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Abstract: A compressed spectrum was initially proposed as an explanation for

the elusiveness of low-energy supersymmetry (SUSY). Some characteristic signals at

the Large Hadron Collider (LHC), such as mono-jet +E/T , had been propounded as

its trademark signals. However, later investigations suggested that lower limits on

the supersymmetric particle masses would be quite stringent in spite of compression.

Also, most compressed SUSY scenarios studied so far are only partially compressed.

In this backdrop, we make an exhaustive analysis of the compressed SUSY scenarios

for the 13 TeV run of LHC, keeping the level of compression in the entire spectrum

as high as possible. A broad class of benchmark spectra are thus considered, after

ensuring consistency with the observed Higgs mass as well as the dark matter con-

straints. The rates of observable events in the high-energy run are obtained through

detailed simulation, for both the multi-jet +E/T and mono-jet + E/T final states. Our

conclusion is that the former is still more efficient to reveal a compressed SUSY

spectrum first, while the latter can serve as a useful confirmatory channel.

Keywords: Supersymmetry Phenomenology, Large Hadron Collider, Multi-jets

ar
X

iv
:1

51
1.

09
28

4v
2 

 [
he

p-
ph

] 
 2

9 
D

ec
 2

01
5

mailto:juhidutta@hri.res.in
mailto:konar@prl.res.in
mailto:subhadeepmondal@hri.res.in
mailto:biswarup@hri.res.in
mailto:skrai@hri.res.in


Contents

1 Introduction 1

2 Status of SUSY search and a compressed spectrum 3

2.1 Current limits on MSSM from ATLAS and CMS 3

2.2 SUSY with the entire spectrum compressed 4

2.3 A spectrum constrained by Higgs mass and dark matter 5

2.4 Benchmark points 10

3 Probing a compressed spectrum at the LHC 13

3.1 Analysis setup and simulation details 14

3.2 Multi-jets +E/T 17

3.3 Mono-jet +E/T 20

4 Summary and conclusion 24

References 24

1 Introduction

Despite the very pertinent candidature of TeV-scale supersymmetry (SUSY) as the

solution to the Higgs naturalness problem, together with the possibility of solving the

dark matter (DM) puzzle with its help, the Large Hadron Collider (LHC) experiment

is yet to reveal any hint of SUSY. A way of retaining one’s hope in this direction is

to think of some version(s) of SUSY, broken around the TeV-scale, but with such

spectra as can suppress the usually expected signals. One such version assumes

sparticle masses to be compressed within a rather small range, a situation whose

theoretical justification and phenomenological analyses have already generated some

efforts [1–4]. The compressed spectrum causes the jets and leptons produced in

SUSY cascades to be relatively soft, and also downgrades the missing transverse

energy (E/T ) somewhat, thus potentially suppressing signals that pass the acceptance

criteria at the LHC. One can therefore envision allowed regions in the parameter

space after the 8 TeV run, with relatively low-lying superparticles but small spacing

between the squark/gluino masses and that of the lightest SUSY particle (LSP)1.

It was initially thought that the best way to look for compressed SUSY was to

focus on the mono-jet +E/T signal [5–20]. Subsequent investigations in the context

1The lightest neutralino (χ̃0
1) has been assumed to be the LSP in this study.
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of run-I showed that the ‘conventional’ multi-jet +E/T signals (with or without ac-

companying leptons) could be more useful if appropriate event selection criteria were

followed [7, 8, 10]. It is important to see how such multi-jet +E/T signals fare against

the mono-jet +E/T ones in the 13 / 14 TeV runs of the LHC.

A few things, however, remain to be noted carefully in such an investigation.

In many recent studies, experimental as well as theoretical, the deciding factor is

assumed to be the mass splitting between the LSP and the coloured members such as

gluino/squarks, the role of the rest of the spectrum being relatively inconsequential.

It is also sometimes customary to focus on the mass gap between the LSP and

the next-to-LSP (NLSP). This kind of an approach has often been prompted by

attempts to parametrise the spectrum in terms of some ‘compression factor’ [1, 2]

that straightjackets the entire spectrum in a little oversimplified manner. However,

one should take an equally serious note of the rest of the minimal SUSY standard

model (MSSM) spectrum where even non-coloured particles (or third family squarks)

can have substantial splitting with the LSP, thus producing additional hard jets

and/or leptons after all.

Another vital issue that needs to be addressed is the undeniable presence of the

lighter CP-even Higgs boson around 125-126 GeV. In a SUSY extension of the stan-

dard model (SM), one can only consider spectra where this mass value is replicated,

its behaviour being most likely SM-like. As we know, the mass of this scalar in the

MSSM, taking radiative corrections into account, is highly dependent on the two stop

masses as well as the stop left-right mixing angle. Hence the degree of compression

of the entire MSSM spectra is expected to be strongly constrained, if the lighter

CP-even Higgs mass has to be in the right value. Therefore, the compressed spectra

proposed in the earlier works need to be revisited in the aftermath of the Higgs boson

discovery. This is not thoroughly done in most existing studies; it is often implied

that either the spectrum is only partly compressed [5–21], or some physics beyond

MSSM is responsible for the observed value of the Higgs mass [22–24]. In contrast,

we have proceeded assuming the intervention of only the MSSM fields in deciding

the Higgs mass(es).

In addition, the constraints from the relic density of the universe as well as

those arising from direct DM search experiments are important requirements of a

SUSY spectrum. We have taken these constraints into account while selecting the

benchmark points in the parameter space. For more detailed study of DM in the

context of compressed SUSY scenario, see [25–27].

On the whole, given the manifold diversity of an MSSM spectrum, we have

preferred to think not in terms of some compression parameter(s) in a somewhat

simplified spectrum but to work with a wide assortment of benchmark points, which

reflect as many different possibilities as possible. We have kept the heavier stop mass

and/or the Higgsino mass parameter µ somewhat above the compressed spectrum

in some cases. The latter choice may perhaps be justified by the observation that
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µ does not have the same origin as the SUSY-breaking mass parameters; it is in

fact a SUSY-invariant parameter, though destined to be in the TeV scale by the

electroweak symmetry breaking requirement. In any case we have also presented

results for some benchmark points where the entire spectrum lies tightly compressed.

After a detailed study of this variety of benchmarks, we reach the conclusion that

signals comprising multi-jets are likely to be more useful in the 13/14 TeV runs, as

compared to those depending upon mono-jets.

In section 2, we discuss the existing experimental limits on the MSSM parameter

space. We further discuss the status of compressed SUSY search at the LHC. Then

we look for a truly compressed SUSY spectrum keeping the lightest CP-even Higgs

boson mass in its allowed range around 125 GeV. While doing so, we carry out a

detailed scan of the relevant parameter space keeping all the collider, DM and flavour

physics constraints in consideration. We then provide some benchmark points to

showcase our results with different squark-gluino mass hierarchy keeping the lightest

neutralino as the LSP. In section 3, we explore the collider aspects of such scenarios in

the context of run II of the LHC. We look for both multi-jet +E/T and mono-jet +E/T
final states arising from all possible squark-gluino production channels and compare

the sensitivities of these two signals to such compressed spectrum and conclude.

