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ON STATISTICAL APPROXIMATION PROPERTIES OF
(p, q)-BLEIMANN-BUTZER-HAHN OPERATORS

M. MURSALEEN! AND TAQSEER KHAN?

ABSTRACT. The aim of this paper is to introduce a generalization of the
(p, ¢)-Bleimann-Butzer-Hahn operators based on (p, ¢)-integers and obtain Ko-
rovkin’s type statistical approximation theorem for these operators. Also, we
establish the rate of convergence of these operators using the modulus of con-
tinuity. Furthermore, we introduce (p, ¢)-Bleimann-Butzer-Hahn bivariate op-
erators.

1. INTRODUCTION AND PRELIMINARIES

In order to approximate continuous functions defined on the positive half axis,
Bleimann, Butzer and Hahn (BBH) introduced, in 1980, the following linear
positive operators in [3];

LAf;x)zﬁéf(%M)[Z}xk,xzo (1.1)

The advent of g-calculus created a new venue of research in approximation the-
ory. Lupag [11] introduced the first g-analogue of the Bernstein polynomials in
1987. Phillips [17] presented another modification of Bernstein polynomials in
1997. He also established results for the convergence and the Voronovskaja’s
type asymptotic expansion for these operators.

The g-analogue of the BBH-type operators is defined as

&jx) ki:of (%) ¢ [ZL:U’“ (1.2)

where £,(z) = [[}Z0(1 + ¢°).

In recent decades, the concept of (p, g)-calculus has also been introduced. Many
researchers have used (p, q)-calculus to establish new and interesting results in
approximation theory. Recently, Mursaleen et al [12] introduced the first (p, q)-
analogue of Bernstein operators and (p, ¢)-analogue of Bernstein-Stancu operators
[13]. They have investigated the approximation properties and convergence prop-
erties of these operators.

Li(fizx) =

Let us give rudiments of (p, ¢)-calculus.
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The (p, ¢) integers [n],, are defined by
P —q

n

Nipqg = ’n:0’1’2’...’0<q<p§1‘
g = ==
whereas g-integers are given by
1 —gm
[n], = . q . n=0,1,2--,0<qg<1.
—q

It is very clear that the two concepts are different but the former is a generaliza-
tion of the later.

Also, we have (p, ¢)-binomial expansion as follows

n
(n—=k)(n—k—1) k(k—1) n _ _
(a;(; —+ by)?q = Zp 2 q 2 |: I :| a™ kbkfl,’n kyk’
k=0 b,q

)

(z+y),=@+y)(pr+q)P’e+y) - "o+ ¢!

l—ap, =0-—2)p—qu)(p*—¢z)- - (" —¢"'2)

and the (p, ¢)-binomial coefficients are defined by

K } - Ee

By some simple calculation, we have the following relation

¢“n—k+1]pq = [n+ 1 — "kl
For details on g-calculus and (p, ¢)-calculus, one is referred to [21] and [9, 18,
19] respectively.

The concept of statistical convergence was introduced by Fast [7] in the circa
1950 and in recent times it has become an active area of research. The concept
of the limit of a sequence has been generalized to a statistical limit through the
natural density of a set K of positive integers, defined as

1
0(K)=lim —{k<n forke K}
n

n— o0

provided this limit exists [16]. We say that the sequence z = (x,,) statistically
converges to a number [, if for each € > 0, the density of the set {k : |z, —1] > ¢}
is zero. We denote it by st — limg x, = [. It is easily seen that every convergent
sequence is statistically convergent but not inversely.

The main purpose of this paper is to introduce a modification of the oper-
ators defined by Mursaleen et al. [15] and investigate statistical approximation
properties of the operators with the aid of Korovkin type theorem and estimate
the rate of their statistical convergence.

Now based on (p, ¢)-integers, we construct (p, ¢)-analogue of BBH operators,
and we call them as (p, ¢)-Bleimann-Butzer-Hahn Operators and investigate their
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Korovokin’s type statistical approximation properties by using the test functions
(ILH)V for v = 0,1,2. Also for a space of generalized Lipschitz-type maximal
functions we give a pointwise estimation.

Let Cp(R4) be the set of all bounded and continuous functions on R, then

Cp(Ry) is linear normed space with
| fllecg=sup| f(x) .
x>0

Let w denotes modulus of continuity satisfying the following condition:

(1) w is a non-negative increasing function on R

(2) w(51 + 52) S w(él) + W((SQ)

(3) 1im5_>0 (.U((S) =0.
Let H, be the space of all real-valued functions f defined on the semiaxis R
satisfying the condition

@) - 1 15w (|75 - 1)),

for any x,y € R,.

Theorem 1.1. [8] Let {A,} be the sequence of positive linear operators from H,
into Cg(R,), satisfying the conditions

, t \" r \’
b () )~ (72 e
forv=20,1,2. Then for any function f € H,
Tim | Au(f) ~ F lley=0.

