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Rare radiative decays of the Bc meson
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Abstract

In this paper, we study the rare radiative processes Bc → D
(∗)
sJ
γ within the Standard

Model, where D
(∗)
sJ

stands for the meson D∗

s , Ds1(2460, 2536) or D∗

s2(2573). During the
investigations, we consider the contributions from the penguin, annihilation, color-suppressed
and color-favored cascade diagrams. Our results show that: 1) the penguin and annihilation
contributions are dominant in the branching fractions; 2) for the processes Bc → D∗

sγ and
Bc → Ds1(2460, 2536)γ, the effects from the color-suppressed and color-favored cascade
diagrams are un-negligible.
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1 Introduction

The processes Bc → D
(∗)
sJ γ in the Standard Model (SM) are emphasized in the recent decades,

due to their sensitivity to the new physics (NP). In the existing studies [1–5], the annihilation

(Ann) and penguin (Peng) diagrams, as shown in Fig. 1, are paid attention to.
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Figure 1: Diagrams of Bc → D
(∗)
s(d)Jγ. In annihilation diagram (b) the photon can be emitted

from quarks and anti-quarks, denoted by
⊗

.

Besides the Ann and Peng effects, the transitions Bc → D
(∗)
sJ γ are also influenced by long

distance (LD) cascade contributions, whose typical diagrams are illustrated in Fig. 2. In order to
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Figure 2: Resonance Cascade Diagrams of Bc → D
(∗)
s(d)Jγ.

illustrate their importance to the Bc → D
(∗)
sJ γ decays, we compare with the B → K∗γ process.

As to the B → K∗γ transition, its SD contribution is dominated by the penguin diagrams,

while the color-suppressed (CS) diagrams are the dominant LD influences1. According to the

estimation in Ref. [6], the CS diagrams influence the Peng ones by 12% in the branching ratio

of the B → K∗γ transition. Thus, the CS diagrams are un-negligible in the B → K∗γ case.

Considering that the typical Peng and CS diagrams for B → K∗γ process are topologically

similar to the Bc → D
(∗)
sJ γ ones, the CS effects may also influence the Peng amplitudes un-

negligibly in Bc → D
(∗)
sJ γ cases. So it is interesting to consider the CS contributions in the

Bc → D
(∗)
sJ γ channels.

1Their typical diagrams are identical to Fig. 1 (a) and Fig. 2 (a) respectively if the spectator c̄ quarks are
replaced by the ū or d̄ quark.
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In addition to the CS diagrams, the color-favored (CF) ones also participant in the Bc →
D

(∗)
sJ γ processes. In an approximate sense, the CF amplitudes are 3 times larger than the CS

ones due to their color factors. This makes the CF amplitudes more crucial. Therefore, when

the Bc → D
(∗)
sJ γ transitions are studied, it is also interesting to include the CF influences.

Consequently, we are motivated to investigate the Bc → D
(∗)
sJ γ decays including the Peng,

Ann, CS and CF diagrams.

During the investigations, the hadronic matrix elements are involved. In Refs. [1, 2], the

hadronic matrix element corresponding to the penguin diagram is estimated by means of the

perturbative QCD (pQCD), while the annihilation one is analyzed using the effective formal-

ism [7]. In Ref. [3], the penguin hadronic current is obtained in the relativistic independent quark

model (RIQM), while the annihilation one is evaluated by investigating the Bc →M∗γ → D∗
sγ

processes, where M∗ stands for the virtual intermediate state. In Refs. [4, 5], both the penguin

and annihilation hadronic currents are computed in QCD sum rules (QCDSR). However, in this

paper, we use the hadronic currents in Refs. [8, 9], which are obtained by the Bethe-Salpeter

(BS) method [10–15]. The BS method has several particular features. First, in this method, the

wave functions are obtained by solving the BS equations and have complete relativistic struc-

ture. Second, the Mandelstam Formalism [16] is employed for calculating the hadronic matrix

elements, which keeps the relativistic effects from both the kinematics and the dynamics. Third,

the BS Ann hadronic currents are effective for all physical region, without any un-physical singu-

larities. Fourth, as proved in Ref. [9], the BS annihilation currents satisfy the gauge-invariance

condition, no matter what JP s of the initial and final mesons are. More important, in our previ-

ous works [17–19], the B decays and other Bc transitions are calculated within the BS method.

Most of them are in good agreement with the experimental data. Therefore, in this paper, we

choose the BS hadronic currents to calculate Bc → D
(∗)
sJ γ processes.