2 Status of SUSY search and a compressed spectrum

The generic SUSY search channels at the LHC involve the strongly interacting sector

comprising of squarks (q̃) and gluino (g̃), all of which have large production rates. In

the CMSSM/mSUGRA scenario, the mass spectrum for the squarks, gluino and other

sparticles have a predetermined hierarchy dictated by the renormalisation group

(RG) evolutions, once the free parameters are chosen at the unification scale. Once

a mass-ordering is thus established, this simplifies the search strategies, since the

observed jets or charged leptons originating from the SUSY cascades would carry

the imprint of the mass spectrum. One usually associates the signal to contain jets

and charged leptons with large transverse momenta along with substantial missing

transverse energy (E/T ) carried away by the stable lightest SUSY particle (LSP). As

a result, the final states are easily separated from their respective SM backgrounds

and the exclusion limits derived on the coloured sparticles come out stronger in this

framework. Both CMS and ATLAS have put bounds which are close to around 1 TeV

on the squark masses and 1.4 TeV on the gluino masses respectively for simplified

models [28]. In the case of degenerate squarks and gluinos, the exclusion limit extends

upto 1.7 TeV in CMSSM models [29].

2.1 Current limits on MSSM from ATLAS and CMS

However, the MSSM in general poses a bigger challenge for LHC to put similar

exclusion limits. Since the number of free parameters increases manifold, possibilities
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for different mass ordering of the SUSY particles open up. In such situations, it not

only becomes very difficult to put absolute bounds on the masses of the sparticles, but

the guiding principles to search for SUSY at LHC also become ambiguous. Because

of this, the bounds are always associated with some simplified assumptions for the

decay pattern of the produced particles and therefore, one has to be careful while

implementing these limits. In such scenarios, gluino mass (mg̃) is excluded upto 1.3 -

1.5 TeV when the lightest neutralino (LSP) mass (mχ̃0
1
) is not heavier than 500 - 600

GeV [29], provided the first two generation squarks are lighter than gluino. When

the squarks are much heavier than the gluino, the g̃ decays via off-shell squarks.

The decay to three-body final state comprising of two quarks and the LSP leads to

softer jets in the final state which dilute the mg̃ exclusion limit to about 1.4 TeV for

mχ̃0
1
≤ 300 GeV [29]. Just as above, all such available limits from run-I data of the

LHC are expected to weaken further if the mass difference between the parent and

daughter particles gets reduced as this would result in less E/T and softer jets/leptons

in the final state. For example, if mg̃ −mχ̃0
1

is reasonably small, the exclusion limit

on mg̃ reduces to 550-600 GeV [29]. Thus, a light spectrum with small mass gaps

among the SUSY particles might have escaped run-I scrutiny, thereby prompting

increased interest in a compressed SUSY scenario [1, 2].

Summarising the other available bounds on MSSM, for a much heavier gluino,

lighter squark (first 2 generations) masses are excluded below 850 GeV when mχ̃0
1
≤

350 GeV [29]. Lighter stop masses (mt̃1
) are excluded upto 600-700 GeV provided

t̃1 decays into a top quark (t) and χ̃0
1 where mχ̃0

1
< 250 GeV [30, 31]. When the

t̃1 decays into a bottom quark (b) and the lighter chargino (χ̃±
1 ), any mt̃1

below

500-600 GeV is excluded for mχ̃0
1

below 200-250 GeV [30, 32], the exact limits being

dependent on the chargino mass. For other decay modes of t̃1 (flavour violating or

> 2-body modes), the exclusion limits reduce to 240-260 GeV [30, 32, 33]. Similarly,

a lighter sbottom mass (mb̃1
) below 620 GeV is excluded for mχ̃0

1
≤ 150 GeV [34].

When mb̃1
−mχ̃0

1
is small, the exclusion limit on mb̃1

is lowered to 250 GeV [33].

Since for our present work we consider a relatively compressed spectrum, it turns

out that the weakly interacting sector of MSSM has a relatively less important role

to play. Therefore, we shall focus on the production and decay of the coloured

sparticles. For a recent summary of SUSY search limits at the LHC, we refer the

readers, for example, to Ref. [35, 36].

2.2 SUSY with the entire spectrum compressed

Compressed SUSY spectra has been studied in the context of LHC quite extensively

with special emphasis on the smallness of the mass gap between the coloured spar-

ticles and the LSP. A coloured NLSP (be it a squark or a gluino) is often assumed,

and the role of the other sparticles in SUSY signals is considered to be of secondary

importance. In an un-compressed spectrum one probably can accept that the signif-

icant contribution to the rates come from lightest coloured sparticle production [37]
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(where the other coloured modes are heavier). Understandably, hard jets or leptons

are difficult to obtain in the final state for small mass gaps. This results in weaker

limits on the parameter space, when compared to the standard SUSY searches. How-

ever, such effects do not always presume the entire spectrum to be compressed. In

most cases, a part of the strongly interacting sector (for example, the third family

squarks) is ignored by decoupling it from the low lying spectrum. In addition, many

extant studies do not pay enough attention to parts of the coloured spectrum, which

may not be entirely decoupled, but whose participation vis-a-vis that of the gluino

may have bearing on the SUSY signals, especially on the kinematic profiling of the

events arising out of sparticle production. For example, the contribution to the final

state may dominantly come from the hard processes comprising of the production of

squarks in association with gluinos. Now, inspite of having a small gluino-LSP mass

gap, the squarks may have a substantial mass gap with the LSP. These sparticles will

then start contributing to the final state giving rise to harder jets or leptons along

with relatively larger E/T . Hence the question we really need to ask is, how would a

really compressed SUSY spectrum, with almost all sparticles rubbing shoulders with

each other, play out at the LHC.

Such a SUSY spectrum, however, has to obey some guiding principles. The first

of these is to reproduce the lighter neutral CP-even Higgs mass in the neighbourhood

of 125 GeV. The next constraint to be taken into account is the contribution to the

relic density of the universe. These, in addition to various limits arising from flavour

physics and/or direct search results till date, guide one towards some allowed spectra

that are either fully compressed or have to leave out some relatively heavy states

above the compressed band.

We discuss these issues next, based on which we finally choose specific bench-

marks from the viable parameter space that highlight different mass hierarchies

among the gluino and the squark states. We use the benchmarks to carry out a

detailed collider simulation for both multi-jet +E/T and mono-jet +E/T final states, to

determine which search strategy may help us better to discover or rule out various

SUSY spectra that are compressed to the utmost.

