
Bogolubov–Hartree–Fock theory for strongly interacting fermions
in the low density limit∗

Gerhard Bräunlich1, Christian Hainzl2, and Robert Seiringer3

1Institute for Mathematics, Friedrich-Schiller-University Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany

2Mathematical Institute, University of Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany

3Institute of Science and Technology Austria
Am Campus 1, 3400 Klosterneuburg, Austria

November 25, 2015

Abstract

We consider the Bogolubov–Hartree–Fock functional for a fermionic many-body system with
two-body interactions. For suitable interaction potentials that have a strong enough attractive tail
in order to allow for two-body bound states, but are otherwise sufficiently repulsive to guarantee
stability of the system, we show that in the low-density limit the ground state of this model
consists of a Bose–Einstein condensate of fermion pairs. The latter can be described by means of
the Gross–Pitaevskii energy functional.

1 Introduction

We consider a gas of fermions confined in an external trap at zero temperature. The particles interact
through a two-body potential V which admits a negative energy bound state. At zero temperature
and low particle densities, this leads to the formation of diatomic molecules forming a Bose-Einstein
condensate. It was realized in the ’80s [14, 17] that BCS theory can be adequately applied to such
types of tightly bound fermions. It was pointed out in [20, 4, 18, 19] that in the low density limit
the macroscopic variations in the pair density should be well captured by the Gross-Pitaevskii (GP)
equation. From a mathematical point of view, the emergence of the GP functional in the low density
limit was recently proven in [12] for the static case, and the dynamical case was subsequently treated
in [10]. The assumption, that the two-body interaction potential allows for a bound state plays a
crucial role. In the case of weak coupling where the potential is not strong enough to form a bound
state, the pairing mechanism may still play an important role for the macroscopic behavior of the
system, but the separation of paired particles can be much larger, in this case, than the average
particle spacing. In fact this is the case in the usual BCS description of superconducting materials.
Close to the critical temperature the macroscopic variation of the pairs is captured by the Ginzburg-
Landau equation in this case, as pointed out by Gorkov [7] soon after the introduction of BCS theory.

∗ c© 2015 by the authors. This work may be reproduced, in its entirety, for non-commercial purposes.
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The first mathematical proof of the emergence of Ginzburg-Landau theory from BCS theory was
recently given in [6], which itself relied on earlier work on the BCS functional [8, 11, 5].

In the current paper our starting point is the full BCS Hartree-Fock functional. That is, we
include the direct and exchange terms in the interaction energy. One also finds this functional under
the name Bogolubov-Hartree-Fock (BHF) functional in the literature. The inclusion of the density-
density interaction adds additional difficulties concerning stability of the system. It forces us to
restrict to systems with a two-body potential V that, on the one hand, has an attractive tail deep
enough to allows for a bound state and, on the other hand, is sufficiently repulsive at short distances
to guarantee stability. This is consistent with typically considered interaction potentials [14].

Figure 1: Fermions form diatomic molecules with their repulsive interaction represented by an effective
scattering length g.

We shall investigate the ground state energy of the BHF functional in the low density limit. We
introduce a small parameter h playing the role of the inverse particle number, i.e., N = h−1. We
consider external potentials that confine the particles on a length scale of order h−1, while the range
of the interaction among the particles is of order one. This implies that the density of particles is of
the order h2. Hence the small parameter h represents the square root of the density as well the ratio
between the microscopic and macroscopic length scale. We are going to show that in the low density
limit the fermions group together in pairs, such that the leading order in the energy is given by the
number of pairs, 1/(2h), times the binding energy of a pair, −Eb. The next to leading order is given
by the energy of a repulsive Bose gas, consisting of fermion pairs, in a trap, and can be described in
terms of the Gross-Pitaevskii energy functional. More precisely, if EBHF(h) denotes the BHF energy
of 1/h fermions we shall obtain

EBHF(h) = −Eb
1

2h
+
h

2
EGP(g) +O(h3/2)

for small h, where EGP(g) denotes the Gross-Pitaevskii energy with appropriate interaction parameter
g, which can be computed in terms of the microscopic quantities. The prefactor h/2 should be
interpreted as Nbos/L

2, where Nbos = N/2 = 1/(2h) is the number of fermion pairs and L = 1/h is
the macroscopic length scale.

We will also give a detailed description of the corresponding ground state of the BHF functional.
Its minimizer turns out to be given, to leading order in h, in the form of the two particle wavefunction

α(x, y) = hα0 (x− y)ψ

(
h
x+ y

2

)
,

where α0 is the ground state of a bound fermion pair with energy −Eb, and ψ solves the GP equation
and describes the density fluctuations of the pairs.
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Our work is an extension of [12] in two directions. First, we include exchange and direct terms
in the energy functional. Second, we avoid working with infinite, periodic systems, which allows us
to significantly simplify the proof and also to improve the error bounds, utilizing ideas in [10]. In
particular, we do not need to use here the rather involved semiclassical estimates of [6].

Our work presents the first proof of the occurrence of pairing in the ground state of a non-
translation invariant Bogolubov-Hartree-Fock system. (For a translation invariant system this was
previously shown in [3].) The ground state properties of the BHF functional, in the context of
Newtonian interaction, were studied in [15], see also [1]. Still it could not be shown that the fermions
in the ground state exhibit pairing. Its occurrence was only shown numerically in [16]. In the low
density limit, which we are studying here, the ground state actually predominately consists of pairs,
in a sense to be made precise below. In particular, it is essential for our results that the pairing
term is included in the energy functional; the Hartree-Fock functional for particle-number conserving
states would lead to markedly different results, and is inappropriate for the description of low density
gases.

2 Main Results

As in BCS theory, the state of a fermionic system is described by a self-adjoint operator Γ ∈
L
(
L2(R3) ⊕ L2(R3)

)
, satisfying 0 ≤ Γ ≤ 1. It is determined by two operators γ, α ∈ L

(
L2(R3)

)
and has the form

Γ =

(
γ α
α 1− γ

)
,

where 0 ≤ γ ≤ 1 is trace class and α is Hilbert-Schmidt and symmetric, i.e. α(x, y) = α(y, x), which
implies that α∗ = ᾱ. We denote by γ, α the operators with kernels γ(x, y) and α(x, y), respectively.
We note that we do not include spin variables here, but rather assume SU(2)-invariance of the states
[13]. The full, spin-dependent Cooper-pair wave function is the product of α with an anti-symmetric
spin singlet. Since α is symmetric, the latter is thus anti-symmetric, as appropriate for fermions.

Given an external potential W and a two-particle interaction potential V , the corresponding
Bogolubov-Hartree-Fock functional (BHF) is given by

EBHF(Γ) = Tr
(
−∆ +W

)
γ +

1

2

∫
R6

V (x− y)|α(x, y)|2 d3x d3y

− 1

2

∫
R6

|γ(x, y)|2V (x− y) d3x d3y +

∫
R6

γ(x, x)γ(y, y)V (x− y) d3x d3y.

(2.1)

We note that the terms in the first line represent the BCS functional, while the last line contains the
additional exchange and direct terms in the interaction energy. A formal derivation of this functional
from quantum mechanics can be obtained via restriction to quasi-free states, see [2], [8, Appendix]
or [13]. Let us mention that our methods also allow to include a magnetic external vector potential,
but for simplicity we shall not do so here.

We study a system of h−1 fermions interacting by means of a two-body interaction V = V (x−y),
confined in an external potential of the form W (hx). I.e., the external potential varies on a scale of
order 1/h whereas V varies on a scale of order one. Since the trap W confines the particles within a
volume of order 1/h3, the particle density is of the order h2. Hence the limit of small h corresponds
to a dilute or low density limit.