Now we introduce (p, q)-Bleimann-Butzer-Hahn type operators based on (p, ¢)-
integers as follows:

n k-‘rl k]

(n—k)(n—k-1) k(-1 | n &
f ( - ) p 2 q 2 { ] z" (1.3)
epq Z n —k+ 1]p,qqk k b

)

Ly(f; @)

where, x > 0, 0<q<p§1
n—1
o) = [0 + 0
s=0
and f is defined on semiaxis R.
And also by induction, we construct the Euler identity based on (p, ¢)-analogue
defined as follows:

n—1
(n— k)(n k—1) k(k | n k
H)p +q¢°z) = Zp [qux (1.4)

)

If we put p = 1, then we obtaln ¢-BBH operators. In (1.3), if we take

f ([n_[]gijf]pq) in place of f (%ﬂk]“) , then we obtain the usual generalization

of Bleimann, Butzer and Hahn operators based on (p, ¢)-integers and then it is

not possible to obtain explicit expressions for the monomials ¢t and (1 +t) for
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v = 1,2. Explicit formulas for the monomials (1 - t) for v = 0,1, 2 are obtainable
only if we define the Bleimann, Butzer and Hahn operators as in (1.3). It is to note
that these operators are more flexible than the classical BBH operators and g¢-
analogue of BBH operators. That is depending on the selection of (p, ¢)-integers,
the rate of convergence of (p,q)-BBH operators is as good as the classical one
atleast.

2. MAIN RESULTS

Lemma 2.1. Let LP9(f;x) be given by (1.3), then for any x > 0 and 0 < q <
p < 1 we have the following identities

(1) Ly(L;x) = pg,

(2) LPa(Ltz) =2 *q[nlp.q (L)’

n \14¢? [n—i—l]g a 14z -
2 — [n]p.q[n=1]p.q x? " [n]p.q z
(3) Lp? ((1+t) 795) == [n+i}12,7q . (I4z)(p+qz) + p[nfuzf,’ (H_:v) '

Proof. (1) L9 (1;2) = gpq(x Zk 1p(n k)(gikil)qk(kzil) [Z] z*
p,q

but for 0 < ¢ < p < 1, we have

n n—1

(n—k)(n—k—1) k(k—1) n
2r {k} =[]0+ a') = 67(a),
k=0 p.q

SO
LrA(1; ) = pq x P9(x) = pq.

This proves (1).

k+1 [kp [k] Yqumtl—k
(2) Let t = W then t+1 = [I;H-il}p,q
t Pl — k] PP ek k- [ L
Li’q (—; LL’) = P D 2 q 2 T
1+¢ 5 (x) ; n+ 1,4 k.

Py B
(z) = [+ 1]y, k—1]

n—1
_ pq . (n— k)(n k—1) k(k 1) n—1 i
B x(a‘;vq(x) n+1pq )ZP { 2 Lq(qx)

k=0 5

[n]p.q €z .
n+1l,,1+z

= 1’q
[
This completes the proof of (2).
o k]2 2(n—k+1)  (n—k)(n—k—1) k(k—1) n k
(3) qu<(1+t)27 ) qu Zk‘ 1 n+1] p 2 q 2 |:k,:| T
P

)
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Now we have,

klpq = pk_l +q[k — 1], and [k]pq q[k]pqlk — 1pg +pk_1[k]p,qv

using it in above, we get

P 3 Z q p q ]p qun_2k+2p(nfk)(g7kfl) qk(k;l) n o
! (1+t)27 qu n+1]2, kol
2n—2k+2
k— 1 pqp (n—k)(n—k—1) k(=1 | 1 .
€pq Z T1)2 T, 12 P ’ q ? [ 1 } x
P P,q

Pq q[nlpgln —1]pg ip(@n—2k+2)+("k)(gk1))qk(k21) n—2 2
n+1] k=2 P

TG

pq )pe ((k=1)+(2n—2k42)+ LRk kD) | 0 — 1 k
A n 12, 2 B S

P4 k=1

n—2

2 pq q[ p,q n _ 1 qu 2n 2k— 2 (nikim(nikig)) (bt 1) (k+2) n— 2 k

= 2 2 X
&G z)  [n+1] 2 Zp ! k P,

q k=0 )
nt k—1 k—2
i pq Zp e T = [ n;l } o
145 n—l—l —~ v

n—2
2 pq pq [ p,q (n— k)(n k—1) k(k 1) n_2 :| 9 i
s
" 0w [n+1 27 [ b,

+x

n—1
pg P nlpg (B k1) BG) [n—l } i
D,q p 2 q * (qx)
() [n+1]2 k P,

Pq k=0 )

_ P’ []pgln — 1pg z’ p"+2q[n]p,q T
14+2)°

n+13,  (A+2)p+gz)  [n+1],
This proves (3).

O

Korovkin’s type approximation properties
In this section, we obtain the Korovkin’s type statistical approximation prop-
erties for the operators defined by (1.3), using Theorem 1.1.