2.3 A spectrum constrained by Higgs mass and dark matter

We recall that the tree-level mass of the lightest CP-even Higgs boson as obtained

in the MSSM framework has an upper bound:

mtree
h ≤ mZ | cos 2β| (2.1)

where tan β = vu/vd is the ratio of the two Higgs VEVs. Since Eq. 2.1 cannot

allow a Higgs mass greater than the Z boson mass, one has to rely on substantial

contribution through higher order (loop) corrections to reach the neighbourhood of

125 GeV, the experimentally measured mass of what could be the lighter CP-even
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neutral scalar in a SUSY scenario. The dominant higher-order contribution comes

from stops in the loop due to a large Yukawa coupling of the Higgs boson with the

top quark. The one-loop contribution to the mtree
h is approximately [38]:

(∆m2
h)

1−loop ' 3m4
t

4π2v2

(
ln
M2

S

m2
t

+
X2
t

M2
S

− X4
t

12M2
S

)
, (2.2)

where v is the up-type Higgs VEV, MS =
√
mt̃L

mt̃R
is the geometric mean of the

stop left-right masses and Xt = At−µ cot β, which governs t̃L− t̃R mixing as well as

the splitting between the two stop mass eigenstates. Thus the radiatively corrected

Higgs mass crucially depends on two parameters, namely, MS and Xt, along with

µ and tan β. We note that in order to have one of the CP-even Higgs mass as 125

GeV Higgs boson in the theory, one requires large stop masses and large stop mixing

(Xt ' ±
√

6MS) [39, 40].

One has the freedom to choose soft-breaking SUSY parameters in the MSSM

for each sfermion generation separately. Also, maximum mass splitting is possible

in the third family (due to the larger Yukawa couplings) which again contributes

most significantly to the Higgs mass correction. Thus one concludes that obtaining

a significant compression in the entire spectrum is difficult, since achieving mh ≈ 125

GeV requires (at least) one stop eigenstate to be heavy.

At the same time, we find a somewhat large µ, too, is favourable in achieving

mh ≈ 125 GeV. However, this also entails the possibility of having the Higgsino-

dominated chargino and neutralinos on the heavier side, thus jeopardising the de-

gree of compression in the entire MSSM spectrum. This also affects the Higgsino

component in the LSP, which in turn may reduce the annihilation rate far too much,

leading to excess relic density.

We thus use the following constraints in our scan of the parameter space :

• The lightest CP-even Higgs mass should be in the range 122 < mh < 128 GeV

[22–24].

• The LEP lower bound on the lightest chargino mass, viz. mχ̃±
1
> 103.5 GeV

[41].

• Constraints from branching ratios of rare decays such as BR(b → sγ) and

BR(Bs → µµ) [42, 43].

• The LSP, χ̃0
1, which is the cold dark matter candidate, satisfies the observed

thermal relic density, 0.092 < Ωχ̃h
2 < 0.138 [44].

However, for our parameter scan we have considered only the upper limit of

Ωh2, taking the view that it is plausible to have multi-component DM [45–

54]. However, substantial portions in the parameter space has been identified,

where a single-component DM satisfies. We also include the constraints from

direct dark matter searches, as obtained from the LUX data [55].
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In order to achieve spectra which are as compressed as can be, consistent with

the above constraints, we have taken into consideration the following points in our

prediction of the LHC signal:

• The mass gap within the stop pair being large, overall compression can be

reduced in situations where one stop eigenstate, t̃1, lies just above the neutralino

LSP.

• Gluino can be light and both cases are considered when gluino mass is above

or below the lighter stop.

• The non-strongly interacting sfermions and gauginos are assigned various orders

in the compressed spectrum. Though they have less of a role in the LHC signals,

they may have a bearing on the relic density as well as cascade decays.

• The heavier stop mass as well as µ are kept both outside and inside the most

compressed part of the spectrum. The latter possibility (i.e. no sparticle

outside the compressed region) works for relatively heavy spectra only.

We parameterise the compression using the mass gap between the LSP (mχ̃0
1
)

and the heaviest sparticle (X̃) in the spectrum, defined as ∆M = mX̃ −mχ̃0
1
, where

X̃ ∈ [g̃, t̃2, b̃2, τ̃2, χ̃0
2, χ̃±

1 ]2. We scan over the relevant parameters shown in Table 2.1.

Parameters Ranges

M1, M2, M3 (100, 2500) GeV

At (-3000, 3000) GeV

tan β (2, 50)

ML = MR (M1,M1 + 200) GeV(if M1 < M2)

(M2,M2 + 200) GeV(if M2 < M1)

Table 2.1. Ranges of the relevant parameters for the scan. M1, M2, M3 are the gaugino

mass parameters, varied in the same range but independent of each other. ML and MR

are the left-handed and the right-handed soft mass parameters of squarks and sleptons.

Here ML and MR represent the soft mass parameters of the left and right handed

squarks and sleptons respectively3. Table 2.1 suggests, we chose same ML and MR

for all flavours. For our scan, we have used SPheno(v3.3.6) [56, 57] which calculates

all sparticle masses at one-loop level while the Higgs mass is calculated at two-loop

in order to generate the SUSY spectrum and consequently micrOMEGAs(v4.1.7) [58]

2Note that the higgsino dominated states may lie outside our compressed spectrum when µ is

chosen to be very large.
3Although the soft mass parameters for the squarks and sleptons are kept equal by choice, this

does not significantly affect the hadronic signals.
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Figure 2.1. Distribution of mχ̃0
1

as a function of ∆M at different µ values. The five

colours (yellow, cyan, brown, blue and green) indicate five different values of µ. The points

in the plot satisfy all the relevant constraints mentioned in the text.

to calculate the DM relic density and direct-detection cross-section, flavour physics

constraints and muon g-2. In Fig. 2.1, we plot LSP mass mχ̃0
1

as a function of

compression mass gap ∆M . As evident, a µ-value close to or above 4 TeV allows a

∆M as low as 100 GeV. This figure gives a clear idea of the heaviness of the MSSM

spectra as we keep compressing the whole spectrum. To give some estimate, in order

to restrict the spectrum with ∆M ∼ 100 GeV, one obtains a lower limit on the LSP

mass close to 1800 GeV for µ = 5 TeV.

We examine next how the the constraints from relic density(Ωh2) and the spin-

independent cross-sections (σSI) in direct search experiments affect the allowed pa-

rameter space. Since we are considering a compressed MSSM scenario, there are

always some sparticles whose masses lie close enough to the LSP to produce suf-

ficient co-annihilation to bring down the relic density to permissible limits. For a

wino-like LSP, the χ̃0
1 mainly co-annihilates with the χ̃±

1 . In addition, if there are

sparticles nearby, e.g, g̃, t̃1, b̃1, τ̃1, in the spectrum, all the annihilation channels

combine to produce underabundance of the DM relic density. Similar situation may

occur in case of a bino-like or a bino-wino mixed LSP state. Hence Ωh2 is not a very

serious constraint for such a scenario.

Direct search limits, (σSI), however, can rule out some of the relevant parameter

space. Fig. 2.2 shows the distribution of σSI as a function of the DM mass(mχ̃0
1
). Note
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Figure 2.2. The direct detection cross-section as a function of the LSP mass. Since we

are interested in small ∆M we have plotted the points only when ∆M ≤ 200 GeV. Colour

labels follow Fig. 2.1. The black dotted line represents the most updated LUX bound.

that in this plot we only show those points in the parameter space, which produce

∆M ≤ 200 GeV. Understandably, there are no points corresponding to µ = 1 TeV

in the distribution, since Fig. 2.1 clearly shows the maximum compression we can

reach in this case is close to 220 GeV. The black dotted line represents the most

recent bound on σSI provided by the LUX experiment as a function of the DM mass

[55]. As expected, all the points obtained in the scan with µ ≥ 3 TeV lie well below

the exclusion line, the LSP in these scenarios have almost zero contribution from

higgsino components and as a result, the Z-boson coupling of the LSP is reduced

to a very small value, resulting in such small DM-nucleon scattering cross-sections.