This paper is organized as follows. In Section 2, we elucidate the theoretical details of the

effective hamiltonian and the hadronic transition matrix elements. And Section 3 is devoted to

presenting the numerical results and discussions. In Section 4, we draw our conclusion.

2 Theoretical Details

In this part, we introduce the theoretical details on the calculations of Bc → D
(∗)
sJ γ decays, which

includes their transition amplitudes and the involved hadronic currents.
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2.1 Transition Amplitudes

From the low energy effective theory [20], the transition amplitude for the b → s(d)γ process

(corresponding to Fig. 1 (a)) is

MPeng = i
eGF

4
√
2π2

mbV
∗
ts(d)VtbC

eff
7γW

µ
Pengǫ

∗
γµ, (1)

where e stands for the electron charge magnitude and GF denotes Fermi coupling constant.

mb is the mass of b quark, while Vq1q2 represents the CKM matrix element. ǫγ stands for the

polarization vector of photon.

Ceff
7γ is the effective Wilson coefficient, which can be obtained from the summation of the

Wilson coefficients multiplying the same hadronic matrix element. In this paper, we take Ceff
7γ =

−0.313 [21]. In Eq. (1), we also define the penguin hadronic matrix element as

W µ
Peng ≡ 〈f |s̄(d̄)iσµν(1 + γ5)b|i〉Qν ,

where σµν ≡ i[γµ, γν ]/2 and Q ≡ Pi−Pf . Pi(Pf ) stands for the momentum of the initial (final)

meson.

For the Ann transition amplitude, from the factorization hypothesis [22], we have

MAnn =VcbV
∗
cs(d)

ieGF√
2
aeff1 W

µ
Annǫ

∗
γµ, (2)

where W µ
ann is the annihilation hadronic current. It can be expressed as

W µ
Ann =

∫

dxe−iq·x〈f |T [Ow(0), Jµem(x)]|i〉,

where Ow ≡ {c̄γν(1− γ5)b} {s̄γν(1− γ5)c} and Jµem = Qq q̄γ
µq. Here Qq stands for the charge

of the quark q.

In Eq. (2), the effective coefficient aeff1 is introduced. In this paper, we follow the estimations

of QCDSR [23] and take the following set of parameters (Here we also give the numerical value

of aeff2 , which will be used in the MCS calculations.)

aeff1 = 1.14, aeff2 = −0.20. (3)

In recent years, this set of parameters is widely used in the calculations of the Bc non-leptonic

decays [24–29].

As to the CS transition amplitude for Bc → D
(∗)
sJ γ processes, similarly to the B → K∗γ case,

it reads [6]

MCS =i
GF√
2

2e

3
VcbV

∗
cs(d)a

eff
2

∑

V=J/ψ,ψ(2S)···

{κ2f2VW µ
CSǫ

∗
γµ}, (4)
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where the CS hadronic matrix elementW µ
CS is defined asW µ

CS ≡ 〈f |s̄(d̄)γµ(1−γ5)b|i〉. In Eq. (4),

V denotes the intermediate vector meson and fV is the according decay constant. Conventionally,

we have 〈0|c̄γµc|V 〉 = MV fV ǫ
µ
V . In this paper, we only consider the contributions for V =

J/ψ and ψ(2S). The effects from higher charmonia are suppressed by their small decay constants,

while the contributions from ρ, ω and φ are suppressed by either their CKM matrix elements

VubV
∗
us ∼ Aλ4 [32] or the small Wilson coefficients C3 − C6 [20]. In Eq. (4), the suppression

factor κ is also introduced in order to describe the off-shell behaviors of J/ψ and ψ(2S) mesons.

In this paper, we follow the discussions in Refs. [6, 30] and take κ = 0.63.

Based on the derivations in Refs. [8, 31], the CF amplitude is

MCF =i
GF√
2

2e

3
VcbV

∗
cs(d)a

eff
1

∑

V=J/ψ,ψ(2S)

{ǫ∗γµ
κ2fffVMf

MV
W µ
CF }, (5)

where MV and Mf are the masses of the intermediate vector and final mesons, respectively.

ff is the decay constant of the final meson. Here we also only consider the V = J/ψ, ψ(2S)

contributions. The V = ρ, ω, φ case is not relevant to the CF amplitudes, while the influences

for the higher charmonia are suppressed by their smaller decay constants.

