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Horndeski models with a de Sitter critical point for any kind of material content may

provide a mechanism to alleviate the cosmological constant problem. We study the

cosmological evolution of two classes of families - the linear models and the non-linear
models with shift symmetry. We conclude that the latter models can deliver a background

dynamics compatible with the latest observational data.
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1. Introduction

The discovery, in 1998, that the Universe is currently undergoing an accelerated

expansion is one of the greatest milestones in all physics. Naturally, over the last 17

years, many proposals to explain this evolution have been brought forward. Most

ideas involve scalar field dark energy or extensions of Einstein’s gravity. These

proposals are essentially phenomenological without any relation to each other. One

major step forward was the realization in 2011 that all these proposals are subclasses

of the most general scalar-tensor theory that leads to second order equations of

motion, the Horndeski Lagrangian.1,2

Seeking viable cosmological solutions, one can focus on the Friedmann-Lemaitre-

Robertson-Walker spacetime and search for cosmological models that have a late

time flat de Sitter critical point for any kind of material content or value of the

vacuum energy. Such models were attained3 and in this proceedings we address

their phenomenology following recent work.4,5

2. Linear models

It was recently shown3 that it is possible to construct a scalar field Lagrangian,

L(φ, φ̇) linear in φ̇, such that: (i) the field equation for the Hubble rate, H(t),

is trivially satisfied at the critical point to allow the field to self-adjust; (ii) at the

critical point, the Hamiltonian depends on φ̇, so that the continuous field can absorb

discontinuities of the vacuum energy and; (iii) the scalar field equation of motion

depends on Ḣ, such that the cosmological evolution is non-trivial before screening

takes place. Considering minimally coupled matter, the linear Lagrangian becomes

L = LEH + Llinear + Lm, (1)

where

Llinear = a3
∑
i

(
3
√

ΛUi(φ) + φ̇Wi(φ)
)
Hi, (2)
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with i = 0, ..., 3, subject to the constraint,∑
i

Wi(φ)Λi/2 =
∑
j

Uj,φ(φ)Λj/2, (3)

which ensures that the Lagrangian density evaluated at the critical point has the

form required to allow the field to self-tune. In Eq. (1) we have written explicitily

an Einstein–Hilbert term contained in Llinear. The functions Wi and Ui are related

to the κj functions of the Horndeski Lagrangian and Gj functions of the Deffayet et

al. Lagrangian. As there are a total of eight functions and only one constraint, there

are effectively only seven free functions which we coined “the magnificent seven”.6,7

The field equation for H ′ and the Friedmann equation read,

H ′ = 3

∑
iH

i
(√

ΛUi,φ(φ)−HWi(φ)
)

∑
i iH

iWi(φ)
,

φ′ =
√

Λ
(1− Ω)H2 − 3

∑
i(i− 1)Hi Ui(φ)∑

i iH
i+1Wi(φ)

,

where a prime represents derivative with respect to ln a. We are now going to

consider a number of cases in our search for viable cosmological models compatible

with current observations.

2.1. Only W0 6= 0

Let us first assume that W0 6= 0, and W1 = W2 = W3 = 0. In this case H ′ is ill

defined. This can be understood by inspecting the Hamiltonian

Hlinear =
∑
i

[
3(i− 1)

√
ΛUi(φ) + i φ̇Wi(φ)

]
Hi

=
∑
i

[
3(i− 1)

√
ΛUi(φ)

]
Hi,

which shows that it is independent of φ̇, therefore violating condition (ii) for a

successful Lagrangian. This means that the model does not screen dynamically and

only the de Sitter solution exists.

2.2. Only a Wi, Uj pair

From the constraint equation we have that Wi = Uj,φΛ(j−i)/2, and then

H ′

H
= −3

i

[
1−

(
H√
Λ

)j−i−1
]
,

which does not depend on φ and, consequently, the matter content has no influence

on the Universe’s evolution. When j− i− 1 < 0 and H �
√

Λ, we can approximate

the field equation by

H ′

H
= −3

i
.
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We can, however, obtain a dust like behaviour for i = 2 and, as we expected by

construction, we reach a de Sitter evolution when H →
√

Λ.

2.3. Only a Wi, Wj pair

In this case, from the constraint equation, Wi = −Wj,φΛ(j−i)/2 and then

H ′

H
= −3

1− (H/
√

Λ)i−j

j − i(H/
√

Λ)i−j
,

which is again independent of φ. For j > i and H �
√

Λ, the field equation reads,

H ′

H
= −3

j
,

and we recover dust for j = 2. A de Sitter universe is reached when H →
√

Λ.

2.4. Term-by-Term model

We now consider that the constraint equation is satisfied for equal powers of Λ, i.e.

Wi = Ui,φ. We have then eight functions and four constraints, hence, only four free

potentials. Defining Ui,φ = Λ−i/2Vi,φ, we can write,

H ′

H
= −3

(
1−
√

Λ

H

) ∑
i(H/

√
Λ)iVi,φ∑

i i(H/
√

Λ)iVi,φ
.