However, if we keep decreasing the µ value, σSI increases. When the bino or wino

mass parameters become comparable to the µ parameter, as happens in part of the

parameter space in the µ = 2 TeV case4, the LSP turns out to be a mixed state

with substantial higgsino component. This results in enhancement of σSI which is

manifested in the few blue points in the figure which violate the LUX limit.

To demonstrate how the stop mixing parameters behave under the Higgs mass

constraint, we chose one particular LSP mass close to 1100 GeV (M1 = 1100 GeV)

4This is a result of our choice of the scan ranges of M1 and M2 as indicated in Table 2.1. In

Sec. 2.4, we show two such sample benchmark points with non-negligible higgsino component (e.g.

8% in BP6). However, we have not considered higgsino-like LSP for our present work.
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and vary At in the range (−3000, 3000) GeV and t̃L and t̃R soft masses, MQ3

L and

MU3
R , such that M1 < MQ3

L (MU3
R ) < M1 + 200 GeV.5 with M2 = 1200 GeV . We

further impose the constraint that the light stop mass (mt̃1
) is never heavier than the

LSP by more than 30 GeV. For simplicity, the gluino mass and all the other squark

and slepton soft masses are kept fixed at a uniform value, about 100 GeV above the

LSP mass. In principle, these sfermion masses and the gluino mass could have been

anywhere in between mt̃2
and mχ̃0

1
; however, since we are interested in minimising

the mass gap between mt̃2
and mt̃1

which largely determines the compression factor

in the whole SUSY parameter space, we have kept them at an intermediate value in

order to reduce the number of parameters to scan. The scan is carried out for two

different values of tan β, namely, 10 and 25 each for two different µ-values (2 TeV

and 3 TeV) to ascertain their effect on the compression of the relevant parameter

space.

Fig. 2.3 showcases the correlation between the stop mixing parameters once the

Higgs boson mass constraint is implemented for two different µ values. As already

discussed, the mass difference between the two stop states, ∆mt̃, is an important

factor in enhancing the radiative Higgs mass correction. In Figs. 2.3 (a) and (b) we

show the variation of ∆mt̃ with At at two different tan β values (Green and Blue

points) for µ = 2 and 3 TeV respectively. As expected, with the increase of tan β

smaller |At| is allowed from Higgs mass constraint as a result of increased mixing in

stop sector. Fig. 2.3 (b) indicates that slightly smaller |At| values are permissible

with increase in µ. In a nutshell, the minimum allowed value of ∆mt̃ decreases as we

increase tan β or µ indicating the possibility of getting more and more compressed

spectrum. The minimum ∆mt̃ obtained is about 180 GeV with mt̃1
close to 1400

GeV and µ = 2 TeV whereas with µ = 4 TeV this minimum value reduces to about

100 GeV.

Figs. 2.3 (c) and (d) show the distribution of mh as a function of ∆mt̃. These

distributions give a clear idea about the range of Higgs mass we obtaine for a certain

value of ∆mt̃. Fig. 2.3 (d) shows one can squeeze ∆mt̃ to about 160 GeV. However,

to ascertain the whole sparticle spectrum mass window, one needs to look at the

difference between the LSP mass and the heaviest sparticle in the spectrum. Mass

gap of the heavier stop/sbottom and the LSP is denoted as ∆M . Figs. 2.3 (e) and

(f) show the distribution of mh as a function of ∆M . As evident from the plots, the

minimum ∆mt̃ is almost similar to the minimum ∆M that is obtained here indicating

that at the periphery of this minima, mχ̃0
1
≈ mt̃1

.

2.4 Benchmark points

In choosing the benchmark points for our collider study, we have considered a range

of LSP masses varying from 840 GeV to 1862 GeV. The benchmark choices also take

5For the demonstration purpose, we only consider bino-like LSP, i,e, M1 < M2.
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Figure 2.3. The various distributions obtained in our scan are shown. Figs. (a), (c) and

(e) are obtained with µ = 2 TeV while Figs. (b), (d) and (f) show the same set of plots

obtained with µ = 3 TeV. All the points shown in these plots respect the set of constraints

mentioned in the text. The scan is done for two different tanβ values: 25 (green points)

and 10 (blue points).

into account a varied mass hierarchy for squarks and gluinos, thus allowing different
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possible decay cascades down to the LSP. We also consider situations where the g̃ is

the NLSP instead of t̃1. An illustrative representation of our choice of benchmark

points, keeping in mind the different ways the sparticles can be arranged in their

masses, is presented in Fig, 2.4 where we have classified the benchmarks into the

four types of representations as shown.
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Figure 2.4. Different benchmark scenarios considered in our study: Type I (BP1,BP3,

BP5, BP10), Type II (BP4, BP7, BP8, BP9), Type III (BP2) and Type IV (BP6). (In all cases,

q̃iL/R=ũiL/R, d̃iL/R with i = 1, 2. Sleptons, χ0
2 and χ±

1 not indicated in the figure, lie below

t̃2 in all cases. Additionally, the mass gaps shown between different sparticles are not to

scale).

To study the signal from the above class of spectrum within a compressed SUSY

scenario, we have chosen ten benchmark points from the allowed parameter space

in the model. The relevant input parameters, mass spectra and the values of the

constraints are summarised in Table 2.2.

Since having at least one heavy (∼ TeV) stop in the spectrum helps in achieving

a Higgs boson mass of 125 GeV, it is quite natural to expect more and more com-

pression in the whole SUSY spectrum if we keep increasing the LSP mass. In order

to showcase this, we have chosen benchmark points with different LSP masses for

different choices of the µ-parameter. BP2, with the lightest LSP mass at 842.4 GeV,

gives ∆M ∼ 300 GeV while BP6 has the heaviest χ̃0
1 at 1861.9 GeV and ∆M ∼ 184

GeV. However, note that in BP6, we are able to even pull down the χ̃3/4 and the χ̃±
2

masses within a 200 GeV mass window from the LSP.

A heavier spectrum with M1 or M2 closer to µ may give rise to more compressed

spectrum, but they run into trouble with the DM direct detection constraint. In

addition we note that spectra with very heavy squarks and gluino would be out of

the 13/14 TeV LHC reach with perhaps some hope for the very high luminosity run.