Since we expect the interaction energy per particle pair to be of the order of the density, we
shall also consider suitably weak external potentials, i.e., we replace W by h2W . It is convenient to
use macroscopic variables instead of microscopic ones, i.e., we define xh = hx, yh = hy, αh(x, y) =

3



h−3α(xh ,
y
h), and γh(x, y) = h−3γ(xh ,

y
h). The resulting BHF functional is then given by (now dropping

the subscripts h)

EBHF(Γ) = Tr(−h2∆ + h2W )γ +
1

2

∫
R6

V
(x− y

h

)
|α(x, y)|2 d3x d3y

− 1

2

∫
R6

|γ(x, y)|2V
(x− y

h

)
d3x d3y +

∫
R6

γ(x, x)γ(y, y)V
(x− y

h

)
d3x d3y,

(2.2)

where W = W (x) is independent of h. The corresponding ground state energy is denoted as

EBHF(h) = inf{EBHF(Γ) | 0 ≤ Γ ≤ 1, Tr γ = 1/h} . (2.3)

Figure 2: Separation of scales: The range of the interaction between the fermions is of order h, while
the external potential varies on a scale of order 1.

For ψ ∈ H1(R3) the GP functional is defined as

EGP(ψ) =

∫
R3

(
1

2
|∇ψ(x)|2 + 2W (x)|ψ(x)|2 + g|ψ(x)|4

)
d3x . (2.4)

The factors 1/2 and 2, respectively, in the first two terms result from the fact that (2.4) describes
fermion pairs. The interaction parameter g > 0 will be determined by the BHF functional and
represents the interaction strength among different pairs. We denote the ground state energy of the
GP functional as

EGP(g) = inf{EGP(ψ) |ψ ∈ H1(R3), ‖ψ‖22 = 1}. (2.5)

We shall consider the minimization problem (2.3) and show that its value in the limit h→ 0 is to
leading order given by the binding energy of the fermion pairs, i.e. −Eb 1

2h . This assumes, of course,
that the two-body interaction potential V allows for a negative energy bound state, which is part of
the following assumption.

Assumption 1. Let V ∈ L∞(R3) be real-valued, with V (x) = V (−x), such that | · |V ( · ) ∈ L1(R3)
and −2∆ + V has a normalized ground state α0 with corresponding ground state energy −Eb < 0.

Including direct and exchange term into the BCS functional gives rise to a new problem. A priori
it is not clear whether the functional guarantees stability of the second kind. To ensure it we impose
the following further assumption on V .

Assumption 2. There is U ∈ L1(R3) ∩ L∞(R3), with non-negative Fourier transform Û ≥ 0, such
that V − 1

2V+ ≥ U . Here V+ = 1
2(|V |+ V ) denotes the positive part of V .
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In other words, we consider potentials which, after cutting its positive part in half, can be bounded
from below by functions with a non-negative Fourier transform. In particular, this means that the
potentials have to have a strong enough repulsive core and a relatively small attractive tail, which
still has to be large enough to allow for bound states.
Remark 1. The following construction shows that it is easy to find potentials V with the desired
properties of Assumptions 1 and 2: Choose a potential U which is strictly negative on an open set
Ω ⊂ R3, such that Û ≥ 0. The latter property can be ensured, e.g., by taking U to be the convolution
of some function u with its reflection u(− · ). Now set V = 2U+ − U−. Obviously this V fulfills
Assumption 2. Finally, scale V according to V 7→ λV until the negative part is deep enough for a
bound state to appear.

With these assumptions we are ready to formulate our main theorem.

Theorem 1. Let W ∈ L∞(R3) be real-valued. Under Assumptions 1 and 2, we have for small h,

EBHF(h) = −Eb
1

2h
+
h

2
EGP(g) +O(h3/2), (2.6)

where g > 0 is given by

g = (2π)3

∫
R3

|α̂0(p)|4(2p2 + Eb) d3p−
∫
R3

|(α0 ∗ α0)(x)|2 V (x) d3x+ 2

∫
R3

V (x) d3x.

Moreover, if Γ is an approximate minimizer of EBHF, in the sense that

EBHF(Γ) ≤ −Eb
1

2h
+
h

2

(
EGP(g) + ε

)
(2.7)

for some ε > 0, then the corresponding α can be decomposed as

α = αψ + ξ, ‖ξ‖22 ≤ O(h), ‖α‖22 = O(h−1), (2.8)

where

αψ(x, y) = h−2ψ
(x+ y

2

)
α0

(x− y
h

)
, (2.9)

and ψ is an approximate minimizer of EGP in the sense that

EGP(ψ) ≤ EGP(g) + ε+O(h1/2). (2.10)

Remark 2. In contrast to the case of the usual BCS functional [12, 10], where the coupling constant
g only consists only of the BCS term

gbcs = (2π)3

∫
R3

|α̂0(p)|4(2p2 + Eb) d3p , (2.11)

it receives here two additional contributions from the direct and exchange energies,

gdir = 2

∫
R3

V (x) d3x and gex = −
∫
R3

|(α0 ∗ α0)(x)|2 V (x) d3x ,

respectively. It is easy to see that our Assumption 2 implies that gdir + gex ≥ 0, hence g > 0.
Remark 3. The proof of Thm. 1 partly relies on ideas in [10], where the corresponding time-dependent
problem was studied for the BCS functional, i.e., in the absence of direct and exchange term. A similar
result can also be shown to hold in the case of the time-dependent BHF equation, which in a different
context was studied in [9]. By following the strategy of [10] and handling the exchange and direct
terms in a similar way as done here, one can derive the time-dependent GP equation with interaction
parameter g.

Notation: In the following we often write a . b to denote a ≤ Cb for some generic constant C > 0.

5



3 Stability

Before giving a sketch of the proof of Theorem 1 we show how Assumption 2 gives rise to stability of
the second kind. In fact we simply show that the assumption guarantees that the sum of the direct
and exchange terms is non-negative. To this aim we first consider the exchange term and estimate

−
∫
R6

|γ(x, y)|2V
(
(x− y)/h

)
d3x d3y ≥ −

∫
R6

|γ(x, y)|2V+

(
(x− y)/h

)
d3x d3y

≥ −
∫
R6

γ(x, x)γ(y, y)V+

(
(x− y)/h

)
d3x d3y ,

using |γ(x, y)|2 ≤ γ(x, x)γ(y, y). Hence we have for the sum of direct and exchange term

2

∫
R6

γ(x, x)γ(y, y)V
(
(x− y)/h

)
d3x d3y −

∫
R6

|γ(x, y)|2V
(
(x− y)/h

)
d3x d3y

≥ 2

∫
R6

γ(x, x)γ(y, y) (V − V+/2)
(
(x− y)/h

)
d3x d3y

≥ 2

∫
R6

γ(x, x)γ(y, y)U
(
(x− y)/h

)
d3x d3y

where we used the assumption
(
V − 1

2V+

)
≥ U . Since Û ≥ 0 the last term is non-negative. Hence

the question of stability is reduced to the corresponding problem for the BCS functional, and is easily
seen to hold under our assumptions on V .

4 Sketch of the proof of Theorem 1

The proof of (2.6) consists of deriving appropriate upper and lower bounds on EBHF(h).

4.1 Upper bound

For the upper bound one has to construct a suitable trial state. We shall proceed similarly to [10]
and define the trial state Γψ via the pair wavefunction

αψ(x, y) = h−2ψ
(x+ y

2

)
α0

(x− y
h

)
. (4.1)

Since we expect that the system in its ground state energy consists predominantly of pairs we define
the one particle density γψ such that to leading order it equals αψαψ. More precisely, we choose the
trial state

Γψ =

(
γψ αψ
αψ 1− γψ

)
(4.2)

such that
γψ = αψαψ + (1 + h1/2)αψαψαψαψ . (4.3)

The function ψ here is only approximately normalized, i.e., ‖ψ‖2 = 1+O(h2), to ensure that Tr γψ =
1/h. We will see below that for small enough h the definition (4.3) guarantees that 0 ≤ Γψ ≤ 1.

