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ABSTRACT
We simulate an oscillating purely hydrodynamical torus with constant specific angular mo-
mentum around a Schwarzschild black hole. The goal is to search for quasi-periodic oscil-
lations (QPOs) in the light curve of the torus. The initial torus setup is subjected to radial,
vertical and diagonal (combination of radial and vertical) velocity perturbations. The hydro-
dynamical simulations are performed using the general relativistic magnetohydrodynamics
code Cosmos++ and ray-traced using the GYOTO code. We found that a horizontal velocity
perturbation triggers the radial and plus modes, while a vertical velocity perturbation trig-
gers the vertical and X modes. The diagonal perturbation gives a combination of the modes
triggered in the radial and vertical perturbations.
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1 INTRODUCTION

Black-hole binaries, and especially black holes in low-mass X-
ray binaries (LMXBs), have been extensively studied in the past
decades (for a review, see van der Klis 2004; Remillard & Mc-
Clintock 2006). The advent of the Rossi X-ray Timing Explorer
in the late 1990’s in particular allowed the study of rapid quasi-
periodic oscillations (QPOs) in these sources, as well as in accret-
ing neutron stars. QPOs appear as peaks (of non-zero width, hence
their quasi-periodic nature) in the power density spectra (PDS, the
simplest expression of which is the square modulus of the Fourier
transform) of some black-hole binaries. Prior to the launch of the
RXTE mission, it had been suggested that QPOs may be observed
in LMXBs in the kHz range as a result of inhomogeneities in the
inner accretion disk about neutron stars and that they could be
used to test predictions of Einstein’s Theory of General Relativ-
ity (GR) in the strong field regime (Kluzniak, Michelson & Wag-
oner 1990). In this article, we will be only interested in the high-
frequency QPOs in black hole sources, with typical frequencies of
40 – 450 Hz (Morgan, Remillard & Greiner 1997; Remillard et al.
1999; Belloni, Méndez & Sánchez-Fernández 2001; Miller et al.
2001; Strohmayer 2001a,b; Remillard et al. 2002; Altamirano &
Belloni 2012; Belloni, Sanna & Méndez 2012). These QPOs ex-
hibit characteristic frequencies of the order of the Keplerian fre-
quency (i.e. the orbital frequency on a circular timelike geodesic in
the equatorial plane) very close to the central black hole. The high-
est stable geodesic Keplerian frequency is reached at the innermost
stable circular orbit (ISCO). However, in a thick accretion disk or
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in a torus, in principle, the orbiting fluid can exhibit quasi-stable
motion at frequencies as high as that in the marginally bound orbit.
The ISCO frequency of a 10 M� black hole is ≈ 220 Hz, which is in
the typical range for high-frequency QPOs of black-hole binaries.
Consequently, it is reasonable to investigate whether QPOs might
be due to phenomena arising in the strong-field region very close
to the black hole event horizon. If this picture is true, QPOs could
potentially be used to constrain the black holes properties and in
particular its spin parameter (Abramowicz & Kluźniak 2001) and
might be used as probes of strong-field general relativity in the rel-
atively distant future, when precise enough data will allow for com-
parison of various theories of gravity (see, e.g., Johannsen & Psaltis
2011).

In order to understand the high-frequency variability, numer-
ous models have been proposed in the last few years. However,
we are still far from understanding these phenomena. In black
holes, high-frequency QPOs are associated with the so-called steep
power-law spectral state of X-ray binaries (Remillard & McClin-
tock 2006). This spectral state itself is not well understood. One
important goal of investigations such as ours is to try to narrow
down the choice between models for high-frequency QPOs by ex-
ploring their ability to account for observations. As of today, a
large diversity of models are still advocated. Blobs of matter or-
biting in the inner accretion disk have been an early favourite as
the cause of a quasi-periodic modulation to the X-ray flux (Stella
& Vietri 1998; Cui, Zhang & Chen 1998; Kluźniak 1998), but these
have been ruled out (Barret et al. 2005), at least in the neutron star
LMXBs, by the high degree of coherence of the oscillation (high
quality factor Q). Although in black holes the Q value is low, so
blobs are not ruled out, it seems much more likely that the QPOs
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reflect modulations imprinted on the photon flux by intrinsic disk
oscillations, whose normal modes have been studied extensively
(Wagoner 1999; Kato 2001; Miranda, Horák & Lai 2015).