We also take some similar LSP masses with different squark-gluino mass hierarchies,

like in BP1, BP5 and BP3, BP9 to study how the different decay modes and hardness
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Parameters BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 BP9 BP10

M1 1470.0 850.0 1107.0 1334.5 1476.3 1890.3 1200.0 1510.0 1105.0 1730.0

M2 1400.5 880.0 1200.0 1328.6 1402.6 1971.3 1250.0 1550.0 1150.0 1770.0

M3 1312.0 780.0 1015.0 1405.5 1387.7 1737.1 1180.0 1420.0 1080.0 1600.0

At 2200.8 -1650.0 1897.0 -1535.1 1840.8 2800.2 2050.0 2300.0 2000.0 2720.0

µ 2000.0 3000.0 2000.0 3000.0 3000.0 2000.0 2500.0 3000.0 3000.0 2000.0

tanβ 20.0 20.0 25.0 23.9 24.2 16.87 18.0 20.0 20.0 35.0

mg̃ 1429.5 861.6 1112.8 1497.4 1500.4 1882.0 1276.7 1534.7 1165.6 1737.8

mq̃L 1476.2 893.7 1159.4 1452.3 1532.8 1912.6 1271.6 1524.5 1129.0 1790.0

mq̃R 1474.3 887.4 1158.1 1451.3 1531.9 1910.6 1270.2 1520.8 1130.7 1794.5

mt̃1 1412.3 871.7 1097.9 1330.6 1426.1 1865.0 1192.4 1507.6 1100.4 1711.3

mt̃2 1595.9 1136.8 1300.4 1509.0 1581.3 2045.6 1390.5 1686.6 1308.3 1903.2

m
b̃1

1459.7 861.6 1137.1 1407.4 1493.5 1966.7 1249.6 1521.9 1130.4 1761.3

m
b̃2

1525.3 1044.1 1224.7 1494.5 1570.3 2011.6 1323.6 1619.5 1229.4 1838.4

m˜̀
L

1432.7 880.9 1121.2 1400.7 1482.7 1916.4 1221.8 1543.9 1132.8 1745.8

m˜̀
R

1426.2 871.0 1114.7 1400.7 1482.7 1907.6 1215.4 1536.0 1121.7 1736.9

mτ̃1 1430.3 890.3 1113.5 1353.2 1438.0 1893.7 1220.0 1529.1 1105.6 1725.4

mτ̃2 1483.8 1003.3 1209.5 1446.6 1526.0 1928.4 1289.1 1602.2 1198.2 1803.8

mν̃L 1429.8 876.5 1117.6 1398.6 1480.6 1914.4 1218.3 1540.5 1128.9 1743.1

mχ̃0
1

1406.4 842.4 1096.3 1323.9 1417.6 1862.0 1189.0 1496.3 1095.4 1709.3

mχ̃0
2

1453.9 889.1 1200.8 1342.9 1463.6 1934.7 1256.9 1559.0 1158.0 1764.9

m
χ̃±
1

1406.7 889.3 1201.0 1342.9 1417.6 1929.1 1257.1 1559.1 1158.2 1764.3

mh 122.6 122.0 122.2 122.5 122.8 123.9 122.0 122.4 122.1 124.6

Ωh2 0.092 0.032 0.036 0.113 0.099 0.113 0.062 0.105 0.073 0.110

σSI × 1011 (pb) 115.78 50.11 35.95 4.65 9.08 744.98 7.64 0.13 9.56 280.97

∆M (GeV) 189.5 294.4 204.1 185.1 163.7 183.6 201.5 190.3 212.9 193.9

∆Mi (GeV) 69.8 51.3 63.1 173.5 115.2 50.6 87.7 38.4 70.2 85.2

Table 2.2. Low scale input parameters and the relevant sparticle masses along with the

values of the relevant constraints for some of the chosen benchmark points satisfying all the

collider, DM and low energy constraints discussed in this section. All the mass parameters

are written in GeV unit. Here, ∆Mi = mi−mχ̃0
1
, where i represents a gluino or the 1st/2nd

family squarks (whichever is the heaviest).

of jets are affected. It should be noted here that we have focussed on final states with

zero lepton; one-lepton, two-lepton and three-lepton states have in general highly

suppressed rates when they arise in cascade decays of coloured sparticles. Besides,

the leptonic final states often entail backgrounds with harder lepton as well as E/T
spectra, which survive the cuts in a relatively, more abundant manner. Thus the

exact location of the sleptons in our spectra are somewhat inconsequential, so far as

the multi-jet +E/T signal is concerned.

3 Probing a compressed spectrum at the LHC

We explore the possibility of finding such a scenario with jet(s) + E/T final state at

the 13 TeV run of the LHC and also perform a detailed background simulation for

the same. We consider all possible squark/gluino production channels. We must

point out that among all the subprocesses contributing to the signal, the squark-

gluino associated production channel has the largest cross-section closely followed by
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squark pair production cross-section in most of the cases. To study the signal we

look at final states with both mono-jet + E/T and multi-jets (≥ 2-jets) + E/T in order

to compare the relative statistical significance factors.

Note that there have been some significant studies [1, 2, 5–10] that deal with col-

lider signatures of a compressed spectrum. However, all these studies consider either

squark or gluino pair production and their subsequent decays into the LSP neutralino.

The compression is highlighted through the mass gap between the squark/gluino and

the LSP being small, begging the explanation that the final state jets in such cases

are too soft to be detected at the colliders. In order to observe any signal, one then

has to rely on the ISR-FSR jets and/or photons. While such an observation may

shed light on a somewhat fine tuned compression in the SUSY spectrum, one cannot

fathom that no other SUSY particle will be in similar mass ranges. We believe that

we have already highlighted that an equally probable spectrum, where almost all

SUSY particles are squeezed within a relatively small mass gap between the LSP

and the heaviest coloured sparticle, meets the strictest of experimental constraints

there is to offer. Such a scenario, therefore, presents a situation where one can envis-

age additional contributions to the final states in consideration through production

of the closely lying coloured sparticles. Through this work we try to show how this

could lead to modifications in the signal topologies and what optimisations in kine-

matic selections may be required to study such a compressed SUSY signal at the

LHC.

3.1 Analysis setup and simulation details

We consider all possible production channels of the coloured sparticles, i.e.

pp→ q̃i q̃j, q̃i q̃j
∗, g̃ g̃, q̃i g̃, q̃

∗
i g̃

where the respective sparticles would cascade down to the LSP, giving a multi-particle

final state comprising of leptons and quarks along with E/T associated with the invisi-

ble LSP. It turns out that for the compressed spectrum, the jets and charged leptons

originating from cascade decays are expected to be quite soft. Therefore it becomes

quite likely that events observed from such productions could be observed through

jets originating from initial-state radiation (ISR). As a trigger threshold for such jets

would naturally include situations where the jets may actually be coming from hard

partons produced in association with the pair of SUSY particles at the parton-level.

Hence one necessarily requires to produce hard jet(s) at the parton level along with

the coloured sparticles and match the events with the ISR jet events. We perform a

parton level event generation simulation using MadGraph5(v2.2.3) [59, 60]. For our

analysis we have chosen CTEQ6L [61] as the parton distribution function (PDF). The

factorisation scale is set following the default option of MadGraph5. The generated

events are passed through PYTHIA(v6.4) [62] to simulate showering and hadronisa-

tion effects, including fragmentation. The matching between shower jets and jets
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produced at the parton level is done using MLM matching [63, 64] based on shower-kT
algorithm with pT -ordered showers. The matching scale, defined as QCUT, differs for

the signal where heavy SUSY particles are produced in association with jets when

compared to the scale chosen for the SM background. Typical choice of this scale

is set between ' 20 − 30 GeV for the SM backgrounds, and ' 100 − 120 GeV for

the MSSM processes after careful investigation of the matching plots generated for

different QCUT values. Then we pass the events through Delphes(v3.2.0) [65–67] for

jet formation, using anti-kT jet clustering algorithm [68] (via FastJet [69]), and

detector simulation with default ATLAS selection cuts.