In order to obtain the convergence results for the operators L9 we take
q = Gn, p = pn Where ¢, € (0,1) and p,, € (g, 1] satisty

limp, = 1, limg, = 1 (2.1)
Theorem 2.2. Let p = pyandq = q, satisfy (2.1) for 0 < g, < p, < 1, and if
Lprt s defined by (1.3), then for any function f € H,,

st —lim || Ly (f;x) — f [lop=0.



6 M. MURSALEEN AND TAQSEER KHAN

Proof. In the light of Theorem 1.1, it is sufficient to prove the followings:

) t \" x \"
st tim |z () o) = (155) leom0 forv=012 (22

From Lemma 2.1, the first condition of (2.2) is easily obtained for v = 0. Also,
we can easily see from (2) of Lemma 2.1 that

t v x v
LPan . — <
| 2 ((—m) x) (Hx) ley <
[n]pn7Qn

p q [n+ ]']pny‘In

Pndn [n]pn,qn
n+ 1]pn7Qn

_1‘

Now for a given £ > 0, we define the following sets

t T
U: :Lp"“q” —_— _ 2 ,
PR T

[n+ 1]pn7Qn N

It is obvious that U C Uy, so we have

t i ]
5 ]f < : LanIn . " > < 5 k < :1_ i Pn,qn > )
A () e EL L (BT S

Now using (2.1) it is clear that

st — lim (1 —pnan) =0,

[n + 1]1”717‘]11
SO ]
n
ok <n:l—pug—rxt— >¢e} =0,
[n+ 1]1”717‘]11
then

Lqun( t ’x)_ x —
1+1¢ 1+ Op

which proves that the condition (2.2) holds for v = 1. To verify this condi-
tion for v = 2, consider (3) of Lemma 2.1. Then, we see that

2 2
Prygn [ (_t_\“. — (==
‘ Ly ((1+t) 737) (1+x)
Cp
— SU.p 502 p%q%[n]Pn,Qn [n_l]l)nyq'n 14z _ 1 _I_ pﬁ+2q[n]pn,qn LT
220 | (1+=x)2 (n+112, .. *Pntqnx [n+112, .. 14z [
After some calculations, we get

[n]p q [n_l]p q 1{ ( Qn) 1 2( Qn) 1 }
min = {1l (24 ) e ()P (1 ) o b,
1 PR R G N s B U S N

Pnyqn Pnsdn

st — lim

and

In] 1 1 1
Pnsdn _ o pn
[n+1]; G \[n+1]p,q,  “"[n+1]] ’

Pnydn Pnydn
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Then we are led to
Pnsqdn _t 2 . _ (x_ 2
2z (65" 50) = (622)
B

2 n-+2 -1 R n+1 —n P2 Prgn
< |(u—=1)+p; ([n+11pn,qn + g )*pn ([n+1}pn,qn ot T [n+11pn,qn) -

Pn,qn

n 2 n
+Dnqn
=1— 2 n—+2 1 _ Pn n+1 qn _ _DPhTtPn .
pn + pn [n"’_l}Pn,Qn [n+1]l2?n7¢Zn _'_ pn [n+1]l)nyq'n [n+1}127n¢1n
n 2 n
Now if we denote 1—p?, pt2 1 S and prt! gn__ _ PrtPnn
Py Py, n+1pn,qn [n+112, .. Pr, [n+1]pn.an n+113,, 4,

by a,, B, and -, respectively, then by using (2.1), we find that

st — lima,, = 0, st — lim 3,, = Oandst — lim~,, = 0. (2.3)
Now for a given £ > 0, we define the following sets

t 2 T 2
o () )G L)
1+t 1+ Cs

U, = n:anzg},ng{n:ang} andng{n:fynzg}. It is obvious
that U C U; UU, U Us. So we have
26}
Cp

foenfpen () )~ (e5s)

<5{k§nianzg}+5{k§nzﬁn2§} +5{k§n:fyn2§}.

Now by virtue of (2.3), the right hand side of the above inequality is trivial, so

we get
" 2 2
meqn ‘T _ X
" 1+t) l+z

Hence the proof of the theorem is complete. O

=0.

st — lim
n CB

3. RATE OF CONVERGENCE

In this section, we calculate the rate of convergence of the operators (1.3) by
means of modulus of continuity and Lipschitz type maximal functions.
The modulus of continuity for f € H,, is defined by

B(fi0)= Y |ft)-f@)]
|1%rt_1ix‘§67
z,t>0

where wW(f;0) satisfies the following conditions. For all f € H,(R,)
(1) limsow(f;6) =0 t
(2) | f(t) = fz) |<w(f;0) <@ n 1)
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Theorem 3.1. Let p = p,andq = q, satisfy (2.1), for 0 < g, < p, < 1, and let
Lpman be defined by (1.3). Then for each x > 0 and for any function f € H,, we

have
| Lyt () = f 1< 20(f;5 v/ 0n (),
where
5n(x) = x? Prdp[Mpnga? = Upnga 1+ _ oPnln [P +PZ+2qn [Mpnga @
" (1 + x)2 [n + 1]1127717‘]11 pn _'_ qnx [n _'_ 1]pn7Qn [n _'_ 1]127717[171 1 _'_ z '
Proof.