Here the field (and the background matter) contributes to the dynamics of the

Universe as there is a dependence on φ, which is determined by the matter content

via Eq. (4). For H �
√

Λ and when only one i component dominates

H ′

H
= −3

i
,

which means that we recover dust for i = 2. As before, we reach de Sitter when

H →
√

Λ.

2.5. Tripod model

Let us consider the three potentials U2, U3 andW2. The constraint equation imposes

U2,φΛ + U3,φΛ3/2 = W2Λ, and then

H ′

H
= −3

U2,φ

W2

(
1−
√

Λ

H

)
.

For H �
√

Λ,

H ′

H
= −3

2

U2,φ

W2
,

therefore we need: U2,φ/W2 = 1, during a matter domination epoch, and U2,φ/W2 =

4/3, for a radiation domination epoch. For example, the choice of the potentials,
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Fig. 1. Energy densities evolution for the tripod models.

U2 = eλφ + 4
3e
βφ, and W2 = λeλφ + βeβφ, give us the desired behaviour, as shown

in Fig. 1. The de Sitter evolution is attained when H →
√

Λ. Unfortunately, the

contribution of the field at early times is too large to satisfy current constraints.

3. Non-linear models

In this section we consider the non-linear terms in φ̇ in the Lagrangian, i.e.,

Lnl = a3
3∑
i=0

Xi(φ, φ̇)Hi, (4)

provided that any non-linear dependence of the Lagrangian on φ̇ vanishes at the

critical point, thus,
∑3
i=0Xi(φ, φ̇)Λi/2 = 0, and combine it with LEH and Lm.

Again, Xi are related to the the κj functions of the Horndeski Lagrangian and Gj
functions of the Deffayet et al. Lagrangian. We will restrict the analysis to the shift-

symmetric cases, which means no dependence on φ, and make use of the convenient

redefinition ψ = φ̇. Under these assumptions we obtain the equations of motion,

H ′ =
3(1 + w)Q0P1 −Q1P0

Q1P2 −Q2P1
,

ψ′ =
3(1 + w)Q0P2 −Q2P0

Q2P1 −Q1P2
,

where Q0, Q1, Q2, P0, P1, P2, are complicated functions of Xi and H, and the

average equation of state parameter of matter fluids is

1 + w =

∑
s Ωs(1 + ws)∑

s Ωs
.

As for the linear models, we are now going to take a systematic evaluation of the

possible cosmological scenarios.



March 11, 2022 6:55 WSPC Proceedings - 9.75in x 6.5in A13Nunes3 page 5

5

3.1. X3 = ψn is the dominant contribution

When X3 is the dominant potential and H �
√

Λ, then the effective equation of

state is

1 + weff '
2

3
(1 + w), for

| (2X3 + ψX3,ψ)X3,ψψ|
| (3X3,ψ + ψX3,ψψ)X3,ψ|

� 1

1 + weff '
2

3
otherwise.

Neither of these allow for weff corresponding to a radiation and/or matter domina-

tion epochs.

3.2. X2 = ψn is the dominant contribution

If instead X2 is the dominant potential, for H �
√

Λ, it follows that

weff ' w, for
| (1−X2 − ψX2,ψ)X2,ψψ|
| (2X2,ψ + ψX2,ψψ)X2,ψ|

� 1,

weff ' 0, otherwise.

In this case, either weff is too small today when compared with observational limits

or, Ωψ is too large in the early Universe.

3.3. X0 and X1 are the sole contributions

If we take X0 and X1 to be the only non-negligeble potentials, then it can be shown

that when H �
√

Λ, the equation of state parameter weff ' w. This represents an

interesting case but, unfortunately, models with realistic initial conditions are not

driven to the critical point.

3.4. Extension with X0, X1 and X2

Finally we consider a case involving the three potentials X0, X1 and X2 such that

X2(ψ) = αψn, X1(ψ) = −αψn +
β

ψm
, X0(ψ) = − β

ψm
.

We can obtain a model with wψ = w0 + wa(1 − a), such that, w0 = −0.98 and

wa = 0.04, which is compatible with current limits and moreover, has a negligible

dark energy contribution at early times. The evolution of the energy densities is

illustrated in Fig. 2.

4. Summary

In this article we have consider Horndeski cosmological models that may alleviate

the cosmological constant problem by screening any value of the vacuum energy

given by the theory of particle physics. We have presented the linear and the non-

linear models and shown that the class of non-linear models with shift symmetry
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Fig. 2. Energy densities evolution for the model with non-vanishing X0, X1 and X2.

are in a better footing when they are compared with current observational con-

straints of the effective equation of state parameter and limits on early dark energy

contribution. In order to further scrutinise these models, we are now required to

face them against observables that depend on the evolution of the field and matter

fluid fluctuations.
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