In the limit of small h the GP energy functional emerges from the BHF functional EBHF(Γψ) as
follows. If we consider the kinetic energy term plus the pairing term and subtract the total binding
energy, −Eb

2
1
h = −Eb

2 Tr γψ, the contribution to

Tr
(
−h2∆ + Eb/2

)
γψ +

1

2

∫
R6

V
(x− y

h

)
|αψ(x, y)|2 d3x d3y (4.4)
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coming from the αψαψ term in (4.3) can be written as∫
R3

〈
αψ(·, y),

[
−h2∆x +

1

2
V
( · − y

h

)
+
Eb
2

]
αψ(·, y)

〉
d3y.

Since αψ(x, y) is symmetric we can replace ∆x by 1
2(∆x+∆y). In terms of center of massX = (x+y)/2

and relative coordinates r = x− y the kinetic energy has the form ∆x + ∆y = 1
2∆X + 2∆r, such that

in these coordinates the last term has the form

h−4

∫
R6

α0(r/h)ψ(X)

[
−h

2

4
∆X − h2∆r +

1

2
V (r/h) + Eb/2

]
α0(r/h)ψ(X) d3X d3r

=
h

4

∫
R3

|∇ψ(x)|2 d3x, (4.5)

where we used the fact that α0 is the normalized ground state of −∆ + 1
2V .

The term αψαψαψαψ of γψ inserted into

Tr[−h2∆ + Eb/2]γψ

contributes the quartic term h
2gbcs

∫
R3 |ψ(x)|4 d3x term in the GP functional. The remaining part of

the h
2g
∫
R3 |ψ(x)|4 d3x term is due to the contribution of αψαψ in the direct and exchange interaction

terms. The estimation of these terms is straightforward but tedious and occupies the main part of
the proof.

Furthermore, it will be easy to show that

h2 TrWαψαψ = h−2

∫
R3

W (X + r/2)|ψ(X)|2|α0(r/h)|2 d3r = h

∫
R3

W (X)|ψ(X)|2 d3X +O(h2).

Consequently we shall obtain

EBHF(Γψ) + Eb
1

2h
=
h

2
EGP(ψ) +O(h3/2). (4.6)

Finally, we remark that the constraint Tr γψ = 1/h implies for ψ that ‖ψ‖22 = (1−O(h2)). Since∣∣EGP(ψ)− EGP
(
[1 +O(h2)]ψ

)∣∣ ≤ O(h2)

we obtain the bound

inf
0≤Γ≤1

Tr(γ)=1/h

EBHF(Γ) + Eb
1

2h
≤ h

2
inf

ψ∈H1(R3)
‖ψ‖22=1

EGP(ψ) +O(h3/2) . (4.7)

The precise derivation of this bound will be given in Section 6.

Remark 4.

• Since the infimum of EBHF is attained by a projection [2], it would be natural to chose the trial
state Γψ as a projection. The operator γψ would then satisfy γψ = γ2

ψ + αψαψ. The expansion
of γψ in terms of αψαψ would be more complicated, however, and we find the choice (4.3) more
convenient.
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• Our trial state satisfies 0 ≤ Γψ ≤ 1 for small enough h. To see this note that the condition is
equivalent to 0 ≤ Γψ(1 − Γψ). If γψ is of the special form (4.3), which is a function of αψαψ,
the off-diagonals of

Γψ(1− Γψ) =

(
γψ − γ2

ψ − αψαψ αψγψ − γψαψ
γψαψ − αψγψ γψ − γψ2 − αψαψ

)
=

(
γψ − γ2

ψ − αψαψ 0

0 γψ − γψ2 − αψαψ

)
vanish and thus the statement is equivalent to

γψ − γ2
ψ − αψαψ ≥ 0. (4.8)

Plugging in the expression (4.3) for γψ (4.8) is equivalent to

αψαψ
(
h1/2 − 2(1 + h1/2)αψαψ − (1 + h1/2)2(αψαψ)2

)
αψαψ ≥ 0. (4.9)

In Corollary 1 below we shall show that the operator norm of αψ satisfies ‖αψ‖∞ . h1/2, which
guarantees that (4.9) is satisfied for h small enough. In fact, h1/2 in (4.3) could be replaced by
any factor large compared to h, but a different choice would not improve our error bounds.

4.2 Lower bound

From the upper bound we learn that for an approximate ground state Γ we can assume

EBHF(Γ) ≤ −Eb
1

2h
+O(h).

We will show in Lemma 3 that the corresponding α necessarily has to be of the form

α(x, y) = αψ(x, y) + ξ(x, y) = h−2ψ
(x+ y

2

)
α0

(x− y
h

)
+ ξ(x, y) (4.10)

for an appropriate ψ ∈ H1(R3), with ξ being small compared to αψ, i.e.,

‖ξ‖22 . h2‖αψ‖22 = O(h).

The function ψ is obtained by projecting α in the direction of α0 with respect to the relative coordi-
nates,

ψ(X) =
1

h

∫
R3

α0(r/h)α(X + r/2, X − r/2) d3r.

We shall show that ‖ψ‖2 = 1 +O(h2).
With this ψ at hand one can then define Γψ as in (4.2)–(4.3). With the help of the decomposition

(4.10) one then argues that the difference between EBHF(Γ) and EBHF(Γψ) is bounded from below by
a term of higher order than the contribution from the GP functional. More precisely,

EBHF(Γ) ≥ EBHF(Γψ)−O(h3/2). (4.11)

This estimate is uniform in ψ, since it is possible to obtain a priori bounds on the H1-norm of ψ that
are independent of h. Using now our calculation (4.6) from the upper bound immediately implies

inf
0≤Γ≤1

Tr(γ)=1/h

EBHF(Γ) + Eb
1

2h
≥ h

2
inf

ψ∈H1(R3)
‖ψ‖22=1

EGP(ψ)−O(h3/2). (4.12)

Together with (4.7) this combines to (2.6).
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5 Useful properties of the pair-wavefunction

In the following we shall derive some useful properties of the pair wavefunction (4.3), which will be
used throughout the proof. Recall that α0 was defined in Assumption 1 to be the normalized ground
state of −2∆ + V . It is a rapidly decaying function, and both |α0| and |∇α0| have smooth Fourier
transforms which are in Lp(R3) for any p ≥ 2.

Lemma 1. Let αψ be defined as in (4.3), with ψ ∈ H1(R3).

(i) For n ∈ {2, 4, 6},

‖αψ‖nn . hn−3‖ψ‖nn ‖|̂α0|‖nn, (5.1a)

‖∇(x−y)αψ‖nn . h−3‖ψ‖nn ‖|̂∇α0|‖nn, (5.1b)

where
(∇(x−y)αψ)(x, y) = h−3ψ

(
(x+ y)/2

)
(∇α0)

(
(x− y)/h

)
.

(ii) With gbcs defined in (2.11),

Tr
(
(−h2∆ + Eb/2)αψαψαψαψ

)
=
h

2
gbcs‖ψ‖44 +O(h2)‖∇ψ‖42 . (5.2)

(iii) ‖αψαψ(·, ·)‖∞ = sup
x
|αψαψ(x, x)| . h−2‖α0‖23 ‖∇ψ‖22. (5.3)

(iv) Let σ be a Hilbert-Schmidt operator. Then

|σαψ(x, x)| . h−1‖σ(·, x)‖2‖∇ψ‖2 ‖α0‖3 ∀x ∈ R3 . (5.4)

Let us mention that we use the symbol ‖ · ‖p for the Lp-norm of functions as well as for the
operator norm in the corresponding Schatten class. E.g., the left side of (5.1a) concerns Schatten
norms, while on the right side the norms are in Ln(R3).