Upon analyzing certain properties of twin kHz QPOs in neu-
tron stars, Kluźniak & Abramowicz (2001) proposed that they
could be accounted for by a resonance between two possible mo-
tions of the accreting fluid. The resonance model predicted that
high frequency QPOs in black holes should occur in pairs, as they
do in neutron stars, and that the two QPO frequencies should be
in the ratio of small integer numbers, e.g., 2:1 or 3:2 ratio. These
predictions were borne out with the discovery of a 450 Hz QPO in
the binary black hole system GRO J1655-40 (Strohmayer 2001a) in
which a 300Hz QPO had been reported previously. Abramowicz &
Kluźniak (2001) pointed out that the two frequencies, 450 Hz and
300 Hz, are in a 3:2 ratio, and constrained the spin of the black hole
assuming a particular resonance model. The resonance model has
been used to relate the black hole spin to the frequencies expected
also for other types of resonances that can occur in nearly Keple-
rian disks in strong gravity (Török et al. 2005; Stuchlı́k, Kotrlová
& Török 2013). In spite of the successful predictions of the res-
onance model, it is important to examine other possibilities, such
as that the ratio may only be approximately 3:2, and may simply
reflect the ratio of two eigenfrequencies of an accretion structure.
Recently, Dexter & Blaes (2014) advocated a model that accounts
for both the steep power-law spectral state and approximately for
the 3:2 frequency ratio of twin-peak QPOs.

A torus oscillating along its own axis may cause periodic
variations in its radiative flux (Bursa et al. 2004; Kluźniak et al.
2004; Lee, Abramowicz & Kluźniak 2004). Based on their analyti-
cal work Kluźniak, Abramowicz & Lee (2004) also suggested that
axisymmetric, up and down, motion at the vertical epicyclic fre-
quency can also be directly observable if it occurs in the inner re-
gions of the disk. To produce synthetic light curves and PDS, Bursa
et al. (2004) performed general relativistic ray-tracing of a torus un-
dergoing simultaneous vertical and radial eigenmode oscillations
with a 3:2 frequency ratio, finding that the (higher-frequency) ver-
tical oscillation appreciably modulates the light curve only in GR,
and not in Newtonian gravity. Schnittman & Bertschinger (2004)
considered a hot spot radiating isotropically on nearly circular
equatorial orbits around a Kerr black hole and also performed gen-
eral relativistic ray-tracing to produce synthetic light curves and
PDS, finding that the hot spots would have to be very elongated
in the azimuthal direction to suppress the (unobserved) harmonic
content. The hot spot model has also been investigated by (Bakala
et al. 2014). The Rossby wave instability may also lead to the ap-
pearance of QPOs in black hole binaries (Tagger & Varnière 2006;
Vincent et al. 2013).

Geometrically thick disks or tori (Abramowicz, Jaroszynski &
Sikora 1978; Abramowicz & Fragile 2013) have been of great inter-
est in studies of QPOs using analytical as well as numerical simula-
tions. Rezzolla, Yoshida & Zanotti (2003) studied high-frequency
QPOs in oscillating tori in the Newtonian as well as GR framework.
Kluźniak (2005); Abramowicz et al. (2006); Blaes, Arras & Frag-
ile (2006) analytically calculated linear modes in relativistic slen-
der hydrodynamical tori and also suggested that these modes can
be excited in numerical simulations. Straub & Šrámková (2009)
extended these results to non-slender tori. Mazur et al. (2013) and
Vincent et al. (2014) studied analytic tori subject to radial, vertical,
shear and expansion perturbations using relativistic ray-tracing.

Ray-tracing of relativistic hydrodynamical simulations of an
oscillating torus was performed for the first time by Schnittman &
Rezzolla (2006), who perturbed the radial velocity to trigger the

oscillations. They found multiple high-frequency peaks in the sim-
ulated light curve, and in this paper we are going to revisit the fre-
quency identification with particular modes which was suggested
by the authors. In order to generalize this hydrodynamical work,
Schnittman, Krolik & Hawley (2006) used relativistic ray-tracing
to compute the light curves from 3D global relativistic MHD simu-
lations of accreting tori around black hole. However, these authors
did not see any convincing evidence of QPOs in their MHD simu-
lations.