In Eq. (5), ff andWCF are also introduced. Conventionally, we have 〈f |s̄(d̄)γµ(1−γ5)c|0〉 =
Mfffǫ

∗
fµ, and the CF hadronic current is defined as W µ

CF ≡ 〈V |c̄γν(1− γ5)b|i〉ǫ∗fνǫ
µ
V . Hereafter

ǫf(V ) denotes the polarization vector of the final (intermediate vector) meson.

Finally, based on the expressions in Eqs. (1,2,4,5), the total transition amplitude reads

MTotal = MPeng +MAnn +MCS +MCF .

2.2 Form Factors

In the previous subsection, we have defined the hadronic matrix elements WPeng, WAnn, WCS

and WCF . Considering the Lorentz invariance, these hadronic currents can be expressed in
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terms of form factors,

W µ
Peng(P → V⊥, A⊥) = −iT V,A1 ǫµǫ

∗
f
QP+ + T V,A2 P+ ·Qǫµ∗f ,

W µ
Ann(P → V⊥, A⊥) = (Mi −Mf )

{

T V,A1ann M
2
i ǫ
µ∗
f +

1

2
iV V,A
ann ǫµǫ

∗
f
QP+

}

,

W µ
CS(P → V⊥, A⊥) =

iV V,A

Mi +Mf
ǫµǫ

∗
f
QP+ − (Mi +Mf )A

V,A
1 ǫµ∗f ,

W µ
CF (P → V⊥, A⊥) = (Mi −Mf )

{

T V,A1CFM
2
i ǫ
µ∗
f +

1

2
iV V,A
CF ǫµǫ

∗
f
QP+

}

,

W µ
Peng(P → T⊥) = −i T

T
1

Mf
(ǫTαβ)

∗QβǫµαQP+ +
T T2
Mf

P+ ·Q(ǫµβT )∗Qβ,

W µ
Ann(P → T⊥) = (Mi −Mf )

{

T T1ann
M2
i

Mf
(ǫµαT )∗Qα +

1

2
i
V T
ann

Mf
(ǫTαβ)

∗Qβ ǫµαQP+

}

,

W µ
CS(P → T⊥) =

iV T

(Mi +Mf )Mf
(ǫTαβ)

∗QβǫµαQP+ − Mi +Mf

Mf
AT1 (ǫ

µα
T )∗Qα,

(6)

where V⊥, A⊥ and T⊥ denote the transversely polarized final vector, axial-vector and tensor

mesons, respectively. Mi is the mass of the initial meson, while P+ is defined as P+ ≡ Pi + Pf .

V V,A,T
(ann,CF ), A

V,A,T
1 , T V,A,T1(ann,CF ) and T V,A,T2 are form factors. In our previous works [8, 9], these

form factors have been calculated in the BS method. In this paper, we use the results directly.

3 Numerical Results and Discussions

In order to calculate the processes Bc → D
(∗)
sJ γ, we need to specify the inputs. In this paper, the

masses and the lifetimes of Bc, J/ψ, ψ(2S) and D
(∗)
sJ are taken from Particle Data Group (PDG)

[32], as well as the values of αem, GF and VCKM . The decay constants fJ/ψ and fψ(2S) can

be extracted from the branching widths Γ(J/ψ → e+e−) = 5.55 keV and Γ(ψ(2S) → e+e−) =

2.35 keV [32], respectively. And the decay constants f
D

(∗)
sJ

can be found in our previous works

[13, 14]. Using these inputs and Eqs. (1-2,4-5) we can obtain the branching fractions of the

Bc → D
(∗)
sJ γ decays. In the following paragraphes, we will present the numerical results and

discuss them.

The results of the Bc → D∗
sγ decay are listed in Table. 1. BrPeng(Ann,CS,CF) stands for the

branching fraction where only MPeng(Ann,CS,CF ) contributes. BrPeng+Ann(CS) is obtained from

MPeng + MAnn(CS), while BrLD represents the branching ratio including only the MCS and

MCF influences. BrPeng+Ann+CF includes the MPeng, MAnn and MCF influences. BrTotal

contains the MPeng, MAnn, MCS and MCF contributions.

First, as shown in Table. 1, our results satisfy the relationship BrPeng+BrAnn < BrPeng+Ann.

This relationship indicates the constructive interference between MPeng and MAnn. The similar

situation can also be found in the results of Refs. [2–4]. Second, one may note that BrCS is much

6



Table 1: Branching fractions of the decay Bc → D∗
sγ.