Proof of Lemma 1, Part I. We postpone the proof of (5.1a), (5.1b) and (5.2) to the appendix. In
order to see (5.3) we use the Hölder and Sobolev inequalities as

(αψαψ)(x, x) =

∫
R3

|αψ(x, y)|2 d3y = h−4

∫
R3

∣∣α0

(
(x− y)/h

)∣∣2 ∣∣ψ((x+ y)/2)
)∣∣2 d3y

. h−4‖α0(·/h)2‖3/2‖|ψ|2‖3 . h−2‖α0‖23‖∇ψ‖22 .

Similarly,

|(σαψ)(x, x)| = h−2

∣∣∣∣∫
R6

σ(x, y)α0

(
(x− y)/h

)
ψ
(
(x+ y)/2

)
d3y

∣∣∣∣
. h−2‖σ(·, x)‖2‖α0(·/h)‖3‖ψ‖6 . h−1‖σ(·, x)‖2‖∇ψ‖2‖α0‖3 ,

which implies (5.4).
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Corollary 1. Let the assumptions be as in Lemma 1 and assume further that ‖ψ‖H1 . 1. Then

‖αψ‖44 . h‖ψ‖2‖∇ψ‖32 ‖α̂0‖44 . h, (5.5a)

‖αψ‖66 . h3‖∇ψ‖62 ‖α̂0‖66 . h3, (5.5b)

‖∇(x−y)αψ‖66 . h−3‖∇ψ‖66 ‖|̂∇α0|‖66 . h−3, (5.5c)

‖αψ‖∞ . h1/2‖∇ψ‖2 ‖α̂0‖6 . h1/2, (5.5d)

sup
x∈R3

(αψαψαψαψ)(x, x) ≤ ‖αψ‖2∞ sup
x∈R3

(αψαψ)(x, x) . h−1. (5.5e)

Moreover, with γψ defined as in (4.3),

‖γψ‖∞ ≤ ‖αψ‖2∞ + (1 + h1/2)‖αψ‖4∞ . h (5.6a)

sup
x∈R3

γψ(x, x) . h−2. (5.6b)

Proof. The estimates (5.5a)–(5.5c) are a consequence of (5.1a) and (5.1b). In the case of n = 6,
we use the Sobolev’s inequality and in the case of n = 4, we use Hölder combined with Sobolev to
conclude

‖ψ‖4 ≤ ‖ψ‖1/42 ‖ψ‖
3/4
6 . ‖ψ‖1/42 ‖∇ψ‖

3/4
2 .

Inequality (5.5d) follows immediately from ‖αψ‖∞ ≤ ‖αψ‖6 together with (5.5b).
It is easy to see that

(αψαψαψαψ)(x, x) ≤ ‖αψαψ‖∞(αψαψ)(x, x)

which implies (5.5e) with the use of (5.3). Eq. (5.6a) follows from (5.5d) and Eq. (5.6b) is a direct
consequence of (5.3) and (5.5e).

Remark 5. Since γψ is to leading order equal to αψαψ, we obtain as a corollary that the operator
norm of γψ is at most O(h), meaning that the largest eigenvalue of the one-particle density matrix is
of order h. However, the two-body density matrix corresponding to the state Γψ is to leading order
of the form |αψ〉〈αψ|, and hence has one large eigenvalue of order h−1. This is a manifestation of the
Bose–Einstein condensation of the fermion pairs.

6 Upper bound

For ψ ∈ H1(R3), we define the trial state Γψ as in (4.1)–(4.3). Since we require the normalization
condition Tr γψ = 1/h, we have to adjust the L2-norm of ψ accordingly, i.e.,

1/h = Tr γψ =
1

h
‖ψ‖22 + (1 + h1/2)‖αψ‖44.

Together with (5.5a) this implies ∣∣‖ψ‖22 − 1
∣∣ . h2‖ψ‖2‖∇ψ‖32,

and thus ‖ψ‖22 = 1 +O(h2).
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The desired upper bound (4.7) is then an immediate consequence of the following estimates:

Tr(−h2∆ + Eb/2)γψ +
1

2

∫
R6

V
(
(x− y)/h)

)
|αψ(x, y)|2 d3x d3y

= h

∫
R3

(
1

4
|∇ψ(x)|2 +

1

2
gbcs|ψ(x)|4

)
d3x+O(h3/2)

(6.1a)

Trh2Wγψ = h

∫
R3

W (x)|ψ(x)|2 d3x+O(h2) (6.1b)

− 1

2

∫
R6

|γψ(x, y)|2V
(x− y

h

)
d3x d3y =

h

2
gex

∫
R3

|ψ(x)|4 d3x+O(h2) (6.1c)∫
R6

γψ(x, x)γψ(y, y)V
(x− y

h

)
d3x d3y =

h

2
gdir

∫
R3

|ψ(x)|4 d3x+O(h2), (6.1d)

where the constants gbcs, gex and gdir are defined in Remark 2. The remainder of this section will be
devoted to the proof of these estimates.

6.1 Kinetic and potential energy (Proof of (6.1a))

Eq. (6.1a) is an immediate consequence of the calculation in (4.5) and the bound (5.2), using the
definition (4.3) of γψ.

6.2 External potential (Proof of (6.1b))

By (5.5a) of Corollary 1, we obtain

Tr(h2Wαψαψαψαψ) ≤ h2‖W‖∞Tr(αψαψαψαψ) . h3.

The leading contribution is thus given by h2 Tr(Wαψαψ), which we can write as

h2 Tr(Wαψαψ) = h2

∫
R6

W (x)|αψ(x, y)|2 d3x d3y = h

∫
R6

W (X)|ψ(X − hr/2)|2|α0(r)|2 d3X d3r .

(6.2)
From the fundamental theorem of calculus we obtain

h2 Tr(Wαψαψ) = h

∫
R6

W (X)|ψ(X)|2|α0(r)|2 d3X d3r

+ h

∫
R6

∫ 1

0
W (X)

∂

∂τ
|ψ(X − τhr/2)|2|α0(r)|2 dτ |α0(r)|2 d3X d3r.

Using the Cauchy-Schwarz inequality for the integration over the X variable, the last integral is
bounded by ∣∣∣∣h∫

R6

∫ 1

0
W (X)<

(
h r · ∇ψ(X − τhr/2)ψ(X − τhr/2)

)
dτ |α0(r)|2 d3X d3r

∣∣∣∣
≤ h2‖W‖∞‖∇ψ‖2‖ψ‖2‖

√
| · |α0‖22.

Since α0 is the ground state of the Schrödinger operator −2∆ + V and hence rapidly decaying,
‖
√
| · |α0‖2 is finite. This shows (6.1b).
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6.3 Direct and exchange term (Proof of (6.1c) and (6.1d))

We first argue that the leading order contribution of the direct and exchange terms originates from
replacing γψ by αψαψ. To see this, we simply estimate the differences∫

R6

|γψ(x, y)|2V
(
(x− y)/h

)
d3x d3y −

∫
R6

|(αψαψ)(x, y)|2V
(
(x− y)/h

)
d3x d3y (6.3a)

and∫
R6

γψ(x, x)γψ(y, y)V
(
(x− y)/h

)
d3x d3y −

∫
R6

(αψαψ)(x, x)(αψαψ)(y, y)V
(
(x− y)/h

)
d3x d3y.

(6.3b)
Both expressions can be bounded using the following lemma, whose proof is elementary.

Lemma 2. Let σ(x, y) and δ(x, y) be integral kernels of two positive trace class operators. Then∣∣∣∣∫
R6

V (x− y) [(σ + δ)(x, x)(σ + δ)(y, y)− σ(x, x)σ(y, y)] d3x d3y

∣∣∣∣
≤ 2

∫
R6

|V (x− y)|(σ + δ)(x, x)δ(y, y) d3x d3y

(6.4a)

and∣∣∣∣∫
R6

V (x− y)
[
|(σ + δ)(x, y)|2 − |σ(x, y)|2

]
d3x d3y

∣∣∣∣ ≤ 2

∫
R6

|V (x− y)|(σ + δ)(x, x)δ(y, y) d3x d3y.

