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Recent experimental results from the LHCb, BaBar and Belle collaborations on the semitauonic
decays of B meson, B̄ → D(∗)τ ν̄, showing a significant deviation from the Standard Model (SM), hint
towards a new physics scenario beyond the SM. In this work, we show that these enhanced decay
rates can be explained within the framework of E6 motivated Alternative Left-Right Symmetric
Model (ALRSM), which has been successful in explaining the recent CMS excesses and has the
feature of accommodating high scale leptogenesis. The R-parity conserving couplings in ALRSM
can contribute universally to both B̄ → Dτν̄ and B̄ → D(∗)τ ν̄ via the exchange of scalar leptoquarks.
We study the leptonic decays D+

s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing to constrain
the couplings involved in explaining the enhanced B decay rates and we find that ALRSM can
explain the current experimental data on R(D(∗)) quite well while satisfying these constraints.

I. INTRODUCTION

Recently the LHCb collaboration has reported the ra-
tio of branching fractions for the semitauonic decay of B
meson, B̄ → D∗τ ν̄, to be R(D∗) = 0.336±0.027(stat.)±
0.030(syst.) with the Standard Model (SM) expectation
0.252 ± 0.005, amounting to a 2.1σ excess [1]. In gen-
eral, the observables are introduced as ratios to reduce
theoretical uncertainties

R(X) =
B(B̄ → Xτν̄)

B(B̄ → Xlν̄)
, (1)

where l = e, µ. This measurement is in agreement
with the measurements of B̄ → D(∗)τ ν̄ reported by the
BaBar [2, 3] and Belle [4] collaborations. The results re-
ported by BaBar and Belle are given by R(D)BaBar =
0.440± 0.058± 0.042, R(D)Belle = 0.375± 0.064± 0.026
and R(D∗)BaBar = 0.332 ± 0.024 ± 0.018, R(D∗)Belle =
0.293±0.038±0.015, with the SM expectations given by
R(D)SM = 0.300± 0.010 and R(D∗)SM = 0.252± 0.005.
These results are consistent with earlier measurements
[5, 6] and when combined together show a significant de-
viation from the SM.

Several new physics (NP) scenarios accommodating
semileptonic b→ c decay have been proposed to explain
these excesses. The two-Higgs Doublet Model (2HDM)
of type II is one of the well studied candidates of NP
which can affect the semitauonic B decays significantly
[7–13]. However, the BABAR collaboration has excluded
the 2HDM of type II at 99.8 % confidence level [2, 3].
Phenomenological studies of the four fermion operators
that can explain the discrepancy have been addressed in
Refs. [14–22]. The excesses have been explained in a
more generalized framework of 2HDM in Refs. [23–25]
and in the framework of R-parity violating (RPV) Min-
imal Supersymmetric Standard Model (MSSM) in Ref.
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[26]. While in Refs. [16, 20, 21, 27, 28] the excesses have
been addressed in the context of leptoquark models. In
Ref. [29], a dynamical model based on a SU(2)L triplet
of massive vector bosons, with predominant coupling to
third generation fermion was proposed to explain the
excesses, while other alternative approaches have been
taken in Refs. [30–32].

From a theoretical point of view, NP scenarios explain-
ing the above discrepancies and addressing other direct
or indirect collider searches for NP are particularly in-
triguing. To this end, we must mention the recently an-
nounced results for the right-handed gauge boson WR

search at
√
s = 8TeV and 19.7fb−1 of integrated lumi-

nosity by the CMS Collaboration at the LHC. They have
reported 14 observed events with 4 expected SM back-
ground events, amounting to a 2.8σ local excess in the bin
1.8 TeV < meejj < 2.2 TeV, which cannot be explained in
the standard framework of Left-Right Symmetric Model
(LRSM) with the gauge couplings gL = gR [33]. On the
other hand, the CMS search for di-leptoquark produc-
tion at

√
s = 8TeV and 19.6fb−1 of integrated luminosity

have been reported to show a 2.4σ in the eejj channel
and a 2.6σ local excess in the e/pT jj channel correspond-

ing to 36 observed events with 20.49 ± 2.4 ± 2.45(syst.)
expected SM events in the eejj channel and 18 observed
events with 7.54± 1.20± 1.07(syst.) expected SM events
in the e/pT jj channel respectively [34]. These excesses
has been explained from WR decay in the framework of
LRSM with gL 6= gR embedded in the SO(10) gauge
group in Refs. [35–37] and in LRSM with gL = gR by
taking into account the CP phases and non-degenerate
masses of heavy neutrinos in Ref. [38], while other NP
scenarios have been proposed in Refs. [39–51]. Interest-
ingly, in some of these NP scenarios attempts were made
to explain the discrepancies in decays of B meson in an
unified framework [43] or separately [26].