| Lyt (fiz) = f 1 < Limo (| F(t) = flz) [s2)

1 t T
< ~ . 1 _me‘ln - |- A
= ”(f’a){ Tyt (1+t 1+x"x)}

Now by using the Cauchy-Schwarz inequality, we have

meqn t _ z ? -
n 1+t 1+2x2)

1
S &(f’ 677/) {1 _I_ 6%” [( z? <pgzq§z[n]Pn7¢Zn [n_l]Pn’Qn 1+ _ 2pnqn[n]Pn’Qn _I_ 1) _I_ pz+2q'n,[n]pn,qn L] 2 }

L (fia) = £ € B30 14 (L (1)

N

1+x)2 [n+112, .. Pntqn® [(n+1]ps,qn [n+1]2, .. 14z

This completes the proof. O

Now we will give an estimate concerning the rate of convergence by means
of Lipschitz type maximal functions. In [2], the Lipschitz type maximal function
space on FF C R, is defined as

WQ,E = {f :sup(l+2)*folz) < M :x <0, andy € E} (3.1)

(1+y)e
where f is bounded and continuous function on R, M is a positive constant and
O<a<l.

In [10], B. Lenze introduced a Lipschitz type maximal function f, as follows:

fa(l',t)ZZ‘ f(t)—f(l’) ‘ (32)

We denote by d(x, E'), the distance between x and FE, that is
dz,B) =inf{|z —y |;y € E}.
Theorem 3.2. For all f € Waﬂ, we have
| Lz (fi2) = f(@) 1< M (67 (2) + 2 (d(x, B))") (3.3)

where §,(x) is defined as in Theorem 3.1.

Proof. Let E denote the closure of the set E. Then there exits a zo € E such
that | x — z¢ |= d(z, E'), where z € R, . Thus we can write

| f = f@) IS f = fxo) | + | flwo) — f2) |-
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Since LPm are positive linear operators, so for f € W, g, by using the previous
inequality, we have

| Ly (o) = f@) [<[ LR (| f = flwo) o)+ | fwo) = flz) [ L™ (15 )
<M (Lg;mqn ( ! -0 ;x) 7 [z 20 |” Lpnv%(m)) .

1+t 1+ 1+ 2)o(1 4 xp)e "
Now (a + b)* < a® + b* consequently implies that

t xo |° t x ¢ x xo |°
meqn _ . < LpnyfIn _ . LPnan _ 7
" <1+t 1+ g ’x)— " (1+t 1+ 7x)+” (‘1+x 1+ g x)
[ prodn t %o a.x < [Pnstn ( t = a.x)+ |z =2 | LPmin(1; ).
" 1+t 14w )~ " 1+t 1+az|’ (T+z)2(1 + xp)> "
By using the Holder’s inequality with p = = and q = 5—, we have
n,qn € a. n,dn t x 2 . % n,qn . 2za
g (Jots = it o) < mee (65 - 45) ,x) (1152
‘ T — Xo ‘a
Lpny‘In 1’1.
(1+2)*(1+xo)> " (1;2)
a | x — zo |*
= 0n (x) + )
(z) (1 4+ 2)*(1 + x)™
This completes the proof. O

Corollary 3.3. If we take E = R as a particular case of Theorem 5.2, then for
all f € Wor,, we have

| L (fi) = f(a) |< Mg (a),
where ¢, (z) is defined as in Theorem 3.1.

Theorem 3.4. If x € (0,00)\ p”‘k“%'k =0,1,2,--- ,n}, then

[n—k+1]
T " z . nlp.q n(n—1) “n
L?L’q(fa Zl'f) - .f (%) = _g%f;(r;) |:;D ) 2 ]75) af] pqg 2
n—1
o - k+1 Flg ] L eemeoien oo oo )y
5 n—k+1],,4" n —klpq k

k:O p.q

(3.4)
Proof. By using (1.3), we have

- p" k+1k q - (n—=k)(n—k—1) k(k—1) n
L%q(f?x)_f (%) qu(x Zk o{f ( [n— k—l—l]p];q >_f (%) }p 2 q 2 [ k } a*
p,q

pm k+1[k. pr. P k+1 k]pq . (n—k)(n—k—1) +1 k(k71)+1 n k
Ty 2ok 0( _nk+11pqq)[q’[n et P O k|t
p,q

)

n n
By using @ [k}};l‘l}pq [ 3 } = [ b1 } , we have
q

p,q p,
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q [n—k+1],,4"