This article aims to further develop the study of oscillating tori
as a model for high-frequency QPOs and in particular twin-peak
QPOs. To this end we perturb the 4-velocity of equilibrium tori,
use relativistic hydrodynamical simulations to compute their evo-
lution and relativistic ray-tracing to integrate the radiative transfer
equation and produce power spectra. Such computations have been
done in the past by Schnittman & Rezzolla (2006). The new ingre-
dient of our work is an investigation of various perturbations of the
equilibrium torus at various distances from the black hole to deter-
mine which oscillation modes are triggered, depending on the ini-
tial perturbation. We consider fairly slender tori (with a small cross-
sectional diameter compared to its distance from the central ob-
ject), whereas Schnittman & Rezzolla (2006) considered thick tori.
Unlike for thick tori, comparison of our simulations with previous
analytical studies developed in the limit of slender tori (Kluźniak
2005; Abramowicz et al. 2006; Blaes, Arras & Fragile 2006) al-
lows an unambiguous identification of the modes responsible for
the peaks in the simulated PDS. One of the main limitations of this
study is the fact that no self-consistent model is given for the ori-
gin of the perturbation of the equilibrium torus. This point may be
addressed in future work.

The article is organized as follows: In Section 2 we present the
numerical method governing the general relativistic hydrodynam-
ical (GRHD) equations to setup the torus simulation and perform
relativistic ray-tracing of the results. In Section 3 we discuss the
simulated PDS of oscillating tori for various initial perturbations.
In Section 4 we shall give conclusions. We use G = 1 = c through-
out the paper.

2 QPO MODES AND NUMERICAL SETUP

2.1 Eigenfrequencies of QPO modes

The perturbation analysis in previous studies of QPOs predicted the
analytical expressions of various eigenmodes we are interested in
(Kluźniak 2005; Abramowicz et al. 2006; Blaes, Arras & Fragile
2006; Straub & Šrámková 2009). These are the the radial mode
(r), the vertical (θ) mode, the X mode, the plus mode (+), and the
breathing mode (b). We shall follow the notations of Blaes, Arras
& Fragile (2006) in defining the frequencies of the eigenmodes.
These expressions are valid for a polytropic equation of state; in
this work, we assume a polytropic index of Γ = 5/3.

The lowest order eigenmode frequencies at the center of torus,
rc, are

σ̃2
r = ω̃2

Rc
=

(
1 −

6
Rc

)
, (1)

σ̃2
θ = ω̃2

θc
= 1, (2)

σ̃2
X =

√
ω̃2

Rc
+ ω̃2

θc
(3)

σ̃2
+ =

1
3

[
A − B1/2

]
(4)
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σ̃2
b =

1
3

[
A + B1/2

]
(5)

where, ω̃2
Rc

, ω̃2
θc

are radial and vertical epicyclic frequencies scaled
by the Keplerian orbital frequency 2πνK at the center of the torus.
A and B are defined by,

A = 4
(
ω̃2
θc

+ ω̃2
Rc

)
−

5
3
κ̃2

Rc
, (6)

B =

(4 (
ω̃2
θc
− ω̃2

Rc

)
+

5
3
κ̃2

Rc

)2

+ 4ω̃2
θc

(
ω2

rc
− κ̃2

Rc

) , (7)

where ˜κRc is characteristic squared frequency scaled with orbital
frequency at the center of the torus (Blaes, Arras & Fragile 2006).
Table 1 shows the predicted values of these frequencies from the
above expressions.

2.2 GRHD simulation

We numerically solve the equations of relativistic hydrodynamics
derived from the following stress-energy tensor for the torus fluid

Tµν = (ρ + ρε + P) uµuν + Pgµν, (8)

where ε is the specific internal energy, ρ is the rest-mass density,
P is the fluid pressure, uµ = gµνuν is the fluid 4-velocity and gµν
is the Schwarzschild metric tensor. We use the Kerr-Schild coor-
dinate system in the GRHD simulations. From the conservation of
rest mass and energy-momentum, we arrive at the following conser-
vation equations that we evolve numerically using the general rela-
tivistic magnetohydrodynamic code Cosmos++ (Anninos, Fragile
& Salmonson 2005),

∂tD + ∂i

(
DV i

)
= 0, (9)

∂tE + ∂i

(
−
√
−gT i

j

)
= −
√
−gT k

λΓ
λ
0k, (10)

∂tS j + ∂i

(√
−gT i

j

)
=
√
−gT k

λΓ
λ
jk. (11)

where D = Wρ is the generalized fluid density, W =
√
−gut is the

generalized boost factor, V i = ui/ut is the transport velocity, g is
the metric determinant,

E = −
√
−gT 0

0 = −Wutρh −
√
−gP (12)

is the total energy density, h = 1 + ε + P/ρ is the specific enthalpy,
and

S ν =
√
−gT 0

j = Wu jρh (13)

is the covariant momentum density. We solve the GRHD equations
using the high resolution shock-capturing (HRSC) option described
in Fragile et al. (2012) and Dibi et al. (2012).