In this paper we study the flavor structure of the
E6 motivated Alternative Left-Right Symmetric Model
(ALRSM) [52], which can explain the CMS excesses and
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accommodate high scale leptogenesis 1 [46], to explore
if this framework can address the experimental data for
R(D(∗)) explaining the discrepancy with the SM expec-
tations. This scenario is particularly interesting because
unlike the R-parity violating MSSM in Refs. [26, 41, 43],
this model involves only R-parity conserving interactions.
Furthermore, a careful analysis of the flavor physics con-
straints, such as the rare decays and the mixing of mesons
can play a crucial role in determining the viability of any
NP scenario. Therefore, we study the leptonic decays
D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing

to constrain the semileptonic b→ c transition in ALRSM.
We find that despite being constrained by the above pro-
cesses ALRSM can explain the current experimental data
on R(D(∗)) quite well.

The rest of this article is organized as follows. In
Sec. II, we discuss the effective Hamiltonian and the gen-

eral four-fermion operators that can explain the R(D(∗))
data. In Sec. III, we introduce ALRSM and present
the viable interactions, followed by the evaluation of the
Wilson coefficients. In Sec. IV, we discuss the con-
strains from the leptonic decays D+

s → τ+ν̄, B+ → τ+ν̄,
D+ → τ+ν̄ and mixing between D0-D̄0. In Sec. V, we
summarize our results and conclude.

II. THE EFFECTIVE HAMILONIAN FOR
B̄ → D(∗)τ ν̄ DECAY

To include the effects of NP, the SM effective Hamil-
tonian for the quark level transition b → clν̄l can be
augmented with a set of four-Fermi operators in the fol-
lowing form [15]

Heff =
4GF√

2
Vcb

∑
l=e,µ,τ

[(1 + ClVL
)OlVL

+ ClVR
OlVR

+ ClSL
OlSL

+ ClSR
OlSR

+ ClTL
OlTL

], (2)

where GF is the Fermi constant, Vcb is the appropriate
CKM matrix element and Cli (i = VL/R, SL/R, TL) are
the Wilson coefficients associated with the new effective
vector, scalar and tensor interaction operators respec-
tively. These new six dimensional four-Fermi operators
are generated by NP at some energy higher than the elec-
troweak scale and are defined as

OlVL
= (c̄Lγ

µbL)(l̄LγµνlL),

OlVR
= (c̄Rγ

µbR)(l̄LγµνlL),

OlSL
= (c̄RbL)(l̄RνlL),

OlSR
= (c̄LbR)(l̄RνlL),

OlTL
= (c̄Rσ

µνbL)(l̄RσµννlL), (3)

where σµν = (i/2)[γµ, γν ]. The SM effective Hamiltonian
corresponds to the case Cli = 0. Note that in writing the
general Heff , we have neglected the tiny contributions
from the right-handed neutrinos and therefore, we treat
the neutrinos to be left-handed only.
In order to perform the numerical analysis of the tran-
sition B → D(∗)τν, we need to have the knowledge of
the hadronic form factors which parametrize the vec-
tor, scalar and tensor current matrix elements. The
B → D(∗)τν matrix elements of the aforementioned ef-
fective operators depend on the momentum transfer be-
tween B and D(∗)(qµ = pµB − kµ) and are generally
parametrized in the following way [15, 55]

〈D(k)|c̄γµb|B̄(pB)〉 =

[
(pB + k)µ −

m2
B −m2

D

q2
qµ

]
F1(q2) + qµ

m2
B −m2

D

q2
F0(q2), (4)

〈D∗(k, ε)|c̄γµb|B̄(pB)〉 = −iεµνρσεν∗pρBk
σ 2V (q2)

mB +mD∗
, (5)

〈D∗(k, ε)|c̄γµγ5b|B̄(pB)〉 = εµ∗(mB +mD∗)A1(q2)− (pB + k)µ(ε∗ · q) A2(q2)

mB +mDast

−qµ(ε∗ · q)2mD∗

q2

(
A3(q2)−A0(q2)

)
, (6)

〈D∗(k, ε)|c̄σµνb|B̄(pB)〉 = εµνρσ

{
−ε∗ρ(pB + k)σT1(q2) + ε∗ρqσ

m2
B −mD∗

q2
(T1(q2)− T2(q2))

+ 2
ε∗q

q2
pρBk

σ

(
T1(q2)− T2(q2)− q2

mB2 −mD∗2
T3(q2)

)}
, (7)
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where F1(0) = F0(0), A3(0) = A0(0) and

A3(q2) =
mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2). (8)