€T .
pq

{px P k+1[k]pq f} p(nfk)(gik71)+2qk(k271) { n } k
k

1 n [pz pn—k—l—l[k‘]pq f:| p%_(k_n_l)_lq@_(k_l) |: n :| ZL’k
k
p,q

G (x) = L g " In—k+ 1],¢" -]
_ pqx {p_:c P k—l—l[k] k’ f} (n— k:)(;—k:—l)+2qk(k:271) { Z } :zk.
() o L 4 n—k+1],, P

n—1 n
[ ’ "k + Upg ] P (kom) 2 RO [ Z ] k

] qk+1 5 X
b.q P.q

N
3T
..Q

OM

_ _ antt p_ ”]pq f n(n Do n
) | @

z n—1 pr. P R k+1]p, . . PR K] w_(k_n_l)_g k(=1 | N k
‘l‘é'%fZ(x) Zk:O { [ q ' [n—Fk|p,qq" T’ f q ' [n—k+1]p,qq* "’ f p 2 q = k L.

p,q

Now by using the results

[ﬂ. PR k+1]pg. } _ [ﬁ P k]pg . f}
q 7 [n—klp,qg" T’ q 7 [n—k+1]p,qq"’
_ (pn_kUH Upg P K]y ) {Pﬁ P M Ry TR A L f}

(1 — klpqq*t! - [ —k +1]p4q" q’ n—k+ l]p,qq [n — klp, qqkﬂ’

and . )
PRy P
[n — k]p,qqu n—k+ 1]p,qqk m

we have

n(n—1)

L%q(f;x) — f (%) — _fg;?;) [pqx7 p[npq f} pg—z "

. n—1 pz. PR [k P Fn+1]p.4 M—(l@—n)—l kE=D) | M k
TEw k=0{[q7[n—k+up,qqk7f —Klp gkt gt (P2 4 * I
p,q

which completes the proof. 0J

4. SOME GENERALIZATIONS OF LP4

In this section, we present some generalizations of the operators L2? based
n (p, q)-integers similar to work done in [4, 2].
We consider a sequence of linear positive operators based on (p, ¢)-integers
as follows:

n k411 + (n—k)(n—k—=1) k(k—1)
Lt = gt 3 (P e ) e 1] taew
n, 2
(4.1)

)
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where b, satisfy the following conditions:

(7).

Cn

" F k], + bok = ¢, and — 1 for n — oo.

It is easy to check that if b, = ¢*[n—k+1],,+ 8 forany n,kand 0 < ¢ < p < 1,
then ¢, = [n + 1],, + 5. If we choose p = 1, then the operators reduce to the
generalization of ¢-BBH opeartors defined in [2], and which turn out to be D. D.
Stancu-type generalization of Bleimann, Butzer, and Hahn operators based on
g-integers [20]. If we choose v =0, ¢ =1 as in [2] for p = 1, then the operators
become the special case of the Balzs-type generalization of the ¢-BBH operators
2] given in [4].

Theorem 4.1. Let p = p, and q = q, satisfy (2.1) for 0 < g, < p, < 1 and let
LE")7 be defined by (4.1). Then for any function f € W ,[0,00); We have

lim, || L7 (f;2) = f(x) [lop< 3M

1 _ [n+1]Pn’Qn

X max { ([@i’ﬁ") ([n}pl,qn) !
Proof. Using (1.3) and (4.1), we have

| L2 (fr2) — f(x) |

27k+1k in 27k+1k an (n—k)(n—k—1) k(k—1) n
< s Sy |f (B tr) g (B e ) |, TR | gk
Pnydn
n
_I_ pq Z f‘ (pz k+l[k]pn7Qn) _f ( pz k+1[k]pnﬂn ) p;nik)(gikil) q:(k;l) |i n :| l.k?
eﬁn’qn (':C) Y + bn’k [n - k + 1]pn,fIann€ k Dnyqn
we have

k=0
| LY (fr2) = f(2) |
n—k+1pp n—k+1pp (n*k)(n*kfl)_i_l k(kfl)_l_l n
f <p b[n],:n,qn'i"Y) _f <p fy+b[,j:n,qn> Dn 2 0n 2 . l’k
Pn,qn
SV o
ot (x)

f (pz k+1[k]pnﬂn) _f ( pz k+1[k]pn7Qn )
0 Y+ bk [n—k+1]p,.0.9%

+ [ Lt (fra) = fl2) |

Cn +'\f [n+1}Pn’Qn [n+1]Pn qn [n+1}

Pn,qn

<

pq n
Zgn'q” (1‘) Zk:O

(n k)(; k=1 g k(k2 v [ n N
Pn an T
k
Pn,qn

Now for f € W [0,00), by using the Corollary 3.3, we can write

| L7 (fr ) — f(2) |

(03
(=R (n=h=1) | k(k=1)
n [k]PnJZn'i_'\f p:; k+1[k}pn,qn L ;L +1 2 +1 |: n xk
k
Pnqn