As the signal under consideration is either mono-jet +E/T or multi-jet +E/T , we

need to identify the dominant SM subprocesses that can contribute to the above. For

hadronic final states, the most dominant contribution comes from the pure QCD pro-

cesses such as multi-jet production where E/T comes either from the jets fragmenting

into neutrinos or simply from mismeasurement of the jet energy. Other significantly

large contributions can come from W + jets where the W decays leptonically and

the charged lepton is missed, Z + jets where the Z decays to neutrinos and tt̄ pro-

duction. Additional modes that may also contribute include t + jets and V V + jets

where V = W±, Z. For reasons already stated in section 2.4, a lepton veto in the

final state helps to suppress quite a few of the above backgrounds. The matching

scheme has been also included for the SM background wherever necessary.

Primary selection criteria

To identify the charged leptons (e, µ), photon (γ) and jets, we put the following basic

selection criteria (C0) on the final state particles for both signal and background:

• Leptons (` = e, µ) are selected with p`T > 10 GeV, |ηe| < 2.47 and |ηµ| < 2.40,

excluding the transitional pseudorapidity region between the barrel and end

cap of the calorimeter 1.37 < |η`| < 1.52.

• Photons are identified with pγT > 10 GeV and |ηγ| < 2.47 excluding the same

transition window as before.

• We demand hard jets having pjT > 40 GeV within |ηj| < 2.5.

• All reconstructed jets are required to have an azimuthal separation with ~/ET

given by ∆φ(jet, ~/ET ) > 0.2.

Once the primary selection criteria are set for the signal and background events,

we now need to identify specific kinematic characteristics that would differentiate

the SUSY events from that of the SM background. To highlight the differences,

we choose for illustration a few benchmark points, namely BP4, BP8 and BP10. In

Fig. 3.1 we show the normalised distributions of some relevant kinematic variables

where one can expect significant differences between the signal events of SUSY and
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Figure 3.1. Normalised differential distributions of a few relevant kinematic variables

for our analysis of compressed spectra after imposing the event selection cuts C0. For

illustration, signals BP4, BP8 and BP10 are compared to the SM Backgrounds. See the

draft for the description of MEff (jet).

the SM, after imposing the above selection criteria C0. Note that events with all

jet multiplicities have been included in these plots. As the SUSY signal arises from

production of heavy coloured sparticles and is expected to carry large missing energy

due to the invisible heavy LSP’s in the final state, the effective mass (MEff ) and E/T
are expected to help in differentiating the SUSY events from SM. In Fig. 3.1(a) we

present the effective mass (MEff ) distribution for these channels where

MEff =
∑
i

|~pTi |+ E/T

and i runs over all the states present in the event including the reconstructed jets.

This global variable, without utilising any topology information, can be extremely
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efficacious from the understanding that, contrary to most of the SM background

processes, production of heavy SUSY particles require significantly larger parton

level center-of-mass (CM) energy. Thus one expects a larger MEff for all benchmark

scenarios as shown in Fig. 3.1(a). In Fig. 3.1(b) we show the expected missing

transverse energy distributions for the SUSY signal and SM background. Quite

clearly, the distributions in both the above variables seem to peak at lower values

for the SM background (except tt̄+jets) when compared to the SUSY signal. Note

that we have plotted the normalised distributions which gives a qualitative idea on

the additional cuts required on these variables, rather than a quantitative one.

In addition we find two more kinematic variables of interest used by the ATLAS

Collaboration [20, 29], viz. E/T/
√
HT and E/T/MEff (jet), which show clear difference

between signal and background. These are shown in Fig. 3.1(c) and Fig. 3.1(d) re-

spectively. Here, HT represents the scalar sum of all isolated jet pT ’s while MEff (jet)

is defined to be constructed out of the first two leading jets and E/T :

MEff (jet) = pj1T + pj2T + E/T

These plots also show some distinct characteristic distributions for signals. We thus

find that appropriate cuts on the above variables, shown in Fig. 3.1, would serve to

optimise the signal vis-a-vis the SM background. We now proceed to analyse the

multi-jets + E/T and mono-jet + E/T signals in the next section.

3.2 Multi-jets +E/T

As discussed earlier, a compressed SUSY spectra such as ours can lead to high mul-

tiplicity of jets in the final state. We observe that significant signal events are found

when the jet-multiplicity (nj) is at least two (nj ≥ 2) after selecting events using

C0. This multi-jet scenario is dependent on the hardness of the selected jets and

therefore one requires optimised event selection criteria to see how it stands against

the SM background. We list below the different cuts which help us in achieving an

improved signal to background ratio:

• C1: Since we are only considering squark and gluino production channels, no

hard lepton or photon are expected in the final state. We, therefore, select final

states with two or more jets, vetoing any qualified lepton or photon in such

events.

The multi-jet signal is defined for events that satisfy C0 + C1. Note that for a

compressed SUSY spectrum, the jet multiplicity would start falling when more hard

jets are selected in the final state. An optimised choice in our case is to have only a

few very hard jets with the following requirements on their transverse momenta:

• C2: The hardest jet should have pT (j1) > 130 GeV and the next hardest jet

pT (j2) > 80 GeV.
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Signal Effective cross-section after the cuts (in fb)

Benchmark Production C0 + C1 C2 C3 C4 C5 C6 C7

Points cross-section(fb)

BP1 155.56 87.38 24.32 23.34 11.49 11.29 8.28 8.22

BP2 4202.42 1877.45 588.58 564.81 260.89 255.29 176.81 175.21

BP3 835.49 414.61 126.64 121.58 58.32 57.12 40.96 40.66

BP4 126.93 118.79 62.85 59.72 20.74 19.84 9.99 9.93

BP5 93.77 81.83 41.58 39.57 13.64 13.17 7.18 7.13

BP6 29.66 14.39 5.49 5.30 2.76 2.71 2.03 2.01

BP7 364.38 248.29 82.04 77.54 32.81 31.99 20.16 20.04

BP8 95.58 40.62 12.86 12.45 6.34 6.24 4.72 4.68

BP9 731.08 453.91 117.84 112.37 55.17 53.86 35.92 35.62

BP10 29.60 19.21 5.20 4.99 2.37 2.33 1.65 1.64

Table 3.1. The cut-flow table for the (multi-jet +E/T ) final state, showing the change

in signal cross-sections for the ten different benchmark points. The cuts (C0 – C7) are

defined in the text in Sec. 3.2.