εµ is the polarization vector of the D∗. Note that the
hadronic matrix elements of the scalar and pseudoscalar
operators can be conveniently derived from their vec-
tor counterpart by applying the equations of motion
−i∂µ(q̄aγµqb) = (ma − mb)q̄aqb and −i∂µ(q̄aγµγ5qb) =
(ma + mb)q̄aγ5qb. However, in what follows, we choose
to work with the following parametrization of the form
factors which are more suitable for including the results
of the heavy quark effective theory (HQET). The matrix
elements of the vector and axial vector operators can be
expressed as [10, 56]

〈D(v′)|c̄γµb|B̄(v)〉 =
√
mBmD {ξ+(w)(v + v′)µ

+ξ−(w)(v − v′)µ}

〈D∗(v′, ε)|c̄γµb|B̄(v)〉 = i
√
mBmD∗ξV (w)εµνρσε

∗νv′ρvσ,

〈D∗(v′, ε)|c̄γµγ5b|B̄(v)〉 =
√
mBmD∗

{
ξA1(w)(w + 1)ε∗µ

−(ε∗ · v)

(ξA2
(w)vµ + ξA3

(w)v′µ)} . (9)

The form factors of tensor operators are defined as [20]

〈D(v′)|c̄σµνb|B̄(v)〉 = −i
√
mBmDξT (w)

(
vµv
′
ν − vνv′µ

)
,

〈D∗(v′)|c̄σµνb|B̄(v)〉 = −i
√
mBmD∗εµνρσ

{ξT1
(w)ε∗ρ(v + v′)ρ

+ ξT2
(w)ε∗ρ(v − v′)σ

+ ξT3
(w)(ε∗ · v)(v + v′)ρ(v − v′)σ} ,

(10)

where v = pB/mB and v′ = k/mD(∗) are the
four-velocities of the B and D(∗) mesons respectively,
and the kinematic variable w(q2) is the product of
the velocities of initial and final mesons w(q2) =(
m2
B +mD(∗) − q2

)
/2mBmD∗ . The HQET and QCD

dispersive techniques can be used to constrain the shapes
of these form factors [57]. To this end, the HQET form
factors are redefined as linear combinations of the dif-
ferent form factors V1(w), S1(w), A1(w) and R1,2,3(w)
[20, 57], which reduces to the universal Isgur-Wise func-
tion [58] normalized to unity at w = 1 in the heavy
quark limit. The form factors in the parameterization
of Caprini et al. [57], which describes the shape and
normalization in terms of the four quantities: the nor-
malizations V1(1), A1(1), the slopes ρ2

D, ρ2
D∗ and the

amplitude ratios R1(1) and R2(1) (determined by mea-
suring the differential decay width as a function of w).
The form factors V1(w) and S1(w) contribute to the de-
cay B → Dlν̄l (l = e, µ, τ), while the decay B → D∗lν̄l
receives contributions from A1(w) and R1,2,3(w). How-
ever, the semileptonic decay into light charged leptons
B → Dlν̄l involves only V1(w) and therefore, V1(w) can

be measured experimentally. The parametrization of the
form factors in terms of the slope parameters ρ2

D, ρ2
D∗ and

the value of the respective form factors at the kinematic
end point w = 1 is given by [57, 59]

V1(w) = V1(1)
{

1− 8ρ2
Dz + (51ρ2

D − 10)z2

−(252ρ2
D − 84)z3

}
, (11)

A1(w) = A1(1)
{

1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2

−(231ρ2
D∗ − 91)z3

}
, (12)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2,

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2,

R3(w) = 1.22− 0.052(w − 1) + 0.026(w − 1)2,

(13)

with z = (
√
w + 1−

√
2)/(
√
w + 1 +

√
2). For S1(w) we

use the parametrization given in Ref. [13]

S1(w) = V1(w) {1 + ∆ (−0.019 + 0.041(w − 1)

−0.015(w − 1)2
)}
, (14)

with ∆ = 1 ± 1. By fitting the measured quan-
tity |Vcb|V1(w) to the two parameter ansatz as given in
Eq.(11), the heavy flavor averaging group (HFAG) ex-
tracts the following parameters: V1(1)|Vcb| = (42.65 ±
1.53)×10−3, ρ2

D = 1.185±0.054 [60]. In the case of B →
D∗lν̄l, HFAG determines A1(1)|Vcb| = (35.81 ± 0.45) ×
10−3, ρD∗ = 1.207 ± 0.026, R1(1) = 1.406 ± 0.033 and
R2(1) = 0.853± 0.020 by performing a four-dimensional
fit of the parameters [60]. However, since the fitted
curve are plagued with large statistical and systematic
uncertainties, for form factor normalizations, we use
V1(1) = 1.081 ± 0.024 from the recent lattice QCD cal-
culations [61] and for A1(1) we use the updated value
A1(1) = 0.920 ± 0.014 from the FNAL/MILC group
[62]. The amplitude ratios R1(1) and R2(1) are deter-
mined from the fit by HFAG R1(1) = 1.406 ± 0.033,
R2(1) = 0.853± 0.020 [60].