< ok Pa —
CES q”( 2 k=0 P Kl gn 7 b 4R Rlppan o | L7 I

(63
(pnqn [n]PnJZn) 1 _ 2pn¢]n[n}pn an ann[n}Pn an [TL 1]Pn¢1n

b
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n k+1 n7k+1[

S S q Z (K] pn.an Pn klpn.an
Z " n k=0 pn k+1[k]Pn Qn+7+bn7k p:’!i k+1[k]Pn,Qn'l'[n_k'l'l]PnJanfL

(n—=k)(n—k—1) k(k—1) «a

+1 +1 n 5

Xpn 7 In * { e } ok + Moz ().
Pn,qn

This implies that

L) - fo) < M ()" ()

M 1 a n n—k+1[L. X (k) (n—k—1) k(k—1) a
+£pn’qn _ [n _'_ ]pn,qn Z (pn [ ]pnﬂn) pn 2 +1qn 2 +1 |i Z :| xk_'_M(Sg (.f(:)
n (.:C) Cn, + ”Y k=0 [n + 1]pnyqn Pnsgn
- M () pngn Y —|—M + 1pngn Lpran L )+ MSE (2).
Cn + 7y (7 pgn Cn +7 1+t
Using the Holder’s inequality for p = —, q= , we get

| LD (fr2) — f(x) |

< M([n]pn,qn> (M'y ) + M1 — [+ 1]pn,an Lﬁn,f]n (L.x)a(Lﬁn,qn(l;x))l—a+

Cnty Pn,qn cnty 1+t7
Mé;? (x)

[n} n,qn ¢ 9l “ [n"’_l} n.dn ¢ pnqn[n] n.qn _ T ¢ 5
S M ( C:‘i'f; ) ([nh’nﬂn) + M1 - Cni“/ ( [n+1}P:7¢Zn 1"'—5”) - M(Sr% (I)’
which completes the proof. O

5. CONSTRUCTION OF THE BIVARIATE OPERATORS

In what follows we construct the bivariate extension of the operators (1.3).
We will introduce the statistical convergence of the operators to a function f and
investigate the statistical rate of convergence of these operators.

Let RZ = [0,00) x [0,00), f : R — R and 0 < Py, Gny; Prgs Gny < 1. Then
we define the bivariate companion of the operators (1.3) as follows:

ni—ki+1
L . . . o pnlpnzqm an pnl [kl]ll’nl »dnq
n17n2(fa pn1>pn27 qnp QTsz ZIZ', y) - lpnl,qn1 « lan,qn2 f ]{Z 1 ki’
m n2 k1=0 ko=0 1 _'_ ]pnl dnq qnl
ng ko1 [k2]pn2 sy (ng— k1)(;1*k1*1) (nszz)(;bszz*l) k1(k21*1) kz(k2271) n,
I Pny DPny Qn, Qn;
[ Ny — Ky + ]Pngyl]ng q”2 Pnysqng

n
% 2 :L’kl yk27
ko
Pngydng

ny-4dn n 1 ng sdn n 1
where I ™ = T2 (57, + g5, @) and L™ = [1327 (0, + 3,9)-
For K = [0,00) x [0, 00), the modulus of continuity for the bivariate case is

defined as
wa(g; 01, 02) = sup{|g(ur, v1)—g(us, v2)| : (u1,v1), (u2,v2) € K and |uy—us| < 01, |[v1—v2| < 82},



ON STATISTICAL APPROXIMATION PROPERTIES OF (p,q)-BLEIMANN-BUTZER-HAHN OPERATORS
where, for each g € H,,,, ws(g;d1,0d2) satisfies
Uy U2 U1 U2

1+u, 14wl |14+ 1+v )

For detailed study of modulus of continuity for the bivariate analogue one is
referred to [1].

The first Korovkin type theorem for the statistical approximation for the bi-
variate analogue of linear positive operators defined in the space H,,, was obtained
by Erkus and Duman [5] which is as follows.

|9(U1,U1) - 9(“2,?12)‘ < wo (9

Theorem 5.1. Let {L,} be a sequence of positive linear operators from H,,, into
Cp(K). Then, for each g € H,,,

st —lim || Ln(g) — g [[= 0

holds if the following is satisfied
st —lim || Ln(g;) —g; |= 0, for j=0,1,2,3

where
U v U

v
1+U7 g2(U,U)— 1+’07 93(uvv)_(1+u

1+v>2'
(5.1)

)%+ (

go(u,v) = 07 gl(U,U) =

To study the statistical convergence of the bivariate operators, the following
lemma is essential.

