the density is p¢/2, or siffb = 1/2. So we will

use
du o< Vpc/2 = V(¢o)ddo. (16)

An interesting thing is that the measure of classical théry
also the above formula, if one takes the initial condition at
p = pc/2 in classical theory. In the next two sections we will
consider two inflation models; one is the quadratic inflation
the most simple model although it has been disfavored for r
cent observation, and the other is the natural inflation.

V. QUADRATIC INFLATION MODEL

e-

The initial values are

x(0) = cosp)/ V2, 6 €0, 2n)
¥(0) = sin(®)/ V2,

a(0)=1,

Dy (0) = O.

(20)

Figure[1 shows the phase space trajectories for quadratic in
flation, for better viewing, we've chosen = 1.06 x 10 mp
instead ofm = 1.06 x 10%mp. From the picture, we can find
every initial point ono = p¢/2 quickly enters in slow roll so-
lution region.

0.6

02 /
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FIG. 1: Phase portrait for quadratic inflation, wheres
_ _¢
y = \/a

inflation ends ag’= 0. We use mass = 1.06 x 1071,

In order to determine which solutions do not have the hori-

As a simplest example studied in many references, we firsf, , problem, i.e., satisfy In(Hzdy(t1)) > 69, one can use

consider a massive scalar figjdwith massm, i.e. a scalar
field with quadratic potential
1
V(9) = Sg?. (17)
We choose the mass of the scalar figld= 1.06 x 10 mp,
which gives the wanted amplitude of curvature perturbation
As = 107193962 gand the spectral indems = 0.97, but the

unwanted tensor-to-scalar ratio,= 0.13. Following from
[14], define:

. mp ¢
V20c V20c

so the density becomgs= p.(x* + y?). For the numerical
calculation, define the conformal causal distafgg(t) :=
fot @dt, then the equations of, y, scale factora, and Dy
are (in Planck units)

X = andy:= (18

X =my,
y = —-mx — 3Hy,
1=H= yepteera-e-y, (19

Dy =

a

numerical methods, whose results have been shown in Table

[ In the following, we give the slow roll approximation whic

is shown to be an excellent approximation.

If a solution has entered into the slow roll region where
the trajectories satisfly] < |x| and 0= —mx — 3Hy, then
the modified Friedmann equation becont¢$ = V(1 -
Vipe) = %x3(1 - x%) . Then the slow roll solution is

_ msgn(k) - _ 7 . ..
Y= -m —@@ 2.5 x 10 'sgn) which is in

the second or fourth quadrant. When the density is much
lower than Planck density and the potential slow roll param-

2 . .
v ) = %;2 equals to 1, inflation ends and

eterey :

Vv

1
- m(
Pend = i\r/n_:_ﬂ.
Thee-foldings during inflation can be approximated by

end Pend Xend
N = [Tha= [T Sde= [ ax
te [0 ¢ X y

4 X\ 1
~ &Xi 1- . -,
mam? 2] 2
wheret, denotes the starting time of inflation. We need to
associate the starting pointy(yo) with the inflation starting

(21)
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point x,.. For doing this, consideg—; = § = —ﬁ When (b) If the slow roll part is in the second quadragtX 0),
y' ' m

we use the approximation; := X + 1’;‘;6 o dnglm ,and
vt m

Yl 2 10°%, we get¥ > 1 and3 > |¥|, so the kinetic energy
decays more quickly than the potential, and then the Univers
will enter into the slow roll inflation region

(a) If the slow roll part is in the fourth quadrant £ 0), we 106 dy
: : . Yo dy ~ -7
use the approximation := Xo + J ¢ §+3H$0 , and Xe = X1 + j;xw? P (23)
y m
10°
d
Xe = X1 + f %; (22)
0 X1 + ﬁ
y m

TABLE I: Quadratic inflation. We only present results in 40, for the symmetry: Xy, a, Dy) and X, -y, a, Dy) are both solutions of Egs.
(@9) and[[2D). In the fourth columi only contains the inflation period and is approximated byvsioll approximations.

0 In(vHza;Dyy) N = a;/a(0) N(inflation)
0 171954x 10% 1.71954x 10" 1.71954x 107
/4 100307x 10* 1.00307x 10% 1.00307x 107
15707946 68633 679929 653867
/2 362368 350089 31573
1.57080507 68654 680229 645201
3n/4 100307x 10* 1.00307x 10% 1.00307x 107
By these approximations, one can fiN{0 = n/2) = VI. NATURAL INFLATION MODEL
32, N(1.5707945) = 68, N(1.57080) = -0.4, and