We choose the black hole mass to be M = 10 M� and set up a
slender stationary hydrodynamical torus of cross-sectional radius,
rcross = 0.5 M around it. We accomplish this by setting the inner
and center (density and pressure maximum) radii of the torus for
each model, as given in Table 2. In order to understand the de-
pendence of the results on radial position of the torus we chose
two central radii, first at Rc = 10.0 M and second at Rc = 15.0 M.
All the simulations in our study assume a constant specific angu-
lar momentum distribution, which is defined as l = −uφ/ut, where
uφ and ut are the covariant azimuthal and time components of the
4-velocity, respectively. We solve for the initial internal energy dis-
tribution of the torus ε(r, θ). To initialize the setup we assume a
polytropic equation of state P = ρε (Γ − 1) = κρΓ, so the density is
given by ρ = [ε (Γ − 1) /κ]1/(Γ−1), with Γ = 5/3. We can choose κ to

Table 1. Analytically predicted frequencies (defined in Section 2.1) of the
five lowest order oscillation modes of slender tori for the two central radii
considered in this study, in units of the Keplerian frequency at the center of
the torus, νc.

Rc Radial Vertical X Plus Breathing

10 0.63 1 1.18 0.98 1.66
15 0.77 1 1.26 1.18 1.69

set the density (and mass) normalization of the initial torus. Once
the initial setup is fixed, the gas temperature of the torus is fixed by
the gravity. The torus is evolved with time using ideal gas equation
of state P = (Γ − 1) ρε.

The initial torus setup is subjected to a vertical or radial ve-
locity perturbation using uniform velocity fields corresponding to
the vertical and radial eigenmodes, respectively, in the slender torus
limit Bursa et al. (2004); Blaes, Arras & Fragile (2006). The diag-
onal perturbation is obtained by adding these two uniform velocity
fields. The equilibrium torus is defined by the covariant 4-velocity,

uµ = (ut, 0, 0, uφ) . (14)

After applying the velocity perturbation, the covariant 4-velocity is
given by

u =


(ut, η, 0, uφ), Radial
(ut, 0,Kη, uφ), Vertical
(ut, η,Kη, uφ), Diagonal

(15)

where

K = −

√
gθθ(Rc)
grr(Rc)

. (16)

This parameter is chosen such that radial and vertical 4-velocity
perturbations will have the same magnitude. The parameter η nor-
malizes the perturbation. We choose η = 0.003VKepler, where
VKepler = 2πRcνc is the Keplerian speed at the center of torus, with
νc being the orbit frequency. Illustrations of the various velocity
perturbations are shown in Fig. 1.

The various initial setups we study are given in Table 2. The
computational domain along radial direction is defined by rmin =

(Rc−0.75) M and rmax = (Rc +0.75) M. The domain along the polar
direction is defined by θmin = 86.4◦ and θmax = 93.6◦ for the torus at
Rc = 10 M and θmin = 87.66◦ and θmax = 92.34◦ for the torus with
Rc = 15 M. We performed the hydrodynamics simulations with 256
zones along both radial and polar directions. We also checked one
simulation with 512 × 512 to confirm that the results we obtained
are not sensitive to the chosen resolution. All the models presented
in Table 2 are computed for a total coordinate time of ∆t = 20 torb

(orbital period at the center of the torus), where torb = 198.6 M for
Rc = 10 M and torb = 365.0 M for Rc = 15 M.

2.3 Ray-tracing

The numerical data obtained from the Cosmos++ code are ray-
traced using the open-source GYOTO1 code (Vincent et al. 2011).
An observer is placed at a distance robs = 104 M from the black

1 Freely available at gyoto.obspm.fr

c© 2014 RAS, MNRAS 000, 1–??

gyoto.obspm.fr


4 B. Mishra, F. H. Vincent, A. Manousakis, Chris P. Fragile, T. Paumard, W. Kluźniak

Figure 1. Three initial velocity perturbations to the torus. Plots only present the initial torus with pressure maximum at Rc = 15 M. The torus setup at
Rc = 10 M looks qualitatively similar at the corresponding radial position.