(6.4b)

Proof. To show (6.4a), we simply use

(σ + δ)(x, x)(σ + δ)(y, y)− σ(x, x)σ(y, y)

= (σ + δ)(x, x)δ(y, y) + δ(x, x)σ(y, y)

≤ (σ + δ)(x, x)δ(y, y) + δ(x, x)(σ + δ)(y, y).

Eq. (6.4a) then follows by symmetry, V (x− y) = V (y − x).
For (6.4b) we follow a similar strategy and first split

V (x− y)
[
|(σ + δ)(x, y)|2 − |σ(x, y)|2

]
= V (x− y)

[
(σ + δ)(x, y)δ(x, y) + δ(x, y)σ(x, y)

]
≤ |V (x− y)| [|(σ + δ)(x, y)| |δ(x, y)|+ |δ(x, y)| |σ(x, y)|] .

Applying to σ, δ, and σ + δ the fact that for positive trace class operators a its kernel satisfies

|a(x, y)| ≤
√
|a(x, x)|

√
|a(y, y)| ,

together with the Cauchy-Schwarz inequality, we obtain the stated inequality.

By applying Lemma 2 to σ + δ = γψ and σ = αψαψ the differences (6.3a) and (6.3b) can be
bounded by

4(1 + h1/2)

∫
R6

∣∣V ((x− y)/h
)∣∣ γψ(x, x)(αψαψαψαψ)(y, y) d3x d3y

. ‖γψ(·, ·)‖∞
∫
R6

(αψαψαψαψ)(x, x)
∣∣V ((x− y)/h

)∣∣ d3x d3y

. h3‖V ‖1‖γψ(·, ·)‖∞Tr(αψαψαψαψ) . h2,

(6.5)
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where we used (5.6b) and (5.5a) in the last step.
In order to recover the ‖ψ‖44 contribution we inspect the remaining parts of the direct and the

exchange terms separately. We begin with the exchange term and write explicitly

− 1

2

∫
R6

|(αψαψ)(x, y)|2V
(
(x− y)/h

)
d3x d3y

= −1

2

∫
R12

αψ(x, z)αψ(z, y)αψ(x,w)αψ(w, y)V
(
(x− y)/h

)
d3x d3y d3z d3w.

Introducing new variables

X =
x+ y

2
, r = x− y, s = x− z, t = x− w,

and rescaling r/h→ r, s/h→ s, t/h→ t, the last expression becomes

− h

2

∫
R12

V (r)α0(s)α0(r − s)α0(t)α0(r − t)

× ψ(X + h(r − s)/2)ψ(X − hs/2)ψ(X − ht/2)ψ(X + h(r − t)/2) d3X d3r d3s d3t .

The latter equals
h

2
gex

∫
R3

|ψ(x)|4 d3x+Aex,

where

Aex = −h
2

∫
R12

d3X d3r d3s d3t V (r)α0(s)α0(r − s)α0(t)α0(r − t)×

×
∫ 1

0

d

dτ

(
ψ(X + τh(r − s)/2)ψ(X − τhs/2)ψ(X − τht/2)ψ(X + τh(r − t)/2)

)
dτ .

This can be bounded by

|Aex| . h2‖∇ψ‖2‖ψ‖36‖V (α0 ∗ α0)((| · |α0) ∗ α0)‖1 . h2‖∇ψ‖42‖V ‖1‖α0‖32
∥∥| · |α0

∥∥
2
,

using the Hölder, Sobolev and Cauchy-Schwarz inequalities. This shows (6.1c).
We continue with the direct term. Its remaining part is given by∫

R6

(αψαψ)(x, x)(αψαψ)(y, y)V
(
(x− y)/h

)
d3x d3y

=

∫
R6

|αψ(x, z)|2|αψ(y, w)|2V
(
(x− y)/h

)
d3x d3y d3w d3z

= h

∫
R12

V (r)|α0(s)|2|α0(t)|2|ψ(X + h(r − s)/2)|2|ψ(X − h(r + t)/2)|2 d3X d3r d3s d3t,

where we changed to the variables

X =
x+ y

2
, r = x− y, s = x− z, t = y − w,

and rescaled r, s, t. By proceeding as above, we see that this expression equals

h

2
gdir

∫
R3

|ψ(x)|4 d3x+Adir, (6.6)
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where

Adir = h

∫
R12

V (r)|α0(s)|2|α0(t)|2×

×
∫ 1

0

d

dτ

(
|ψ(X + τh(r − s)/2)|2|ψ(X − τh(r + t)/2)|2

)
dτ d3X d3r d3s d3t

is bounded by

|Adir| . h2‖∇ψ‖2‖ψ‖36 ‖α0‖2
(
‖| · |V ‖1‖α0‖2 + ‖V ‖1‖

√
| · |α0‖2

)
.

This shows (6.1d), and thus concludes the proof of the upper bound.

7 Lower bound

Our proof of the lower bound on EBHF(h) in Theorem 1 consists of two parts. As a first step we
obtain a priori bounds on approximate ground states.

Lemma 3 (A priori bounds). Let Γ be a state satisfying Tr γ = 1/h and

EBHF(Γ) ≤ −Eb
1

2h
+ Ch

for some C > 0. Define the function Ψ as

ψ(X) =
1

h

∫
R3

α0(r/h)α(X + r/2, X − r/2) d3r , (7.1)

and define ξ̃(X, r) = ξ(X + r/2, X − r/2) through the decomposition

α̃(X, r) := α(X + r/2, X − r/2) = h−2ψ(X)α0(r/h) + ξ̃(X, r) .

Then these functions satisfy the bounds

Tr
[
(−h2∆ + 1

2Eb)(γ − αα)
]
. h, (7.2a)

Tr(γ2) ≤ Tr(γ − αα) . h, (7.2b)
‖ψ‖2 ≤ 1, (7.2c)
‖∇ψ‖2 . 1, (7.2d)

‖ξ̃‖2 . h1/2, (7.2e)

‖∇X ξ̃‖2 . h−1/2, (7.2f)

‖∇r ξ̃‖2 . h−1/2, (7.2g)
Tr(αααα) . h. (7.2h)

Note that our definition implies that ξ̃(X, · ) is orthogonal to α0( · /h) for almost all X. The
norms in (7.2e)–(7.2g) are in L2(R6).

Proof. We have seen in Section 3 that the sum of the direct and exchange terms is non-negative.
Consequently,

h & EBHF(Γ) + Eb
1

2h

≥ Tr(−h2∆ + Eb/2)γ +
1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y − h2‖W‖∞Tr(γ).
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We bring the term h2‖W‖∞Tr(γ) . h to the left side. Adding and subtracting the expression
Tr(−h2∆ + Eb/2)αα we obtain

h & Tr(−h2∆ +Eb/2)(γ−αα) + Tr(−h2∆ +Eb/2)αα+
1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y. (7.3)

The last two terms on the right side can be expressed via center-of-mass and relative coordinates as∫
R3

〈
α(·, y),

[
−h2∆x +

1

2
V
( · − y

h

)
+
Eb
2

]
α(·, y)

〉
L2(R3)

d3y

=

〈
α,

[
−h

2

4
∆X − h2∆r +

1

2
V (r/h) +

Eb
2

]
α

〉
L2(R6)

=
h

4

∫
R3

|∇ψ(X)|2 d3X +
h2

4
‖∇X ξ̃‖22

+

∫
R3

〈
ξ̃(X, ·),

[
−h2∆r +

1

2
V (·/h) + Eb/2

]
ξ̃(X, ·)

〉
L2(R3)

d3X,

(7.4)

where we used that α0 is the normalized zero energy eigenvector of the operator −∆ + V/2 + Eb/2,
as well as the fact that ξ̃(X, ·) is orthogonal to α0(·/h) for almost every X ∈ R3. Hence (7.3) implies

h & Tr(−h2∆ + Eb/2)(γ − αα) +
h

4
‖∇ψ‖22 +

h2

4
‖∇X ξ̃‖22

+

∫
R3

〈ξ̃(X, ·), (−h2∆ +
1

2
V (·/h) + Eb/2)ξ̃(X, ·)〉 d3X. (7.5)

Since all terms on the right side are non-negative, and γ − γ2 ≥ αᾱ, we immediately obtain the
estimates (7.2a), (7.2b), (7.2d) and (7.2f).