SM Backgrounds Effective cross-section after the cuts (in pb)

Channels Production C0 + C1 C2 C3 C4 C5 C6 C7

(in pb)

tt̄ +≤ 2 jets 722.94 542.67 167.2 141.63 15.54 2.47 0.16 0.151

t +≤ 3 jets 330.57 227.0 36.23 29.84 1.09 0.123 0.01 0.009

QCD(≤4 jets) 2E+08 1.8E+07 312747 251865 2765.52 ∼0 ∼0 ∼0

Z +≤ 4 jets 57088 6660.86 325.92 265.45 13.39 2.10 0.666 0.666

W + ≤4 jets 197271 14206.3 896.76 734.47 36.93 3.98 0.485 0.485

WZ + ≤2 jets 53.8 24.44 5.74 4.81 0.67 0.16 0.037 0.036

ZZ + ≤2 jets 13.69 5.77 0.79 0.66 0.069 0.019 0.00549 0.00548

Total

background 1.352

Table 3.2. The cut-flow table for the (multi-jet +E/T ) final state, showing the change in

cross-sections for the different subprocesses contributing to the SM background. The cuts

(C0 – C7) are defined in the text in Sec. 3.2.

We find that the above requirement does not affect the signal significantly while

giving appreciable suppression to the SM background (see Table 3.1 and Table 3.2).

• C3: We demand larger azimuthal separations between the leading two jets and
~/ET i.e. ∆φ(jet, ~/ET ) > 0.4. This requirement is necessary to reduce the chance

of contamination in the E/T coming from missing parts of these hard jets.

We note that the above set of requirements (C0 – C3) not only helps in refining

the signal against the SM background but also helps us in determining more precise

quantitive cuts on the kinematic variables shown in Fig. 3.1 to improve the signal
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Statistical significance Required luminosity

(S) (in fb−1)

Signal mχ̃0
1
(GeV) L = 100 L = 500 L = 1000 S = 3σ S = 5σ

BP1 1406.4 2.23 4.99 7.06 180.98 502.72

BP2 842.4 46.67 104.37 147.60 0.41 1.15

BP3 1096.3 11.00 24.61 34.80 7.44 20.66

BP4 1323.9 2.70 6.03 8.53 123.46 342.94

BP5 1417.6 1.94 4.33 6.13 239.13 664.26

BP6 1862.0 0.55 1.22 1.73 2975.21 8264.46

BP7 1189.0 5.44 12.16 17.19 30.41 84.48

BP8 1496.3 1.27 2.84 4.02 558.00 1550.00

BP9 1095.4 9.65 21.57 30.50 9.66 26.85

BP10 1709.3 0.45 1.00 1.41 4444.44 12345.68

Table 3.3. Statistical significance of the signal for different benchmark points in the

multi-jet +E/T analysis at 13 TeV LHC. The significance is estimated for three values

of integrated luminosity (L = 100, 500 and 1000 fb−1). We also estimate the required

integrated luminosity to achieve a 3σ and 5σ excess for each benchmark point at LHC with√
s = 13 TeV.

significance (see Table 3.1 and Table 3.2). Naively, Fig. 3.1(d) would suggest that

an appropriate cut on E/T/MEff (jet) itself can help us completely eliminate the

background. However, on close inspection, we find that the tail of the large QCD

background still survives this cut. We, therefore, find a more optimised cut flow to

improve the signal significance as shown below.

• C4: We demand MEff > 800 GeV. This turns out to be quite crucial in

significantly suppressing almost all contributions for the SM background while

moderately affecting the signal events.

• C5: We demand E/T > 160 GeV which helps in completely eliminating the

remnant QCD multi-jet background while suppressing all the other SM back-

ground channels. Note that this cut hardly affects the signal for any of the

benchmark points.

• C6: Larger missing energy and softer jets in our scenario results in a larger

E/T/
√
HT ratio compared to the SM background channels. We find that with

E/T/
√
HT > 15 GeV1/2 the signal significance can be improved further.

• C7: The ratio E/T/MEff (jet) is shown to peak at smaller values for the SM

background and therefore we demand E/T/MEff (jet) > 0.35 which further im-

proves our signal significance.
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We present the numerical results for the ten aforementioned benchmark points

and the SM background to the multi-jet +E/T signal at LHC with
√
s = 13 TeV. In

Table 3.1 we summarise the effects of the cuts (C0 – C7) on signal cross-sections.

It is worth pointing out here that we have used next-to-leading order (NLO) cross-

section for the production rates of squarks and gluinos in our signal analysis by

multiplying the leading-order cross-sections of MadGraph5 by NLO K-factors ob-

tained using Prospino 2.1 [70–74]. The cut-flow table for the same set of cuts is

shown for the SM background processes in Table 3.2. Note that we have also used

the NLO cross-section for SM background processes provided in MadGraph5 [59]. It

is quite clear to see from Tables 3.1 and 3.2 that our choice of cuts is quite efficient in

suppressing a seemingly huge SM background such that the signal may be observed

at the LHC. The statistical significance (S) of the observed signal (s) over the total

SM background (b) has been calculated using

S =

√
2×

[
(s+ b)ln(1 +

s

b
)− s

]
. (3.1)

We show the significance of the signal for different benchmark points in the multi-jet

+E/T channel in Table 3.3. We choose three different values for the integrated lumi-

nosity (L = 100, 500 and 1000 fb−1) to highlight the significance for the benchmark

points. We find that the signal corresponding to BP6 and BP10 are practically sce-

narios within a compressed SUSY spectrum which would be very hard to observe in

the multi-jet +E/T channel. In fact an integrated luminosity of over 3000 fb−1 would

be required for any hope of observing a notable excess for the SUSY spectrum given

by the above benchmark points. This is however understandable as the correspond-

ing spectra is very heavy leading to smaller production rates compared to the other

benchmark points. The lightest spectrum amongst all the benchmark points, viz.

BP2 is the most robust of all and should be observable at the present run of LHC

with luminosity as low as 1 fb−1. The rest of the benchmark points too lead to 3σ

and 5σ excess over the SM backgrounds with relatively nominal to slightly higher

integrated luminosities as shown in the last two columns of Table 3.3.

3.3 Mono-jet +E/T

The mono-jet +E/T signal is considered as a favourable channel to probe a compressed

spectrum at the LHC [5–13, 18, 75]. Therefore it is quite logical to explore how

the mono-jet final state in our scenario stands against the SM background. Both

ATLAS and CMS have investigated mono-jet signals in the context of compressed

SUSY spectra [15–17, 19, 20]. Note that, these analyses consider only such scenarios

where the compression is between the NLSP and LSP, and the signal arises through

the NLSP pair production and its subsequent decay. Since we consider almost the

entire SUSY spectrum to be compressed, all SUSY processes (dominated, of course,

by coloured sparticle production channels) are of interest to us. Thus our analysis
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Signal Effective cross-section after the cuts (in fb)

Benchmark Production C0 + D1 D2 D3 D4 D5

Points cross-section(fb)

BP1 155.56 136.11 51.85 14.19 11.64 3.01

BP2 4202.42 3262.38 1334.47 321.74 256.86 58.14

BP3 835.49 686.61 277.70 70.70 57.26 13.76

BP4 126.93 126.70 79.36 12.06 8.22 0.88

BP5 93.77 88.93 55.13 9.16 6.23 0.78

BP6 29.66 23.81 11.58 2.58 2.13 0.58

BP7 364.38 308.97 126.35 27.61 20.34 5.15

BP8 95.58 71.47 30.46 7.48 6.20 1.63

BP9 731.08 650.39 241.20 69.16 54.65 13.63

BP10 29.60 27.11 10.32 2.91 2.32 0.60

Table 3.4. The cut-flow table for the (mono-jet +E/T ) final state, showing the change in

signal cross-sections for the ten different benchmark points. The cuts (C0, D1 – D5) are

defined in the text in Sec. 3.3.

requires revisiting the standard cuts suggested in the literature. As in the case of

multi-jet +E/T final state, we demand a leptonically quiet mono-jet final state (after

C0) where:

• D1: Events are selected having at least one hard jet in the final state with no

charged lepton or photon.