Lemma 5.2. The bivariate operators defined above satisfy the followings:

( ) nl,nz(f07pn17pn27qnlvqnzux y) pnlpnzqnlqngz[ |
N1lpny,an
(2) ny,n 2(.f17pn1apn27QTLanzaIay) pn1Pn2Qn1Qn2ﬁl+%7
[n2]pny an
(3) ni,n 2(.f2;pn1apn2;QTLanz;Iay) pn1anQn1Qn2ﬁFyy
[ 1}Pn sdn [nl 1}Pn sdn 2
(4) Linyioa (F55 Prs Pri s G’ T3 Y) = P Proatloy e ™ i FI, o 0y Ty
[nl}Pn an [nQ}Pn ,an [n2 1}Pn ,an 2
PniPnoln, anm T4z "‘pnlanQru an [2112_1_21];)”2 - 2°Ing )y +Qn2y)+

[ 2}1177,2 ang Y
Pra P Gnz Tog 1], 0 Ty -

Proof. Exploiting the proofs for the bivariate operators in [6], the above can be
easily established. So we skip the proof. O

Now let the sequences

P=(Pn), P = Pn2), 4= (@ny), 7 = (qny)

be statistically convergent to unity but not convergent in usual sense, so we can
write them for 0 < pn,, @nyy Pnyy Gny, < 1 as

st —limp,,, = st —limg,, = st — limp,, = st — limg,, = 1. (5.2)
n1 ni no na

Now making use of the proof of Theorem (2.2) and conditions (5.2), we
establish the statistical convergence of the bivariate operators introduced above.



14 M. MURSALEEN AND TAQSEER KHAN

Theorem 5.3. Let p = (pn,), P = (Pny), ¢ = (qn,) and q = (qn,) be the sequences
subject to conditions (2.10) and let L,, ,, be the sequence of linear positive oper-
ators from H,,(R%) into Cg(Ry). Then for each g € H,,,

st — lim HLm,nz(g) -9l =0

ni,n2

Proof. With the aid of the Lemma (5.2), a proof similar to the proof of the
Theorem (2.2) can be easily obtained. So we shall omit the proof. O

Rates of convergence of the bivariate operators
For any g € H,,(R%), the modulus of continuity of the bivariate analogue is
defined as:

T i)
1—|—£L'1 1+£L’2

Y1 Y2

- <527
I+yr 1+

(g 01,65) = sup {|g<x1,y1> T \ < 51,'

z1,222>0

(z1,91), (72, 92) € sz(Ri)}

For details of this sort of modulus, one is referred to [1].
Two chief properties of @(g; d1,do) are

(1) @(g;01,02) = 0 as 6; — 0 and dy — 0 and

(2) lg(x1,y1) — g(72,92)| < @(g;01,02) (1 +

ry o T2
1+xq 1+x9
61

) (1_'_ ‘1£L1_1£?J2‘)
2 .

Now in the following theorem we study the rate of statistical convergence of
the bivariate operators through modulus of continuity in H,,,.

Theorem 5.4. Let p = (pny),0 = Pny)sq = (Gny), ¢ = (qn,) be four sequences
obeying conditions of (5.2). Then we have

| Loy s (3 Prss P Gns G @5 y) — F (2, y)| < 4p2 02, a2, a2, w(f3 v/ 0ny (), /Oy (7)),

where

5y () = z? 5 o (1+uxz) [nl]pnl Jny [ny — 1]pn17Qn1 _9 [nl]pnl g
" (1 + [L’)2 e Pny + Gmy T [nl + 1];29n1,qn1 [nl + 1]pn1 sqnq
X [nl]pnl yqnq
14+ x[n + 1]12,7117%1 ’
6 (y) — y72 2 2 (1 + y) [n2]pn27qn2 [n2 - 1]pn27f1n2 . 2 [n2]Pn2 ydng —I— 1
" (L+y)2 \"" o gy 1 [n2 + 1p,, g0,
Y [n2]pn27Qn2
1+y[na+1J2

Pngyqng
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Proof. Using the property of the modulus above, we have

| Ly s (s Prys P Gy s Qs T, 9) — f(2,9)| S w(f 2 0y Ono ) Ly no (05 Py s P Gy s Qo T, )
1 t X

+5—an1,@(|1—“ — m|;pn1,pn2; Gnrs Qs T Y) H Ly ons (03 Prs Proi @nns Gna’ T, Y)

1 S Y
—Lp, o (|—— — ——
+5n2 172(|1+S 1_'_y
Applying the Cauchy-Schwarz inequality, we get

2 2
t T t T
thm(‘l——l—t - H—x‘;pmapm;(hu(hz;xuy) S (Lnl,nz ((1——1‘t - 1+LL’> ;pm,pm;qnl,qm;x,y))

X (L”17”2(f0;pn17pn2; Gnis qnqs T, y)) .
On substituting this in the above inequality, we get the proof of the theorem. [

i Py Do Gng s Qs T, Y) T

N

Now we shall study the statistical convergence of the bivariate operators
using Lipschitz type maximal functions. The Lipschitz type maximal function
space on ' x ¥ C R, x R, is defined as follows

N 1 1
Wi o = {f  sup(1t) (15) oy () < M

T+ o) (T+y)

s x,y >0, (t,s) € EQ}-

(5.3)
Where f is a bounded and continuous function on R, M is a positive constant
and 0 < oy, a0 < 1 and f,, a,(2,y) is defined as follows:

fahaz(xay) = sup St s) = f(z,y)]

ts>0 [t — 2] ]s —yloz

Theorem 5.5. Let p = (pn,), 0 = (Pns): @ = (Gny): 4 = (no) be four sequences
satisfying the conditions of (5.2). Then we have

a1 a2
|Ln1,7L2(f§pn1>pnz§ qny5> Y9nys T, y) - f(:L’, y)| < Mpn, Pryni Gns {5n1 (z) 2 5712 (y) 2 (pmpm%n(hz)