This paper pQCD [1] pQCD [2] RIQM[3] QCDSR[4]

BrPeng 1.5× 10−6 2.2 × 10−7 3.3 × 10−6 2.4 × 10−5 3.5× 10−6

BrAnn 4.3× 10−6 7.4 × 10−7 4.4 × 10−6 4.5 × 10−5 1.6× 10−5

BrCS 1.1× 10−8

BrCF 6.8× 10−7

BrPeng+Ann 9.6× 10−6 7.0 × 10−7 1.0 × 10−5 1.4 × 10−4 2.5× 10−5

BrPeng+CS 1.7× 10−6

BrLD 5.2× 10−7

BrPeng+Ann+CF 5.8× 10−6

BrTotal 6.3× 10−6

smaller than BrCF. This can be understood from the following facts: 1) the CS hadronic matrix

element is smaller than the CF one; 2) according to Eqs. (4-5), the CS amplitude is proportional

to aeff2 , while the CF one refers to aeff1 . From Eq. (3), we have the relationship aeff2 ≪ aeff1 . Hence,

from Table. 1 we see the tiny BrCS. Third, if we compare BrPeng with BrPeng+CS, it is observed

that the CS amplitude can influence the Peng one by ∼ 10% in the branching fraction. This is

similar to the B → K∗γ case and in agreement with our estimation in Introduction. Fourth,

when CS and CF effects are both included, our BrTotal is nearly two thirds of BrPeng+Ann. This

implies that in the Bc → D∗
sγ process, the LD contributions are un-negligible.

Besides, as listed in Table. 1, there are other theoretical predictions on the branching fractions

BrPeng and BrAnn. One may note that there is a large discrepancy between the results of various

theoretical approaches. Here we try to analyze the reasons.

• Case of BrPeng. As seen from Table. 1, there are five groups calculating BrPeng.

– In Refs. [1, 2], the same framework, “PQCD” [33], is employed. The reason for their

different numerical results is that they use different Ceff
7γ . For instance, in Ref. [2], the

Wilson coefficient Ceff
7γ is obtained neglecting the mixing of O7γ with other operators,

while in Ref. [1], this approximation is not employed.

– In Ref. [3], BrPengs are calculated through RIQM. This method has two particular

features, which makes BrPeng in Ref. [3] different from the ones in Refs. [1, 2]. First,

the Peng transition amplitude can be expressed as Φf ⊗O7γ⊗Φi, while in Refs. [1, 2]

the single gluon should be exchanged within the hard kernel. Second, in Ref. [3], the

Gaussian wave functions are employed, while in Refs. [1, 2], the non-relativistic limit

is used, namely, Φi(x) ∼ δ(x−mc/MBC
) and ΦF (x) ∼ δ(x− (Mf −mc)/Mf ).

– In this paper, BrPengs are obtained from the BS method. By this method, the Peng

7



amplitude are calculated in the Mandelstam form, while the initial and final wave

functions Φi,f are dealt including the relativistic influences. To be specific, in BS

method, the traditional Gaussian wave functions are abandoned. Instead, they are

solved by the BS equations [12–15]. Besides, for the mesons with definite parity and

charge, our wave functions have the complete relativistic structures. The components

caused by the relative momenta are not neglected.

– In Ref. [4], BrPeng is evaluated by the QCDSR. This method is a quite different frame-

work from the ones in this paper and Refs. [1–3]. In QCDSR, the Peng amplitude

is related to the correlation functions and these correlation functions are calculated

with the help of the operator product expansion (OPE). Unlike the PQCD, RIQM

and BS methods, where the LD fluctuations are contained in the wave functions, the

LD interactions in QCDSR are described by the photon distribution amplitudes and

the quark (gluon) condensate inputs. It is believed that our result in BrPeng should

be very close to the one in Ref. [4] if the following conditions are satisfied: 1) the exact

photon distribution amplitudes are employed; 2) the higher order effects in OPE are

small enough; 3) our BS wave functions are obtained rigorously; 4) all contributions

beyond our factorization formula are negligible. But at this moment, they are prac-

tically involved. For instance, our wave functions are solved under the instantaneous

approximations [34], while only leading power contributions are discussed in Ref. [4].

So if more accurate hadronic matrix elements are wanted, more works are still needed

in the future.

• Case of BrAnn. Here we attempt to analyze the reasons for the different BrAnns.

– In Refs. [1, 2], BrAnns are both computed within the effective formalism [7]. The

difference between them is caused by their different inputs, namely, aeff1 .

– As shown in Table. 1, the result in Ref. [2] is in agreement with ours. This is because

1) the parameter aeff1 used in Ref. [2] is close to ours; 2) if the expansion in ΛQCD/MBc

is performed in our calculations and only the leading power contributions are kept,

our framework is equivalent to the effective formalism [7].