III. ALTERNATIVE LEFT-RIGHT
SYMMETRIC MODEL AND ANALYSIS OF

OPERATORS MEDIATING B̄ → D(∗)τ ν̄

One of the maximal subgroups of superstring inspired
E6 group is given by SU(3)C × SU(3)L × SU(3)R. The
fundamental 27 representation of E6 can be decomposed
under this subgroup as

27 = (3, 3, 1) + (3∗, 1, 3∗) + (1, 3∗, 3) (15)

where the fields are assigned as follows. (3, 3, 1) corre-
sponds to (u, d, h), (3∗, 1, 3∗) corresponds to (hc, dc, uc)
and the leptons are assigned to (1, 3∗, 3). Here h repre-
sents the exotic − 1

3 charge quark which can carry lep-
ton number depending on the assignments. The other
exotic fields are N c and two isodoublets (νE , E) and
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(Ec, N c
E). The presence of these exotic fields makes the

phenomenology of the low energy subgroups of E6 very
interesting. The superfields of the first family can be
represented asud

h

+
(
uc dc hc

)
+

Ec ν νE
N c
E e E
ec N c n

 , (16)

where SU(3)L operates along columns and SU(3)(R) op-
erates along rows. The SU(3)(L,R) in the maximal sub-
group of E6 can further break into SU(2)(L,R)×U(1)(L,R)

and there are three choices of assigning the isospin dou-
blets corresponding to T,U, V isospins (generators of
SU(2)) of SU(3). One of the choices have (dc, uc)L as-
signed to the SU(2)R doublet giving rise to the usual left-
right symmetric extension of the standard model includ-
ing the exotic particles. In another choice, the SU(2)R
doublet is chosen to be (hc, dc) [63] with the charge equa-
tion given by Q = T3L + 1

2YL + 1
2YN , where the chosen

SU(2)R does not contribute to the electric charge equa-
tion and is often denoted by SU(2)N . While these two
subgroups are quite interesting from a phenomenological
point of view, the superpotential couplings in these two
subgroups can not explain the R(D(∗)) data. The third
possible choice where the SU(2)R doublet is chosen to be
(hc, uc) gives the subgroup referred to as the Alternative
Left-Right Symmetric Model (ALRSM) [52] and it has
the right ingredients to address R(D(∗)) excesses.

In ALRSM, the superfields have the following trans-
formations under the subgroup G = SU(3)c × SU(2)L ×
SU(2)R′ × U(1)Y ′

(u, d)L : (3, 2, 1,
1

6
)

(hc, uc)L : (3̄, 1, 2,−1

6
)

(νE , E)L : (1, 2, 1,−1

2
)

(ec, n)L : (1, 1, 2,
1

2
)

hL : (3, 1, 1,−1

3
)

dcL : (3̄, 1, 1,
1

3
)(

νe Ec

e N c
E

)
L

: (1, 2, 2, 0)

N c
L : (1, 1, 1, 0), (17)

where Y ′ = YL + Y ′R. The charge equation is given by
Q = T3L + 1

2YL + T ′3R + 1
2Y
′
R, where T ′3R = 1

2T3R +
3
2YR, Y ′R = 1

2T3R − 1
2YR. The superpotential governing

interactions of the superfields in ALRSM is given by [64]

W = λ1 (uucN c
E − ducEc − uhce+ dhcνe) +

λ2 (udcE − ddcνE) + λ3 (hucec − hhcn) +

λ4hd
cN c

L + λ5 (eecνE + EEcn− Eecνe − νEN c
En) +

λ6 (νeN
c
LN

c
E − eEcN c

L) . (18)
The superpotential given in Eq. (18) gives the following
assignments of R-parity, baryon number (B) and lepton
number (L) for the exotic fermions ensuring proton sta-
bility. h is a leptoquark with R = −1, B = 1

3 , L = 1.
νE , E and n have the assignments R = −1, B = L = 0.
N c has two possible assignments. If N c has the assign-
ments R = −1 and B = L = 0 (in a R-parity con-
serving scenario demanding λ4 = λ6 = 0 in Eq. (18)),
νe becomes exactly massless. However if N c is assigned
R = +1, B = 0, L = −1, then νe can acquire a tiny mass
via the seesaw mechanism.

ALRSM can explain both eejj and e/pT jj signals from
the decay of scalar superpartners of the exotic particles,
for example, through (i) resonant production of the exotic

slepton Ẽ, subsequently decaying into a charged lepton
and a neutrino, followed by R-parity conserving interac-
tions of the neutrino producing an excess of events in
both eejj and e/pT jj channels [46] (ii) pair production

of scalar leptoquarks h̃. On the other hand, high scale
leptogenesis can be obtained via the decay of the heavy
Majorana neutrino N c in ALRSM. From the interaction
terms λ4 and λ6 in Eq. (18), it can be seen that the
Majorana neutrino N c

k can decay into final states with

B − L = −1 given by νeiÑ
c
Ej
, ν̃eiN

c
Ej
, eiẼ

c
j , ẽi, E

c
j and

dih̃j , d̃
c
i h̃j and to their conjugate states. Thus, ALRSM

has the attractive feature that it can explain both the
excess eejj and e/pT jj signals and also high-scale lepto-

genesis [46].