Table 2. Initial torus setup, the torus cross-section is always equal to 0.5 M.
The ratio of the cross-section to the central radius of the torus (quantifying
the slenderness of the torus) is given. The last column gives the oscillation
modes that dominate the power spectra (see section 3). The radial, vertical,
plus and breathing modes are listed in short form as rad, vert, + and breath.

Perturbation rin (M) Rc (M) rcross/Rc Observed modes

Radial 9.5 10.0 0.05 rad, +, breath
Radial 14.5 15.0 0.03 rad, +, breath
Vertical 9.5 10.0 0.05 vert, X, breath
Vertical 14.5 15.0 0.03 vert, X, breath
Diagonal 9.5 10.0 0.05 rad, vert, +, X, breath
Diagonal 14.5 15.0 0.03 rad, vert, +, X, breath

hole. Photons of energy Eobs are traced backwards in time by in-
tegrating the geodesic equation in Schwarzschild geometry. When
the photon reaches the GRHD simulation box, two different radia-
tion mechanisms are considered. The optically thick case assumes
that blackbody radiation is emitted at the last scattering surface of
the torus. Here scattering refers to Thomson scattering. We thus
integrate the Thomson optical depth

dτe = 0.4 ρ ds, (17)

where the rest-mass density ρ and the proper length in the emitter’s
frame s are expressed in cgs units. The locus of points where τe

reaches unity is defined as the torus last scattering surface. Pho-
tons emitted from this surface will experience no Thomson scat-
tering and their trajectory is thus simply defined by gravitation
(they follow the null geodesics of the metric). Blackbody radia-
tion is emitted from this surface at the local temperature (assum-
ing a perfect-gas law, so that T ∝ P/ρ) and photon energy Eem

(which is of course different from Eobs due to relativistic effects).
The optically thin case assumes that bremsstrahlung radiation is
emitted by the torus. Here, the radiative transfer equation is inte-
grated using the well-known emission and absorption coefficients
for bremsstrahlung radiation (see e.g. Rybicki & Lightman 1986).

The GRHD simulations are scale-free in density, meaning that
the mass density obtained from one given solution can be multi-
plied by an arbitrary constant factor to get another well-defined so-
lution. As a consequence, we have one degree of freedom to choose
which is the mass density normalization. We choose it by imposing
that the temperature at the last scattering surface be of the order
of 107 K, which fixes the density. Because of the way these two
emission models are constructed, the optically thick case mostly
traces the evolution of the torus surface (of last scattering), while
the optically thin case traces the variation of its full volume.

For both the optically thick and thin cases, the torus 3-velocity
and density are interpolated trilinearly in 2D space (r, θ) and time.
When the density is evolving too abruptly between adjacent cells
to allow interpolating in this simple way (which is the case close to
the surface of the torus where the density gradient becomes quite
steep), the closest neighboring grid zone is used. The torus is as-
sumed not to be varying in the ϕ direction, but can easily be made
3D from the 2.5D simulations, since Cosmos++ evolves all three
components of the spatial velocity.

3 POWER SPECTRA OF THE OSCILLATING TORI

The light curves from each of our simulations and each of our radi-
ation models are shown in Figs. 2 and 3, for an observer inclination
of i = 10◦ (nearly face-on view). For all cases, the maximum rel-
ative flux variation (pulsed fraction) is of the order of 1%. This is
in reasonable agreement with observations. In Fig. 3 we also no-
tice a small increasing trend in the optically thin lightcurves and
decreasing trend in optically thick ones. Both are due to numeri-
cal fluctuations of density from cell to cell in the hydrodynamical
simulations.

The Lomb-Scargle PDS (Press & Rybicki 1989) of all light
curves (two radial positions of torus with two different inclinations)
are shown in Figs. 4 and 5. The first obvious feature appearing from
the PDS is that all of them are dominated by peaks corresponding to
the mode(s) of initial perturbation. More interesting is the presence
of additional peaks in all PDS. Given that the diagonal perturbation
PDS appear simply as the sums of the radial and vertical PDS, we
shall mainly focus on these last ones in our discussion.

c© 2014 RAS, MNRAS 000, 1–??
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Figure 2. Light curves of the oscillating torus with Rc = 10 M, assuming an optically thin (left) or optically thick (right) emission, for three initial velocity
perturbations, radial (top), vertical (middle) and diagonal (bottom). The percentage values in each panel correspond to the pulsed fraction, i.e. the maximum
relative variation of the flux.