– Table. 1 also shows that BrAnn in Ref. [3] is almost one order smaller than ours.

In Ref. [3], the Ann amplitudes are obtained by calculating Bc → B∗
cγ → D∗

sγ and

Bc → Ds → D∗
sγ transitions. However, in this paper, we deal with this problem in

the parton level.
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– In Table. 1, we also list the results in QCDSR [4]. The differences and relations

between QCDSR and the BS method are mentioned before. Here we do not discuss

them.

In the paragraphs above, we have discussed the discrepancies between the results of different

approaches. It is hard to say which method is the most accurate one at this time, because

each is based on the particular hypothesis or expansion and has advantages in different aspects.

Therefore, in the future, more works on the hadronic currents are still needed.

Table 2: Branching fractions of the decay Bc → Ds1(2460)γ.

This paper QCDSR[5]

BrPeng 1.8 × 10−6 1.8× 10−8

BrAnn 1.1 × 10−6 2.2× 10−5

BrCS 1.6 × 10−8

BrCF 5.8 × 10−7

BrPeng+Ann 5.6 × 10−6 2.4× 10−5

BrPeng+CS 2.1 × 10−6

BrLD 4.1 × 10−7

BrPeng+Ann+CF 2.8 × 10−6

BrTotal 3.2 × 10−6

In Table. 2, we show the branching fractions of the decay Bc → Ds1(2460)γ. One may note

that the Bc → Ds1(2460)γ transition is in a rather similar situation to the Bc → D∗
sγ case.

Hence, we only emphasize the following two points. First, if only Ann and Peng contributions

are considered, our result BrPeng+Ann is almost a fifth of the one in Ref. [5]. Second, when

the LD influences are added, the total branching fraction BrTotal(Bc → Ds1(2460)γ) reduces

un-negligibly.

Table 3: Branching fractions of the Bc → Ds1(2536)γ and Bc → D∗
s2γ decays.

Bc → Ds1(2536)γ Bc → D∗
s2γ

BrPeng 1.8× 10−7 1.3× 10−6

BrAnn 5.3× 10−7 5.6× 10−7

BrCS 6.1× 10−10 3.1× 10−9

BrCF 3.8× 10−8 -

BrPeng+Ann 1.1× 10−6 2.4× 10−6

BrPeng+CS 2.1× 10−7 1.2× 10−6

BrLD 3.0× 10−8 3.1× 10−9

BrPeng+Ann+CF 8.2× 10−7 2.4× 10−6

BrTotal 8.6× 10−7 2.2× 10−6
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In Table. 3, we show the results of the Bc → Ds1(2536)γ and Bc → D∗
s2γ decays. As to the

Bc → Ds1(2536)γ process, except their smaller branching ratios, we see the similar behaviors

to the Bc → D∗
sγ decay. But for the Bc → D∗

s2γ case, their situations is quite different. First,

its BrPeng is almost two times bigger than BrAnn. This is because that for the Bc → D∗
s2γ

transitions, the Ann hadronic form factors are much smaller than the Peng ones, as shown in

Ref. [9]. Second, there is no CF contribution in Bc → D∗
s2γ decay. This can be understood

from Eq. (5). In Eq. (5), the factor ff appears. When the transition Bc → D∗
s2γ is referred, the

conservation of angular momentum makes fD∗
s2

vanish. Hence, Mµ
CF (Bc → D∗

s2γ) = 0. Third,

we see this channel is influenced by the LD contributions imperceptibly. This implies that if

only the SD contributions are interesting, the Bc → D∗
s2γ decay provides clearer laboratory than

Bc → D∗
sγ and Bc → Ds1(2460, 2536)γ processes.

4 Conclusion

In this paper, considering the penguin, annihilation, color-suppressed and color-favored cascade

diagrams, we calculate the processes Bc → D
(∗)
sJ γ in the Standard Model. Our conclusions

include:

1. The processes Bc → D∗
sγ and Bc → Ds1(2460, 2536)γ receive un-negligible contributions

from CS and CF diagrams. When these decays are investigated, including the LD effects

is necessary.

2. The transitions Bc → D∗
s2γ is affected by the LD diagrams slightly. Hence, if only the short

distance interactions are interested, this channel offers much clearer laboratories than the

Bc → D∗
sγ and Bc → Ds1(2460, 2536)γ processes.

3. In different methods, the results on BrPeng+Ann are quite different. From this, more

discussions and more precise calculations are still needed in the future.
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