Having introduced ALRSM above now we are ready
to analyze the semitauonic B decay B̄ → D(∗)τ ν̄ based
on the general framework introduced in Sec. II. From
the superpotential given in Eq. (18) it follows that in
ALRSM there are two possible diagrams shown in Fig.
1. which can contribute to the decay B̄ → D(∗)τ ν̄. The
effective Lagrangian corresponding to these diagrams is
given by

Leff = −
3∑

j,k=1

V2k

[
λ5

33jλ
2∗
3kj

m2
Ẽj

c̄LbR τ̄RνL +
λ1

33jλ
1∗
3kj

m2
h̃j∗

c̄L(τ c)R (ν̄c)RbL

]
, (19)

where the superscript corresponds to the superpotential coupling index and the generation indices are explicitly
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written as subscripts. Here mẼ(mh̃) is the mass of slep-

ton Ẽj (scalar leptoquark h̃j∗) and Vij corresponds to
the ij-th component of the CKM matrix. Using Fiertz
transformation the second term of Eq. (19) can be put
in the form given by

c̄L(τ c)R (ν̄c)RbL =
1

2
c̄Lγ

µbL τ̄LγµνL. (20)

We can now readily obtain the expressions for the cor-
responding Wilson coefficients, defined in Eq. (3), given
by

CτSL
=

1

2
√

2GFVcb

3∑
j,k=1

V2k

λ5
33jλ

2∗
3kj

m2
Ẽj

,

CτVL
=

1

2
√

2GFVcb

3∑
j,k=1

V2k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

, (21)

where the neutrinos are assumed to be predominantly of
tau flavor.

To simplify further analysis, we invoke the assump-
tion that except the SM contribution only one of the
NP operators in Eq. (3) contributes dominantly. This
assumption helps us in determining the limits on the
dominant Wilson coefficient from the experimental data
for R(D(∗)) and the generalization of this situation to
incorporate more than one NP operator contribution is
straight forward.

FIG. 1: Feynman diagrams for the decays B̄ → D(∗)τ ν̄
induced by the exchange of scalar leptoquark (h̃∗) and Ẽ.

The case where CτSL
is the dominant contribution, sim-

ilar to 2HDM of type II or type III with minimal flavor
violation, can not explain both R(D) and R(D∗) data
simultaneously [16, 25], as can be seen from Fig. 2. How-
ever, CτVL

has an allowed region which can explain both
R(D) and R(D∗) data as shown in Fig. 3. We find
that for

∣∣CτVL

∣∣ > 0.08 the current experimental data can
be explained. Note that, we use the central values of the
theoretical predictions because the theoretical uncertain-
ties are sufficiently small compared to the experimental
accuracy.

IV. CONSTRAINTS FROM B, D DECAYS AND
D0 − D̄0 OSCILLATION

A. Constraints from B → τν

In this section we discuss the new contributions to
purely leptonic decay mode B → τν due to scalar lepto-

FIG. 2: The dependence of the observables RD(∗) on CτSL
:

red (blue) line corresponds to RD (RD∗), and the horizontal
light red (blue) band corresponds to the experimentally al-
lowed 1σ values. No common region exists for CτSL

which can
simultaneously explain both RD and RD∗ .

FIG. 3: The dependence of the observables RD(∗) on CτVL
:

red (blue) line corresponds to RD (RD∗), and the horizon-
tal light red (blue) band corresponds to the experimentally
allowed 1σ values. CτVL

can explain both RD and RD∗ data.

quark h̃j∗ exchange and utilize the measured branching
fractions of the decay to derive constraints on the prod-
uct of couplings λ1

33jλ
1
31j . In the SM, the decay B → τν

proceeds via annihilation to a W boson in the s-channel.
In the ALRSM, the exchange of the scalar leptoquark
h̃j∗ leads to the additional diagrams shown in Fig. 4.
Since the mass scale of scalar leptoquark is far above the
scale of the B meson, we can integrate out the heavy de-
gree of freedom to generate new four-fermion interaction
∼ q̄L(τ c)R (ν̄c)RbL, with the Wilson coefficients param-
eterizing the effects of the integrated out non-standard
particles. The NP effective Hamiltonian is given by