N(1.5708052)= 68. So wher¥ € [1.57079451.5708052], For the natural or cosine inflation model [26] 27], the in-

the e-foldings is smaller than 68. The approximating re- flaton¢ is a pseudo-Nambu-Goldstone bogoa ¢/ f with a

sults are also presented in Table 1, from which we can segjopal shift symmetry broken at scaleand the potential has
the approximation is excellent. The measure in[Eq.(16) bethe form of

comesdu « ,/% —pcxgdxo o« sir?(6)ds, and from the re-
sult in Table[ll, we get the probability of enough inflation is
1 - Pro(@ € [1.57079461.57080507])~ 99.9989%. This
result is not quite dferent from previous works in Ref.J12]
in the framework in LQC and even similar to the classical
theory(2]. It is expected and one can be see this from tw g8]; in this section, we will use LQC to study this model.
aspects: on the one hand, we have said the measure of the clg&" s+ |\ ith recent observation [24], we choose the parame-
sical model is same with LQC, if one uses the initial time at [SA = 1.24x 10-3mp and f =' 7’MP — 1.39mp, where

the same density; one the other hand, we showed near Eq.(1 ; : .
; ; . A, p = 1/v8rG is the reduced Planck mass, which gives
that for matters with the density formula in Eq.(11), if air in the amplitude of curvature perturbatioAg = 10-10g3061

tial value can solve the horizon problem in LQC, then it MUSt = cectral indexe = 0.96. and the tensor-to-scalar ratio
solve the problem in GR too. We can guess that this con- P S = I

oo r = 0.07. Note that for the small value of < mp, every solu-
clusion is also almost true for other matters, then becaurse ftion’s density must be much lower than Planck enerav when it
#? model LQC gives near 100% probability, GR would also Y 9y

give the result. This guess is reasonable because the pro %nters in an inflation region where the potential energy dom-

bility calculation only depends on those solutions whickegi Inates energy density; thqs, quantum geometry's cormestio
just enough of the wanteeHoldings, and are dominated by will not be important for this model when solutions entepint
kinetic energy at the beginning time (L.~ p), and then be- SO foll region. Define dimensionless variables:

V() = A*[1 - cosg/f)], (24)

whereA denotes the energy scale where the global symme-
try is broken. The probability of natural inflation in classi
cal theory has been investigated via d@ahent measure in

comes classical, which means th&elience is not large. We ¢ P

want to say that the reason to give the initial valug atp/2 X = of andy = . (25)
is from LQC'’s perturbation, although the results are notejui V2pe

different.

Then the density ip = ,oc(zp—’\c4 Siré(X) + y2) = pc(& + ¥9),

where we have definet:= \/p—?CAZ sin(x) ~ 3.4x 107®sin(x).



The equations of motion are (in Planck units)

10.41/2

x= L2y
G _ A4 .
V= =3Hy - 7 S (26)
8=H = VBrx041/3\(@ + Y1 -2 - D),
Dy = v/1-2(£2 +y?)/a.
Initial values are
x(0)=x0 €[-3. 3],
Y(0) = &5 1~ 2 sirf xo, (27)
a(0)=1,
Dn(0) = 0.

foldings), he needs to requirg € (X, 1—X)U(r+X, 2r—X)U...,
wherex':= arccos(@ exp(—g—g)) ~ 1.05054.

Similar to the quadratic model, the relation between ihitia
points and inflation starting points is needed when consider
the probability of inflation. Because of the shift symmetry,
initial values are restricted in regiog € [-3, 5], however,

Xx can be out of this region.

For the symmetry of the space of solutions, we only need
to consider the cases ¢f0) > 0.

Firstly, let us compare the variation rate of kinetic energy
with potential energy:

y 3f H &

& A2cosk) vy

(29)

Figurd2 shows some phase space trajectories for natural in- (a) In the right hand side of the equation, if we require

flation, from which we know that there exist four inflation at-
tractors in each quadrant, which can also be obtained by sloViz Cosk)

roll approximation as follows.

0.6
B /
/

0.2 /

0.0H ¢

—~0.4F

S R [

L L L
-0.2 0.0 0.2 0.4 0.6

FIG. 2: Phase portrait for quadratic inflation, whege =

2 A2g;j = _9¢ i i -
\/,:A sin(@/f) andy = Yo for natural inflation. We use the pa

ST H S |§|, theni—f1 LHy > | sin(2)|, Wherei—fl SH ~
3x 10%2/£2 + y2, which meangy| > 5 x 10~7 will satisfy the
requirement. Furthermore, ¥ — 7, anyy will satisfy this
requirement;

(b) The term 3 | ~ 5x 100 Y > 10, whenlyl >

2x 1078, So in this region, kinetic energy decays quickly, and
then the system enters into slow roll region.