0 (2) F dly, B)* + 8, (y) 75 d(, B)™ + 2d(x, B)™d(y, E)},
where 0 < ay,a0 < 1 and 0,,(x), d,,(y) are defined as in Theorem (2.11) and
d(z,E) =inf{lzr —y|:y € E}.
Proof. For z,y > 0 and (z1,y1) € F x E, we can write

|f(ts) = fla.y) < |f(Es) = [l y)| + [ fleny) = flz, )l
Applying the operator L,, ,, to both sides of the above inequality and making
use of (2.11), we have
| Ly (s Py Prgs G Gy 25 9) = (2, 9)] < Loy ([ (£,8) = (@1, Y1) Prss Pras s s G 2, Y)
(@1, 91) = F(@ ) Ly na (F03 Prys P @ o @5 Y)

Y2 1 o T2 Y1
<ML, , — —
- 1’2<}1+y2 1+x1‘ ‘1+x2 1+wy

r ‘Oq} y U
1+ 14x 1+y 14wy

a2
| ;pm,pnz;qnl,qm;x,y))

_'_M‘ ‘Q2Ln1,n2(f0;pn17pn2;qnl,an;fﬁ,y),
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Now for 0 < p < 1, using (a + b)? < a? + b?, we can write

‘ Y2 I ‘Oq <‘ Y2 7 ‘a1 ‘ r ‘a1
1+y 14+x T4y, 142 1+ 14+x
and
- A A Ty
I+ze 1+y’ — 14z 14y l+y 1+wn
Using these inequalities in the above, we get
Y2 T o T2 Y
Lnn s Prys Prngs Qny s no s Ty - ) SLnn - -
‘ 172(fp1p2q1q2xy) f(xy>| 172(‘1+y2 1+x‘ ‘1+x2 1+y‘
Pt Prni Qs G 0 Y) 4 | = | Ly (| 22— = —— | Dy D s G 5 9)
1 2 1 2 ]_‘l_y 1+y1 1,12 1+y2 ].‘I‘I 1 2 1 2
x T1 o €2 Y a2 X T1 o
+ - ni,n — yPnis Pngs Qny s Qg s s + -
y yl «
><\1+y — 1+y1\ * Ly s (03 Prs Pros G s s ).
Now using the Holder’s inequality for p; = O%,p2 = a%v‘h = 2_2a1 G2 = ﬁ, we
get
Y2 T jor; T2 Y oo Y2 T o
ni,n - - yPnys Pngs dny s Qg s O = Ln n —
172(‘1_'_y2 1_'_:(:‘ ‘1_'_:1:2 1_'_y‘ p1p2q1q2xy> 172(‘1_'_y2 1+x‘
) (7T Y2
;pnmpnz;Qn1aQn2;x>y)Ln1,n2(}1+x2 - 1+y‘ 2;pn1>pn2;Qn1aQn2;zay) S (Lnl,nz(ﬁy2
x 31 270y €2
_H—x)2;pn1>pn2;Qn1aQn2;x>y) 2 (Lnl,ng(fo;pnppng;inaQnQ;zay)) 2 (Lnl,nz(ﬁx2
y 2 g 2—ag
—m) s Pnys Png Gngs @ngs 5 Y) 2 (Liy g (03 Prns Prgs Qs Qg 5 Y)) 2

This consequently gives the desired result. Therefore the proof is complete. [

Remark 5.6. For E = [0, 00), we see that d(z, £) = 0 and d(y, F) = 0, so that we

_ayta o ag
have | Lo,y (f; Pys Pras s s @ 9) = F (2,9)] < M (i Prans Gna)* ™2 0y (2) 2 60y (y) 7
Remark 5.7. By means of (2.10), it can be easily seen that st —lim,, d,, = 0 and
st — lim,, d,, = 0. So we can estimate the order of statistical approximation of
our bivariate operators by means of Lipschitz type maximal functions using this
result.

Also as o o
Doyt
sup o, (r) < ———+—
>0 n1( ) [nl + 1]12’”1"1”1
and

1
P (ng + 1) < (W ot + 1) P na

n1qny PniGny

So for 0 < ppy, qn, < 1, we get

Py 1
[m + 1]2 - (n1 -+ 1)2

Pnq:qnq
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In a similar fashon we can obtain it for d,,,(y). So we have the following concluding
remark.

Remark 5.8. This chapter has two main features:

(1) 6,, and 0,, approach to zero in statistical sense however they may not
tend to zero in the usual sense.

(2) In our case d,, and ¢,, approach to zero faster than that of the classical
BBH operators.
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