According to Assumption 1 the operator −∆ + V/2 has a spectral gap between the ground state
energy −Eb/2 and the next eigenvalue. This implies that we can find a κ > 0 and an ε > 0 such that

−(1− ε)∆ + V/2 + Eb/2 ≥ κ

on the orthogonal complement of α0. Hence∫
R3

〈ξ̃(X, ·), (−h2∆r +
1

2
V (·/h) + Eb/2)ξ̃(X, ·)〉d3X ≥ κ‖ξ̃‖22 + εh2‖∇r ξ̃‖22 .

In combination with (7.5) this yields the estimates (7.2e) and (7.2g).
Since ‖α‖22 ≤ Tr γ = 1/h we obtain for the L2-norm of ψ, that, by definition (7.1) and the

Cauchy-Schwarz inequality,

‖ψ‖22 = h−2

∫
R3

α0(r1/h)α̃(X, r2)α0(r2/h)α̃(X, r1) d3r1 d3r2 d3X

≤ h−2

∫
R3

|α0(r1/h)|2|α̃(X, r2)|2 d3r1 d3r2 d3X = h‖α‖22 ≤ 1,

(7.6)

implying (7.2c). Finally, to see (7.2h) note that since γ ≥ αα

Tr(αααα) = Tr
(
γ2 − γ(γ − αα)− (γ − αα)γ + (γ − αα)2

)
≤ Tr(γ2) + Tr(γ − αα)2 . h.
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Observe that we do not necessarily have ‖ψ‖22 = 1. The norm deviates from 1 by a correction of
order h2,

1− ‖ψ‖22 = h (Tr γ − Trαψαψ) ≤ hTr(γ − αα) + h |Tr(αψαψ − αα)| . (7.7)

By (7.2b) and (7.2e) (and the orthogonality of ξ̃ and α0), the right side is O(h2).
With the aid of the function ψ we can define a corresponding state Γψ as in (4.1)–(4.3). By

multiplying ψ with a factor λ = 1 + O(h2) we can assume that Tr γλψ = 1/h. The second step now
consists of proving that for a lower bound we can replace EBHF(Γ) by EBHF(Γλψ) up to higher order
terms. Together with the calculations from the upper bound this implies the lower bound stated in
Theorem 1.

Lemma 4. With Γ and Γλψ defined as above, one has

EBHF(Γ) ≥ EBHF(Γλψ)−O(h3/2). (7.8)

Lemma 4 not only completes the proof of the lower bound (4.12), it also allows to establish
the claim about approximate minimizers in Eqs. (2.7)–(2.10) in Theorem 1. Given an approximate
minimizer satisfying (2.7), Lemma 3 yields (2.8), while a combination of (7.8) and (4.6) implies (2.10).

It remains to prove the bound (7.8), which is an immediate consequence of the following estimates:

Tr(−h2∆ + Eb/2)γ +
1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y

≥ (−h2∆ + Eb/2)γλψ +
1

2

∫
R6

V
(
(x− y)/h

)
|αλψ(x, y)|2 d3x d3y −O(h3/2)

(7.9a)

h2 TrWγ ≥ h2 TrWγλψ −O(h2) (7.9b)

−
∫
R6

|γ(x, y)|2V
(
(x− y)/h

)
d3x d3y ≥ −

∫
R6

|γλψ(x, y)|2V
(
(x− y)/h

)
d3x d3y −O(h3/2) (7.9c)∫

R6

γ(x, x)γ(y, y)V
(
(x− y)/h

)
d3x d3y ≥

∫
R6

γλψ(x, x)γλψ(y, y)V
(
(x− y)/h

)
d3x d3y −O(h3/2).

(7.9d)
The remainder of this section will be dedicated to proving these estimates.

7.1 Kinetic and potential energy (Proof of (7.9a))

Let us decompose γ according to

γ = αα+ αααα+ (γ − αα− γ2) + (γ − αα)2 + αα(γ − αα) + (γ − αα)αα,

where (γ − αα− γ2) and (γ − αα)2 are positive self-adjoint operators and thus

Tr(−h2∆ + Eb/2)
(
(γ − αα− γ2) + (γ − αα)2

)
≥ 0.

Adding and subtracting the term

Tr(−h2∆ + Eb/2)γλψ +
1

2

∫
R6

V
(
(x− y)/h

)
|αλψ(x, y)|2 d3x d3y,
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we obtain

Tr(−h2∆ + Eb/2)γ +
1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y

≥ Tr(−h2∆ + Eb/2)γλψ +
1

2

∫
R6

V
(
(x− y)/h

)
|αλψ(x, y)|2 d3x d3y

+ Tr
(
(−h2∆ + Eb/2)αα

)
+

1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y

− Tr
(
(−h2∆ + Eb/2)αλψαλψ

)
− 1

2

∫
R6

V
(
(x− y)/h

)
|αλψ(x, y)|2 d3x d3y

+ Tr
[
(−h2∆ + Eb/2)αααα

]
− Tr

[
(−h2∆ + Eb/2)αλψαλψαλψαλψ

]
+ Tr

[
(−h2∆ + Eb/2)αα(γ − αα) + (γ − αα)αα

]
− h1/2 Tr

[
(−h2∆ + Eb/2)αλψαλψαλψαλψ

]
.

(7.10)

The identity (7.4) immediately implies that

Tr
(
(−h2∆ + Eb/2)αα

)
+

1

2

∫
R6

V
(
(x− y)/h

)
|α(x, y)|2 d3x d3y

≥ Tr
(
(−h2∆ + Eb/2)αψαψ

)
+

1

2

∫
R6

V
(
(x− y)/h

)
|αψ(x, y)|2 d3x d3y =

h

4
‖∇ψ‖22 , (7.11)

and hence the sum of the second and third lines on the right side of (7.10) is bounded from below by
h
4 (1− λ2)‖∇ψ‖22 = O(h3). Hence the proof of (7.9a) reduces to establishing the estimates∣∣Tr(−h2∆ + Eb/2)

[
αααα− αλψαλψαλψαλψ

]∣∣ . h2, (7.12)

|Tr
(
(−h2∆ + Eb/2)

[
αα(γ − αα) + (γ − αα)αα

])
| . h3/2, (7.13)

h1/2 Tr
(
(−h2∆ + Eb/2)αλψαλψαλψαλψ

)
. h3/2, (7.14)

which we are going to show in the following.
Inequality (7.14) is an immediate consequence of (5.2). It also implies that it is enough to show

(7.12) for λ = 1. To do this, we rewrite

αααα− αψαψαψαψ = αψααξ + ξαααψ + ξααξ + αψ(αα− αψαψ)αψ . (7.15)

With H := −h2∆ + Eb
2 we obtain with the aid of Hölder’s inequality for traces

|Tr
(
H
[
αααα− αψαψαψαψ

])
| =

∣∣∣Tr
(
H1/2

[
αψααξ + ξαααψ + ξααξ + αψ(αα− αψαψ)αψ

]
H1/2

)∣∣∣
≤ 2‖H1/2αψ‖6‖α‖26‖H1/2ξ‖2 + ‖α‖2∞‖H1/2ξ‖22

+ ‖H1/2αψ‖26‖αα− αψαψ‖3/2.
(7.16)