HNP
eff (bq̄ → τ ν̄) =

4GF√
2
Vqb C

qb
VL

(q̄Lγ
µbL)(τ̄LγµνL), (22)

where Vqb (here q ≡ u) is the relevant CKM matrix el-
ement. The Wilson coefficient CubVL

in terms of the cou-
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plings λ′s is given by

CubVL
=

1

2
√

2GFVub

3∑
j,k=1

V1k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

. (23)

In our notation, the Wilson coefficient of the SM effec-

FIG. 4: Feynman diagrams for the decay B → τν induced
by the exchange of the scalar leptoquark h̃j∗.

tive operator is set to unity. In what follows, we will
neglect the subleading O(λ) terms and retain only the
leading CKM element V11.
Note that, the decay B → τν is the only experimentally
measured purely leptonic mode of charged B±. The cur-
rent experimental value of the branching ratio of B → τν
is (1.14± 0.27)× 10−4 [65]. The presence of NP modifies
the expression of the SM decay rate in the following way

dΓ

dq2
(B → τν) =

G2
F |Vub|2

8π
mBf

2
Bm

2
τ

×
(

1− m2
τ

m2
B

)2

|1 + CubVL
|2, (24)

where mB is the mass of B± and fB is the decay con-
stant which parametrize the matrix elements of the cor-
responding current as

〈0|b̄LγµqL|Bq(pB)〉 = pµBfB . (25)

Here pB is the 4-momentum of the B± meson.
We use the CKM matrix elements, the lifetimes, particle
masses and decay constants fB , fDs

, fD+ from PDG [65]
for numerical estimations throughout the paper. There
have been attempts to account for flavour symmetry
breaking in pseudoscalar meson decay constants in lit-
erature [66, 67]. Here, we assume that contribution from
only one type of scalar leptoquarks is dominant and real.
For simplicity, we will further assume the couplings to
be real in the rest of this paper. In Fig. 5 we plot the
BR(B → τν) as a function of the product of the cou-
plings λ33jλ31j for different values of mh̃j∗ . Numerically
these constraints are given by

λ33jλ31j ≤ 0.04
( mh̃j∗

1000GeV

)2

. (26)

FIG. 5: BR(B → τν) as a function of couplings λ33jλ31j for
mh̃j∗ = 800, 1000, 1500, 2000 GeV corresponding to black,
blue, orange, and green lines respectively. The horizontal
brown (light) band shows the 1σ experimentally favored val-
ues.

B. Constraints from D+
s → τν and D+ → τν

Along with rare B decays, the study of the decays of
charmed mesons also offer attractive possibilities to test
the predictions of extensions of the SM [68, 69]. In fact,
these processes are quite sensitive to the contributions
of charged Higgs boson and scalar leptoquarks [70] and
to the new contributions from squark exchange in the
framework of R-parity violating SUSY as examined in
Ref. [71]. In this section we consider the purely leptonic
decays D+

s → τν and D+ → τν in ALRSM and use their
measured branching ratios to obtain constraints on the
couplings (λ32j)

2 and λ32jλ31j respectively. The relevant
Feynman diagrams in ALRSM for the decays D+

s → τν
and D+ → τν are shown in Fig. 6. Integrating out
the heavy energy scales yields the following non-standard
effective Hamiltonian

HNP
eff (cq̄ → τ ν̄) =

4GF√
2
Vcq C

cq
VL

(q̄Lγ
µcL)(ν̄LγµτL) (27)

where q = s, d for D+
s , D

+ respectively. In the SM these
processes occur (similar to B → τν) via W± annihilation
in the s-channel and the SM Wilson coefficient is given
by unity in our notation. The corresponding Wilson co-
efficient CcqVL

parameterizing the NP effects is given by

CcqVL
=

1

2
√

2GFVcq

3∑
j,k=1

Vkq
λ1

32jλ
1∗
3kj

2m2
h̃j∗

. (28)

We will keep only the leading terms Vcs forD+
s decay and

Vud for D+ case respectively and neglect the subleadiing
Cabibbo suppressed O(λ) terms. Although this process
occurs in the SM at the tree level, the branching fraction
is helicity-suppressed. For τ , this suppression is less se-
vere but phase-space suppression is larger compared to
light leptons. In the presence of scalar leptoquark con-
tribution, the SM decay rate is affected in the following
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FIG. 6: Feynman diagrams for the decay D+
s → τν induced

by scalar leptoquarks. The corresponding diagram for the
decay D+ → τν can be obtained by replacing s quark by d
quark.

way [70, 72]

dΓ

dq2
(D+

q → τν) =
G2
F |Vcq|2

8π
mDqf

2
Dq
m2
τ

×

(
1− m2

τ

m2
Dq

)2

|1 + CcqVL
|2. (29)