In the radial PDS of Figs. 4 and 5, the prominent peaks corre-
spond to the radial, plus, and breathing modes, as well as the sum of
the radial and plus modes and higher harmonics of the radial mode.
We note that the radial, optically thin PDS at Rc = 15 M is compa-
rable to the results obtained by Schnittman & Rezzolla (2006) for
the same radial position of the center of torus, although our torus is
much more slender (about a factor of 100). The peaks in Schnittman
& Rezzolla (2006) with labels f , o1, o2, o3 (reproduced, for conve-
nience, in the upper panel of our Fig. 5) correspond to our radial
(57 Hz), plus (82 Hz), twice the radial (114 Hz) and sum of radial
and plus modes (140 Hz). In addition we also see a breathing mode,
which was not present in Schnittman & Rezzolla (2006). We argue
that this is due to the effect of the background on the slender torus.
If we increase the cross section of our torus and make it more like
Schnittman & Rezzolla (2006), the background does not affect the
torus significantly and we do not see the breathing mode.

In the vertical PDS in Fig. 4, the vertical and breathing modes
are present in both optically thin and thick cases. In addition, the
optically thick case shows a prominent peak at the X-mode fre-
quency, though it is much less prominent in the optically thin case.
This is due to the fact that in the optically thick case we are tracing
the surface and in the optically thin case the volume. The X-mode
causes more fluctuations on surface than in volume. Fig. 5 has simi-
lar features as Fig. 4 except that we almost do not see the X-mode in

this case. Three higher-frequency harmonics and combinations of
frequencies also appear with strong power in both tori. They cor-
respond to two times the vertical frequency, two times the X-mode
frequency, as well as the sum of the vertical and X-mode frequen-
cies. We note that multiplying two sinusoidal functions gives rise
to a signal varying at the sum of their frequencies. The “vertical
+ X” peak could thus be interpreted as a non-linear coupling be-
tween these two modes. However, it seems more likely that it is
related to the initialization of the vertical velocity perturbations.
In all our PDS except for the optically-thick, vertically-perturbed
case, there are clearly dominant peaks corresponding to the ini-
tial velocity perturbation mode, with all other oscillation modes
appearing significantly weaker. Only in the case of the optically-
thick, vertically-perturbed case is one of these “secondary” peaks
of comparable strength. However, we note that the velocity eigen-
vector field for a vertically-oscillating, non-slender, torus contains
within it the velocity field of an X-mode (see Fig. 5 of Blaes et al.
2007). Therefore, it seems most likely that this prominent X-mode
is also the result of the initial perturbations and not evidence of
non-linear coupling.

We also propose an intuitive explanation of the fact that a ra-
dial perturbation of the torus triggers the plus mode, whereas a ver-
tical perturbation triggers the X-mode (qualitative sketch in Fig. 6).
When the torus is excited vertically, it will essentially oscillate

c© 2014 RAS, MNRAS 000, 1–??
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Figure 3. Same as Fig. 2 with Rc = 15 M

along the z-axis at the local, vertical epicyclic frequency. Likewise,
when it is excited radially it will oscillate in the r-direction at the
local, radial epicyclic frequency. These frequencies are functions
of the coordinate radius r; thus different parts of the torus will os-
cillate at slightly different frequencies: the parts of the torus closest
to the black hole will oscillate at a frequency slightly larger than the
more distant parts. As a consequence, the torus cross-section will
be distorted, roughly following the X mode pattern in the vertical
case, and the plus mode pattern in the radial case. All PDSs in our
study show precisely this trend.

Another observation that come from our data is that the breath-
ing mode, present in all simulations, is stronger when the torus is
further from the black hole. We believe that this is an anomaly ow-
ing to the fact that the background (which has the same charac-
teristics in all simulations) acts more strongly on the more slender
torus. Given that its cross-sectional radius is constant, the torus be-
comes relatively more slender when it is displaced away from the
black hole. This bigger interaction of the background with the torus
leads to a more prominent breathing mode. We also believe that the
presence of the breathing just arises due to the initial mismatch be-
tween the torus and the background. This kind of initialization issue
has been reported even in studies of unperturbed tori (Srámková,
Torkelsson & Abramowicz 2007).