Note that for any operator T , we have

‖H1/2T‖2n = ‖T ∗HT‖1/2n ≤
√
‖T ∗(−h2∆)T‖n + 1

2Eb‖T ∗T‖n ≤ h‖∇T‖2n +

√
Eb
2
‖T‖2n

≤ h
(

1

2
‖∇XT‖2n + ‖∇rT‖2n

)
+

√
Eb
2
‖T‖2n ,
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where in the last line the operators ∇XT and ∇rT are defined via the kernels (∇XT )(x, y) and
(∇rT )(x, y), respectively. By applying this to the terms in (7.16) we obtain

‖H1/2αψ‖6 ≤
h

2
‖∇Xαψ‖6 + h‖∇rαψ‖6 +

√
Eb
2
‖αψ‖6 . h1/2, (7.17)

‖H1/2ξ‖2 ≤
h

2
‖∇Xξ‖2 + h‖∇rξ‖2 +

√
Eb
2
‖ξ‖2 . h1/2, (7.18)

where we used ‖∇Xαψ‖6 = ‖α∇ψ‖6 ≤ ‖α∇ψ‖2 = ‖∇ψ‖2h−1/2, together with (5.5b), (5.5c), (7.2e),
(7.2f) and (7.2g). The term ‖αα− αψαψ‖3/2 in (7.16) can be bounded by

‖αα−αψαψ‖3/2 = ‖αψξ+ ξαψ + ξξ‖3/2 ≤ 2‖αψ‖6‖ξ‖2 + ‖ξ‖6‖ξ‖2 ≤ 2‖αψ‖6‖ξ‖2 + ‖ξ‖22 . h, (7.19)

where we used (5.5b) and (7.2e). By combining (7.16) with (7.17)–(7.19) we obtain (7.12).
To show (7.13), we can bound

|Tr (H[(γ − αα)αα+ αα(γ − αα)])| = 2

∣∣∣∣<Tr

(
H1/2(γ − αα)H1/2 1

H1/2
ααH1/2

)∣∣∣∣
≤ 2 TrH(γ − αα)

∥∥∥∥ 1

H1/2
ααH1/2

∥∥∥∥
∞
.

The first factor on the right side is bounded by O(h) according to (7.2a). Moreover,∥∥∥∥ 1

H1/2
ααH1/2

∥∥∥∥
∞
≤
√

2

Eb
‖ααHαα‖1/2∞ ≤

√
2

Eb
(TrHαααα)1/2 ,

which is bounded by O(h1/2) using (7.12) together with (5.2). This proves (7.13).

7.2 External potential (Proof of (7.9b))

Since W is bounded, Tr γψ = O(h−1) and λ = 1+O(h2), it clearly suffices to consider the case λ = 1.
Using the form (4.3) of γψ we evaluate

h2 TrW (γ − γψ) = h2 TrW (γ − αα) + h2 TrW (αα− αψαψ)− (1 + h1/2)h2 TrW (αψαψαψαψ)

≥ −h2‖W‖∞
[
Tr(γ − αα) + ‖ξ‖22 + 2‖αψξ‖1 + (1 + h1/2) Trαψαψαψαψ)

]
≥ −O(h2), (7.20)

where we used (7.2b), the decomposition α = αψ + ξ, and ‖αψξ‖1 ≤ ‖αψ‖2‖ξ‖2 . 1.

7.3 Direct and exchange term (Proof of (7.9c) and (7.9d))

Our strategy is as follows. As a first step we reduce the direct term and exchange term to corre-
sponding expressions involving α only, and show that∣∣∣∣∫

R6

|γ(x, y)|2V
(
(x− y)/h

)
d3x d3y −

∫
R6

|(αα)(x, y)|2V
(
(x− y)/h

)
d3x d3y

∣∣∣∣ . h2, (7.21)

∣∣∣∣∫
R6

γ(x, x)γ(y, y)V
(
(x− y)/h

)
d3x d3y −

∫
R6

(αα)(x, x)(αα)(y, y)V
(
(x− y)/h

)
d3x d3y

∣∣∣∣ . h2.

(7.22)
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As a second step, we show that up to an error O(h3/2) we are able to replace α by αψ in the
corresponding expressions, i.e.,∣∣∣∣∫

R6

|(αα)(x, y)|2V
(
(x− y)/h

)
d3x d3y −

∫
R6

|(αψαψ)(x, y)|2V
(
(x− y)/h

)
d3x d3y

∣∣∣∣ . h3/2 (7.23)

and∣∣∣∣∫
R6

(αα)(x, x)(αα)(y, y)V
(
(x− y)/h

)
d3x d3y

−
∫
R6

(αψαψ)(x, x)(αψαψ)(y, y)V
(
(x− y)/h

)
d3x d3y

∣∣∣∣ . h3/2. (7.24)

These two steps together, in combination with λ = 1 +O(h2), lead to (7.9c) and (7.9d), respectively.
The estimates (7.21) and (7.22) can be obtained by applying Lemma 2 with σ = αα and δ =

γ − αα. As a result we obtain that the left sides of both (7.21) and (7.22) are bounded by

2

∫
R6

∣∣V ((x− y)/h
)∣∣ (γ − αα)(x, x)γ(y, y) d3x d3y

= 2

∫
R6

∣∣V ((x− y)/h
)∣∣ (γ − αα)(x, x)(γ − αα)(y, y) d3x d3y (7.25a)

+ 2

∫
R6

∣∣V ((x− y)/h
)∣∣ (γ − αα)(x, x)(αα)(y, y) d3x d3y. (7.25b)

By (7.2b), the term (7.25a) is bounded by∫
R6

(γ − αα)(x, x)(γ − αα)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y ≤ [Tr(γ − αα)]2‖V ‖∞ . h2.

For (7.25b), we are going to use the decomposition α = αψ + ξ in the form

αᾱ = αψαψ + ξαψ + αψξ + ξξ

and we thus have to bound four terms. First, observe that∫
R6

(γ − αα)(x, x)(ξξ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y ≤ ‖V ‖∞Tr(γ − αα) Tr(ξξ) . h2.

Second, using (5.3),∫
R6

(γ − αα)(x, x)(αψαψ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y

≤ h3 Tr(γ − αα)‖(αψαψ)(·, ·)‖∞‖V ‖1 . h2 . (7.26)

For the remaining terms we use (5.4) with σ = ξ and the Cauchy-Schwarz inequality to obtain∫
R6

(γ − αα)(x, x)
∣∣(αψξ)(y, y)V

(
(x− y)/h

)∣∣ d3x d3y

. h−1

∫
R9

(γ − αα)(x, x)‖ξ(·, y)‖2
∣∣V ((x− y)/h

)∣∣ d3x d3y

. h−1‖ξ‖2‖V (·/h)‖2 Tr(γ − αα) . h2.
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We now turn to the estimates (7.23) and (7.24). The difference of the exchange terms in (7.23) is
bounded by

‖V ‖∞‖αα− αψαψ‖2‖αα+ αψαψ‖2 .

The 2-norm of αα − αψαψ can be bounded by the 3/2-norm, which in turn is bounded by O(h)
according to (7.19). Moreover, ‖αψαψ‖2 = ‖αψ‖24 . h1/2 by (5.1a), proving (7.23).

For the direct term we insert the decomposition α = αψ + ξ into the difference in (7.24), yielding
15 terms. However, due to symmetry, it suffices to estimate the following 5 terms∫

R6

(ξξ)(x, x)(ξξ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y, (7.27a)∫
R6

(ξξ)(x, x)(αψαψ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y, (7.27b)∫
R6

(ξαψ)(x, x)(αψαψ)(y, y) |V ((x− y)/h)| d3x d3y, (7.27c)∫
R6

(ξξ)(x, x)(ξαψ)(y, y) |V ((x− y)/h)| d3x d3y, (7.27d)∫
R6

(ξαψ)(x, x)(ξαψ)(y, y) |V ((x− y)/h)| d3x d3y. (7.27e)

We begin with (7.27a). Obviously∫
R6

(ξξ)(x, x)(ξξ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y ≤ ‖V ‖∞
[

Tr(ξξ)
]2

. h2.