Here mDq
is the mass of charm-mesons D+

s and D+

for q = s, d respectively and Vcq is the relevant
CKM element. The decay constant fDq is defined by
〈0|c̄LγµqL|Dq(pDq )〉 = pµDq

fDq , where pDq is the 4-

momentum of the Dq meson.
Assuming that only one product combination of the
scalar leptoquark couplings is nonzero, we get upper
bounds on (λ1

32j)
2 and λ1

32jλ
1∗
31j . In Fig. 7 we plot

the dependence of BR(B → D(s)
+
ν) on the coupling

λ32jλ31j(λ
2
32j) for different mh̃j∗ . Numerically the con-

strains are given by

λ2
32j ≤ 0.85

( mh̃j∗

1000GeV

)2

,

λ32jλ31j ≤ 3.12
( mh̃j∗

1000GeV

)2

. (30)

As discussed in the next subsection, we find that a
more constraining bound on the product of the couplings
λ32jλ31j can be obtained from D0 − D̄0 mixing as com-
pared to those obtained from D+ → τν.

C. Constraints from D0 − D̄0 mixing

The phenomenon of meson-antimeson oscillation, be-
ing a flavor changing neutral current (FCNC) process,
is very sensitive to heavy particles propagating in the
mixing amplitude and therefore, it provides a powerful
tool to test the SM and a window to observe NP. In the
D0−D̄0 system, b-quark contribution to the fermion loop
of the box diagram provides a ∆C = 2 transition which is
highly suppressed∼ O(λ3) (by a tiny Vub CKM matrix el-
ement). Therefore, the large non-decoupling effects from
a heavy fermion in the leading one-loop contributions is

FIG. 7: Dependence of (upper figure) BR(D+
s → τν) on the

coupling λ2
32j [(lower figure)BR(D+ → τν) on the coupling

λ32jλ31j ] formh̃j∗ = 800, 1000, 1500, 2000 GeV corresponding
to black, blue, orange, and green lines respectively. In the
upper (lower) figure the horizontal brown band shows the 1σ
experimentally allowed (disfavored) region.

small. D0 − D̄0 mixing involves the dynamical effects of
rather light down-type particles and therefore it provides
information complementary to the strange and bottom
systems where the large effects of heavy top quark in
the loops are quintessential. The D0 − D̄0 mixing is de-
scribed by ∆C = 2 effective Hamiltonian which induces
off-diagonal terms in the mass matrix for neutral D me-
son pair and typically parametrized in terms of following
experimental observables

xD ≡
∆MD

ΓD
and yD ≡

ΓD

2ΓD
,

(31)

where ∆MD and ∆ΓD are the mass and width splittings
between mass eigenstates of D0−D̄0 systems respectively
and ΓD is the average width. The parameters xD and yD
can be written in terms of the mixing matrix as follows

xD =
1

2MDΓD
Re
[
2〈D̄0|H|∆C|=2|D0〉

+〈D̄0|i
∫
d4xT{H|∆C|=1

w (x)H|∆C|=1
w (0)}|D0〉

]
,

yD =
1

2MDΓD
Im〈D̄0|i

∫
d4x

× T{H|∆C|=1
w (x)H|∆C|=1

w (0)}|D0〉, (32)

with H|∆C|=1
w (x) being the Hamiltonian density that de-

scribes |∆C| = 1 transitions at space-point x and T de-
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notes the time ordered product. Since the local |∆C| = 2
interaction does not contain an absorptive part, this term
does not affect yD and contributes to xD only. The mea-
sured values of xD and yD as determined by HFAG are
[73]

xD = 0.49+0.14
−0.15 × 10−2,

yD = (0.61± 0.08)× 10−2, (33)

Charm mixing in the SM is highly affected by contri-

FIG. 8: Feynman diagrams contributing to D0 − D̄0 mixing
in ALRSM induced by scalar leptoquark and slepton.

butions from intermediate hadronic states, and therefore
the theoretical estimations in the SM suffers from large
uncertainties and generally stretched over several orders
of magnitude (for a review, see Ref. [74]). Like in the
case of mixing in neutral K and B systems, D0 − D̄0

mixing is also sensitive to NP effects. Both xD and yD
can receive large contributions from NP. The contribu-
tion to yD in several NP models including LR models,
multi Higgs models, SUSY without R-parity violations
and models with extra vector like quarks has been stud-
ied in Ref. [75], while in Ref. [74] the NP contributions to
xD in 21 NP models have been discussed. In this section,
we use the neutral D meson mixing to obtain constraints
on λ32jλ31j . These bounds are more tighter than those
obtained in the previous section from measured BR of
D+ → τν. The relevant Feynman diagrams which con-
tribute to D0 − D̄0 mixing in the ALRSM are shown in
Fig. 8. These Box diagrams are similar to the diagrams
generated from internal line exchange of lepton-squark
pair or slepton-quark pair in the case of R-parity vio-
lating models [74, 76]. The mixing is described by the
effective Hamiltonian

Heff =
1

128π2
(λ32jλ31j)

2

(
1

m2
τ̃

+
1

m2
h̃j∗

)
× (c̄Lγ

µuL)(c̄LγµuL), (34)

where we assume that the box diagrams receive contri-
butions from third generation of leptons only. Following
Ref. [74, 76] and taking mh̃j∗ ' mτ̃ , the constraints on
the size of couplings is given by

λ32jλ31j ≤ 0.17

√
xexpt
D

( mh̃j∗

1000GeV

)
. (35)

In Fig. 9, we plot the dependence of xALRSMD on the
product of the couplings λ32jλ31j for different mh̃j∗ .