Secondly, to find oux,’s dependence ory, let us consider
the following equation;

d_x _ 1 (i’)—l =_ 1
dy — dé/dx'¢ 3f \[2/pcH + A2 32
= —-F(x,y). (30)

(a) If the slow roll partis iny > 0, one can us&j = Xg +
06 F (X, y)dy; then we have

2x10°°
h=M+f F O y)ay; (31)
5

x10~7

(b) If the slow roll part is iny < 0, one can use; :=

rameterA = 0.3mp. The shaded area denotes decelerating regionxg + fzfms F(xo, y)dy, then we have

a < 0. There are four slow roll inflation attractors in this madel

. 2
The slow roll parameter isey = ﬁ(vv) =
2 : .
= (%) oy SO the ending satisfies tan(end| = % -
1 . . _ 1 -V
-5 A general slow roll solution isy = o)

__S9n6) A2 i i i i -
Nzl cos), which contains four slow roll inflation so
lutions that agreed with F{g.2. Tteefoldings during inflation

can be approximated by

N

[l

dend D
f Hao= [ acla-Yyae
¢ \% Pc

* Pend
D N
~ 87rGX = 98In(798/99). (28)
dend V/ | COS(X*)|

From this formula, one can find wheg = 7 + kr, k € Z,
N — co. Andif one want$\ > 68 (for simplicity, we use 68

2x10°
Xy = Xg + fo F(x1, y)dy. (32)
Some special points are the following; (Xo = 0.2247) ~
X, X«(0.8053) ~ 7, x,(1.3267) ~ m — X, and x.(-3) =
—-0.8362. So only whernx, € [0.2247,1.3267], we have
N > 68.
The measure in EJ.(IL6) in this model is

A4

du o [ — 204 sir(xg)dxo o 4|1 2
2 Pc

So the probability of those solutions which have enoegh

1.3267

foldings is % ~ 350777%. The results of numeri-
_ I

2
cal methods of calculating horizon are exhibited in Tabje Il

Sir?(Xo)dxo.

(33)



1.347

where the results of slow roll approximation are also exhib+,q5e probability isez % L 352051%.
ited. From the calculations, we find that initial values ie th [2 du
regionxy € [0.241,1.347] do not have the horizon problem, :

TABLE II: Natural inflation. We only present results ig > 0, for the symmetry: X, y,a, Dy) and x, -y, a, Dy) are both solutions of
Egs.(26) and(27). The first column denotes the quadrantentherinflation attractors are. From the table, there exiptsirat X, near 0.8036,
such thalN — co.

Attractor Xo(Yo > 0) In(+vHia;Dya1) N = a;/a(0) N(inflation)
| /2 399852 387343 322118
| 1.347 690734 679437 642177
| 0.8036181717 22763 226960 651831
1V 0.8036181716 24148 241045 651831
v 0.241 690219 678726 623837
v 0 403895 391099 343456
11 —r/2 399852 387343 345361
|
VIl. CONCLUSIONS this paper, we could conclude safely that, fdfelient models

there could be quite ffierent probabilities for enough infla-

Inflation can solve many cosmological problems; moreovert!on. ) ) ) )
it can also give a natural explanation of the structure forma It should be noted that we did not consider the anisotropies,
tion. More and more precise observations such as the powahich are interesting and important problems that have been
spectra of perturbations have also been observed whickl cou¢onsidered in Refs.[28-31]. In Refs.[28, 29, 31], the au-
constrain inflation models strictly. On the other hand, thethors proposed initial conditions at bounce while the argho
genericness for an inflation model is also an important indiof Ref.[30] considered at remote past before bounce. They
rect constraint for inflation models. showed that the shear term will decrease the possibilitg-of i

Anoma|y_free perturbations of LQC reveal some new as_ﬂation for the |attel‘, while the former faces a problem that
pects of |00p quantum Cosmo|ogy_ The constraint a|gebra there exiSt_S |nf|n|te I’_egionS of solutions neVQI’ re_aCh thegit
LQC is deformed, and LQC also has a starting time similarcal behavior which is severer. From the view in the present
to the big bang theory of cosmology; however, there does noork, taking initial conditions near (after) the bounce may
exist any singularity in LQC. The starting point of time also b€ @ natural one, because the perturbatlon_ of_ the Friedmann-
helps to choose a natural measure. In this paper, we used tR@bertson-Walker model should be some limit of the pertur-
effective causal structure of LQC, and considered the horizoRation of Bianchi-I model. But whether these initial condi-
problem in LQC and its resolution by inflation. The proba- tions (or some more precise conditions) can exclude those
bilities of two inflation models are calculated. We find that fegions where the solutions never reach the classical behav
for the quadratic inflation the probability of afigient infla-  i0r is beyond this work and deserves future _research. If this
tion is close to 1, while for the natural inflation the prodipi ~ Problem could be solved, then from the work in Refs.[28, 31],
is about 35% smaller than the quadratic model. Of courséSotropic universes or inflation seem to be favored. We hope
the probability for the natural inflation is not large, buist ~the anomaly-free perturbations of the Bianchi-I model doul
still much more probable than the classical cosmologicatfin Pe derived in the future and may help to answer this question.
tuning initial value. It should be noted that the conclusion
in this paper almost agree with previous wotks [12-14], even
agree with the classical theoryl [2, /4, 8]. But we view this Acknowledgments
work as a self-contained work in the framework of loop quan-
tum cosmology, such as the horizon problem and how many This work was supported by the National Natural Sci-
e-foldings needed to solve the horizon problem in loop quanence Foundation of China (Grants No. 11175019 and No.
tum cosmology. Although, only two models are considered inl1235003).
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