For (7.27b) we obtain with the help of (5.3)∫
R6

(ξξ)(x, x)(αψαψ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y ≤ Tr(ξξ)‖(αψαψ)(·, ·)‖∞h3‖V ‖1 . h2.

For the last three terms we invoke equation (5.4) from Lemma 1 with σ = ξ and the Cauchy-Schwarz
inequality. For (7.27c) this gives∫

R6

(ξαψ)(x, x)(αψαψ)(y, y) |V ((x− y)/h)| d3x d3y

. h−1

∫
R6

‖ξ(x, ·)‖2(αψαψ)(y, y) |V ((x− y)/h)| d3x d3y

. h−1‖V (·/h)‖1‖ξ‖2‖αψαψ(·, ·)‖2 .

The desired bound O(h3/2) then follows from the fact that the last factor ‖αψαψ(·, ·)‖2 on the right
side is of order O(h−1). To see this, we write

‖αψαψ(·, ·)‖22 =

∫
R9

|αψ(x, y)|2|αψ(x, z)|2 d3x d3y d3z

= h−8

∫
R9

|α0

(
(x− y)/h

)
|2|α0

(
(x− z)/h

)
|2|ψ

(
(x+ y)/2

)
|2|ψ

(
(x+ z)/2

)
|2 d3x d3y d3z.

Changing to the variables r = x − y, s = x − z and x and using Cauchy-Schwarz in x, we indeed
obtain

‖αψαψ(·, ·)‖22 = h−8

∫
R9

|α0

(
r/h
)
|2|α0

(
s/h
)
|2|ψ(x− r/2)|2|ψ(x− s/2)|2 d3x d3r d3s ≤ h−2‖α0‖22‖ψ‖44.

20



For (7.27d) we get ∫
R6

(ξξ)(x, x)(ξαψ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y

. h−1

∫
R6

(ξξ)(x, x)‖ξ(y, ·)‖2 |V ((x− y)/h)| d3x d3y

. h−1‖V (·/h)‖2‖ξ‖32 . h2

and for (7.27e) ∫
R6

(ξαψ)(x, x)(ξαψ)(y, y)
∣∣V ((x− y)/h

)∣∣ d3x d3y

. h−2

∫
R6

‖ξ(x, ·)‖2‖ξ(y, ·)‖2 |V ((x− y)/h)| d3x d3y

. h−2‖ξ‖22‖V (·/h)‖1 . h2.

This concludes the proof of (7.9c) and (7.9d).

A Appendix: Proof of Lemma 1

Proof of Lemma 1, Part II. We first prove (5.1a) and (5.1b). For n ∈ 2N, we can write

Tr
(
(αψαψ)n/2

)
=

∫
R3n

αψ(x1, x2)αψ(x2, x3) · · ·αψ(xn−1, xn)αψ(xn, x1) d3x1 · · · d3xn. (A.1)

We switch to the following coordinates

X =
1

n

n∑
k=1

xk

rk = xk+1 − xk, k = 1, . . . , n− 1.

(A.2)

It is easy to see that the corresponding Jacobi determinant is equal to 1. Moreover, we can recover
the original coordinates via

x1 = X − 1

n

n−1∑
i=1

(n− i)ri,

xk+1 = xk + rk,

i.e.

xk = X + sk(r1, . . . , rn−1)

for some linear functions sk. We therefore obtain for the integral in (A.1)

‖αψ‖nn = h−2n

∫
R3n

ψ
(
X + 1

2(s1 + s2)
)
· · ·ψ

(
X + 1

2(sn + s1)
)

× α0(r1/h) · · ·α0(rn/h) d3X d3r1 · · · d3rn−1,
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where we introduced rn := −
∑n−1

k=1 rk. Hölder’s inequality in the X variable then yields

‖αψ‖nn ≤ h−2n‖ψ‖nn
∫
R3(n−1)

∣∣∣α0(r1/h) · · ·α0(rn/h)
∣∣∣ d3r1 · · · d3rn−1

= (2π)3(n−2)/2hn−3‖ψ‖nn ‖|̂α0|‖nn ,

which is (5.1a). The same calculation with α0 replaced by ∇α0 yields (5.1b).
Due to the symmetry αψ(x, y) = αψ(y, x), we have

Tr
(
∆αψαψαψαψ

)
= 〈αψαψαψ,∆xαψ〉L2(R6) = 〈αψαψαψ, 1

2(∆x + ∆y)αψ〉L2(R6)

= 〈αψαψαψ, (1
4∆X + ∆r)αψ〉L2(R6) .

Using the coordinates (A.2), for which we have in the case of n = 4

x1 + x2

2
= X − s x3 + x4

2
= X + s s(r1, r2, r3) =

r1 + 2r2 + r3

4
x2 + x3

2
= X − t x1 + x4

2
= X + t t(r1, r2, r3) =

r3 − r1

4

and rescaling rk → hrk, k = 1, 2, 3, we can therefore write

Tr(−h2∆ + Eb/2)αψαψαψαψ

= h

∫
R12

ψ(X − hs)ψ(X − ht)ψ(X + hs)ψ(X + ht)

×
[
(−∆ + Eb/2)α0(r1)

]
α0(r2)α0(r3)α0(−r1 − r2 − r3) d3X d3r1 d3r2 d3r3

− h2

4
〈αψαψαψ,∆Xαψ〉L2(R6) .

This term has the form

h(2π)3‖ψ‖44
∫
R3

|α̂0(p)|4(p2 + Eb/2) d3p+A1 h
2 +A2 h

2,

where

A1 = −1

4
〈αψαψαψ,∆Xαψ〉L2(R6) ,

A2 = h−1

∫
R12

∫ 1

0

d

dτ

(
ψ(X − τhs)ψ(X − τht)ψ(X + τhs)ψ(X + τht)

)
dτ

×
[
(−∆ + Eb/2)α0(r1)

]
α0(r2)α0(r3)α0(−r1 − r2 − r3) d3X d3r1 d3r2 d3r3.

Using integration by parts, we can bound A1 as

|A1| =
1

4

∣∣〈∇X(αψαψαψ),∇Xαψ〉∣∣
=

1

4

∣∣〈(∇Xαψ)αψαψ + αψ
(
∇Xαψ

)
αψ + αψαψ

(
∇Xαψ

)
,∇Xαψ

〉∣∣
≤ 3

4
‖∇Xαψ‖22‖αψ‖2∞ . ‖∇ψ‖42 ,

where the last inequality follows from ‖αψ‖∞ ≤ ‖αψ‖6, which is . h1/2‖ψ‖6 as shown above.
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To estimate A2, we carry out the derivative in τ and subsequently use Hölder’s inequality for the
X integration to obtain

|A2| ≤ ‖∇ψ‖2‖ψ‖36
∫
R9

(
|s|+ |t|

)∣∣(V α0)(r1)α0(r2)α0(r3)α0(−r1 − r2 − r3)
∣∣d3r1 d3r2 d3r3.

Here we have also used that (−∆ +Eb/2)α0 = −1
2V α0. We now note that |s|+ |t| ≤ 1

2 |r1 + r2 + r3|+
1
2 |r2|+ 1

2 |r3|. We plug in this bound in the integrand and use Cauchy-Schwarz for the r2 integration
in the case of the terms |r1 + r2 + r3| and |r2|, and for the r3 integration in the case of |r3|. This
yields

|A2| ≤
3

2
‖∇ψ‖2‖ψ‖36‖V α0‖1 ‖α0‖1 ‖α0‖2

∥∥| · |α0

∥∥
2
.

The desired result then follows from the Sobolev inequality ‖ψ‖6 . ‖∇ψ‖2. This concludes the proof
of Lemma 1.
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