FIG. 9: Dependence of xALRSMD on the coupling λ32jλ31j for
mh̃j∗ = 800, 1000, 1500, 2000 GeV corresponding to black,
blue, orange, and green lines respectively. The horizontal
brown (light) band shows the 1σ experimentally disfavored
region.

V. RESULTS AND DISCUSSION

Having discussed the allowed region for CτVL
which can

explain both R(D) and R(D∗) data simultaneously in
Sec. III and the constraints on the couplings λ33j and
λ32j involved in CτVL

from the leptonic decaysD+
s → τ+ν̄,

B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing in Sec.
IV, we are now ready to translate these analysis into a
simple λ33j-λ32j parameter space analysis. In Fig. 10,
we plot the range of the couplings λ33j and λ32j (for
mh̃j∗ = 1000 GeV) that can explain both R(D) and
R(D∗) data over the parameter space allowed by the
the leptonic decays and D0-D̄0 mixing. From the de-
cay D+

s → τ+ν̄, we constrain the allowed upper limit
of the coupling λ32j . The decay D+ → τ+ν̄ and D0-
D̄0 mixing give constraints on the upper limit of the
product of couplings λ32jλ31j . We find that among the
two processes the latter gives more stringent constraints
and therefore we use the constrains on the allowed upper
limit of λ32jλ31j coming from D0-D̄0 mixing. Finally, we
use the decay B+ → τ+ν̄ to constrain the upper limit
of λ33jλ31j . The latter two constraints on the products
of couplings have λ31j as a common free parameter and
the shaded rectangles in Fig. 10 correspond to the al-
lowed regions of λ33j-λ32j parameter space for different
values of λ31j marked in the figure with the correspond-
ing allowed upper boundary shown in dashed lines. The
blue band corresponds to the allowed band of λ33j-λ32j

explaining the R(D) data and the orange band corre-
sponds to the allowed band of λ33j-λ32j explaining both
R(D) and R(D∗) data simultaneously. We would like to
note that the list of constraints mentioned above is far
from exhaustive and many other possible leptonic and
semileptonic decays can give independent constrains. For
instance, the decay process τ+ → π+ν can give indepen-
dent constraint on λ31j , which we find to be consistent
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FIG. 10: The region of λ33j-λ32j parameter space compatible
with the experimental data for R(D(∗)) and constraints from
the leptonic decays D+

s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and
D0-D̄0 mixing. We take mh̃j∗ = 1000 GeV for this plot. Blue
band between dashed lines shows allowed values considering
constraints from RD only, Orange band between bold black
lines shows allowed region favored by experimental data for
both RD∗ and RD. The shaded (light blue) rectangles corre-
spond to the allowed regions of λ33j-λ32j parameter space for
different values of λ31j marked with the corresponding allowed
upper boundary shown in dashed lines consistent with the
present experimental data on B → τν, Ds → τν, D+ → τν
and D − D̄ mixing.

with the values extracted out of the above constraints
and used for the parameter space analysis. On the other
hand, the semileptonic decay t→ bτν can give constraint
on λ33j which we find to be again consistent with the val-
ues used in the above parameter space analysis. Also the
effective NP operators under consideration may induce
B-decays such as b → sνν̄ [77, 78], which can be an in-
teresting channel for the future experiments.

In conclusion, we have studied the superstring inspired
E6 motivated Alternative Left-Right Symmetric model to
explore if this model can explain the current experimen-
tal data for both R(D) and R(D(∗)) simultaneously ad-
dressing the excesses over the SM expectations. We use
the leptonic decays D+

s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄
and D0-D̄0 mixing to constrain the couplings involved in
the semileptonic b → c transition in ALRSM. We find
that ALRSM can explain the current experimental data
on R(D(∗)) quite well while satisfying the constraints
from the rare B, D decays D0-D̄0 mixing. Furthermore,
ALRSM can also explain both the eejj and e/pT jj sig-
nals recently reported by CMS and also accommodate
successful leptogenesis. If these excess signals are con-
firmed in future B-physics experiments and at the LHC
then ALRSM will be an interesting candidate for NP be-
yond the Standard Model.
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