We do not note a strong inclination dependence in our op-
tically thin PDS, which seems contradictory to previous works,

in particular Bursa et al. (2004). However, these findings have
been obtained for an incompressible torus and the inclination de-
pendence is a very strong function of the torus equation of state
(M. Bursa, private communication). The inclination dependence
reported in Schnittman & Rezzolla (2006) is also obtained for a
different equation of state (Γ = 4/3), and for a much thicker torus.
Only a full parameter study, which goes beyond the scope of the
present paper and will be the subject of future work, will allow a
more thorough exploration of the inclination dependence.

To recapitulate, the most important conclusion of our analysis
is that the dominant modes appearing in the PDS are the radial, plus
and breathing modes for a radial perturbation, and the vertical, X
and breathing modes for a vertical perturbation. However, we do
not observe a clear domination of peaks in a 3:2 ratio (X/vertical,
plus/radial, or vertical/breathing). Our current results thus do not
show any natural selection mechanism for the 3:2 QPOs. However,
the dominant peaks might be (and most probably are) dependent
on the initial condition (in particular the initial velocity field and
the torus size). We will devote future study to determining if some
configurations naturally generate dominant 3:2 oscillations.

4 CONCLUSIONS

We performed hydrodynamic simulations of oscillating slender tori
and ray-traced the results to obtain power density spectra. We con-

c© 2014 RAS, MNRAS 000, 1–??
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Figure 4. Power density spectra (PDS) of the oscillating torus with radial, vertical and diagonal velocity perturbation (top to bottom). The initial pressure
maximum of the torus lies at Rc = 10 M. The horizontal axis corresponds to frequency normalized to the Keplerian frequency at the center of the torus, νc.
The solid black and dashed red curves show the PDS for two inclinations i = 10◦ and i = 70◦, respectively. The left and right panel correspond to optically
thin and thick cases, respectively. The vertical gray lines are located at the values of frequencies of the five lowest order oscillation modes for a Rc = 10 M
torus, as given in Table 1.

centrated on three types of perturbations: radial, vertical and diago-
nal. The important conclusions of the article concern the dominant
modes, possibility of presence of non-linear coupling of vertical
and X-mode, an absence of inclination dependence in optically thin
case and the different distributions of mode power for different ra-
diative transfer models. To summarize:

1. We found that a uniform radial perturbation of the velocity
filed can trigger both the radial mode and the plus mode. Likewise,
a uniform vertical perturbation of the velocity field can trigger the
vertical mode and an X-mode. This point is illustrated in Fig. 6. We
also found that no matter where we place the center of the torus, we
see a similar response. We argue that the presence of both the radial
and plus mode or the vertical and X-mode is owing to non-uniform
velocity vectors of the vertical and radial eigenmodes in an even
slightly non-slender torus.

2. We did not find any clear dependence on inclination in our
ray-traced light curves for optically thin case, whether the torus
was nearly edge-on or nearly face-on. We suspect that this is due to
the fact that our tori are very slender and compressible.

3. We found that the two different radiative models we consid-
ered can give very different lightcurves and hence different PDS. In

Figure 6. Qualitative illustration of the response of a torus to a uniform
vertical (top) and radial (bottom) 4-velocity perturbations.

particular, the optically thin and thick cases give different powers
in the plus- and X-modes.

c© 2014 RAS, MNRAS 000, 1–??
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Figure 5. Same as Fig. 4 with Rc = 15 M torus.
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Kluźniak W., Török G., Bakala P., 2014, A&A, 563, A109
Vincent F. H., Meheut H., Varniere P., Paumard T., 2013, A&A,

551, A54
Vincent F. H., Paumard T., Gourgoulhon E., Perrin G., 2011, Clas-

sical and Quantum Gravity, 28, 225011
Wagoner R. V., 1999, PhRep, 311, 259

c© 2014 RAS, MNRAS 000, 1–??


	1 Introduction
	2 QPO modes and numerical setup
	2.1 Eigenfrequencies of QPO modes
	2.2 GRHD simulation
	2.3 Ray-tracing

	3 Power spectra of the oscillating tori
	4 Conclusions