Since mono-jet searches rely on hard ISR jet, the leading jet is required to be consid-

erably hard with large transverse momentum and well separated from the direction

of ~/ET :

• D2: The leading jet has pT (j1) > 130 GeV (as before) with a significantly

larger azimuthal separation with ~/ET given by ∆φ(j1,
~/ET ) > 1.0.

• D3: In order to accommodate a hard jet coming from ISR, but not rule out

cases with another jet arising due to its fragmentation, we demand the second

hardest jet to have pT (j2) < 80 GeV, but with ∆φ(j2,
~/ET ) > 1.0.

We thus define our mono-jet + E/T signal for events which satisfy cuts (C0, D1 –

D3). Moreover, for events where the leading jet is hard enough, a sizeable E/T is

seen, which also serves as an useful discriminator for the SUSY signal from the SM

background.

• D4: We demand E/T > 160 GeV. In our case, this decreases the SM background

substantially, as opposed to the SUSY signals (see Table 3.4 and 3.5).

We also find that a hard effective mass (MEff ) cut is also quite efficient in suppressing

the SM background as compared to SUSY signal events for the mono-jet+E/T channel.

– 21 –



• D5: We set MEff > 800 GeV for the analysis which again helps to remove

the huge QCD background as well as reduce the other dominant contribu-

tions. Although the signal events are also reduced considerably, the signal-to-

background ratio improves significantly after the MEff cut.

SM Backgrounds Effective cross-section after the cuts (in pb)

Channels Production C0 + D1 D2 D3 D4 D5

(in pb)

tt̄ +≤ 2 jets 722.94 573.89 171.12 21.52 2.135 0.119

t +≤ 3 jets 330.57 278.05 41.14 6.17 0.355 0.011

QCD(≤4 jets) 2E+08 7.6E+07 417461 46034 2584 ∼0

Z +≤ 4 jets 57088 18924.1 446.41 52.25 6.66 0.255

W + ≤4 jets 197271 50478.5 1167.56 139.332 8.98 0.534

WZ + ≤2 jets 53.8 37.92 6.896 0.953 0.208 0.0161

ZZ + ≤2 jets 13.69 9.77 1.03 0.158 0.0498 0.00264

Total

background 0.938

Table 3.5. The cut-flow table for the (mono-jet +E/T ) final state, showing the change in

cross-sections for the different subprocesses contributing to the SM background. The cuts

(C0, D1 – D5) are defined in the text in Sec. 3.3.

Tables 3.4 and 3.5 summarise the effect of the cuts (C0, D1 – D5) on the

SUSY signals and SM background cross-sections respectively. For both signal and

background, we have used the NLO cross-sections as before. It is clear from Tables 3.4

and 3.5 that our choice of cuts for the mono-jet +E/T final state, although quite helpful

in suppressing the SM background to improve the signal significance is however not

an improvement over the multi-jet +E/T channel. We show the significance of the

signal for all the benchmark points in the mono-jet +E/T channel in Table 3.6 with

the same integrated luminosity (L = 100, 500 and 1000 fb−1).

For the mono-jet +E/T channel too, we find that the lightest spectrum, BP2 will

be discovered at the earliest. The heavier spectra, BP6 and BP10 are no more better

observable in the mono-jet +E/T channel as they were in the multi-jet +E/T channel.

Among others, large number of signal spectra such as, BP4, BP5, BP8, have low

significances even at 1000 fb−1 whereas BP3, BP9, BP7 and BP1 may be observed at

moderate (∼45 fb−1) to high (∼1000 fb−1) luminosities at the LHC. It is important

to note that the squark-gluino masses and hierarchy dictate the hardness of the

cascade jets. As per our selection criteria, D2 rejects events with additional hard

jets while retaining many more with softer accompanying jets, thereby enhancing the

significance in general. However, it adversely affects cases such as BP4 which have

larger mass gaps.

Thus, although the multi-jet + E/T channel provides increased signal significances

for all the benchmark points, mono-jet + E/T channel still remains a viable window for
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Statistical significance Required Luminosity

(S) (in fb−1)

Signal mχ̃0
1
(GeV) L = 100 L = 500 L = 1000 S = 3σ S = 5σ

BP1 1406.4 0.98 2.19 3.10 937.11 2603.08

BP2 842.4 18.98 42.44 60.02 2.50 6.94

BP3 1096.3 4.49 10.03 14.20 44.64 124.00

BP4 1323.9 0.29 0.64 0.91 10926.44 30351.22

BP5 1417.6 0.25 0.57 0.81 14400 40000

BP6 1862.0 0.19 0.42 0.60 24930.75 69252.08

BP7 1189.0 1.68 3.76 5.31 318.88 885.77

BP8 1496.3 0.53 1.19 1.68 3203.99 8899.96

BP9 1095.4 4.45 9.95 14.07 45.44 126.25

BP10 1709.3 0.20 0.44 0.62 22500 62500

Table 3.6. Statistical significance of the signal for different benchmark points in the

mono-jet +E/T analysis at 13 TeV LHC. The significance is estimated for three values

of integrated luminosity (L = 100, 500 and 1000 fb−1). We also estimate the required

integrated luminosity to achieve a 3σ and 5σ excess for each benchmark point at LHC with√
s = 13 TeV.

observing compressed spectra. Overall, the efficacy of both these channels depends

on the splitting among the LSP, lighter stop, gluino and first two generation squark

masses. The benchmark points where the masses of the first two generation squarks

and the gluino are separated from the LSP by about 50 GeV at most are found to

have better signal to background ratio in the multi-jet +E/T final state when compared

to mono-jet +E/T . However, two spectra with similar q̃-g̃ masses resulting in similar

production cross-sections, are expected to differ in their relative sensitivities to the

two final states depending upon the q̃-g̃-χ̃0
1 mass gaps. Let us consider BP5 and BP8

for example. Although the q̃’s and the g̃ masses are very similar, ∆Mi in BP8 is

much smaller than that in BP5 because of their different LSP masses. Naturally,

BP5 provides a better signal significance than BP8 when multi-jet + E/T final state

is considered but the situation is reversed when we do a mono-jet + E/T analysis.

BP3 and BP9 despite having similar LSP mass, are different in terms of the q̃-g̃

mass hierarchy. BP3, as a consequence of having smaller gluino mass, has a larger

production cross-section, but due to the presence of more number of softer jets in

BP9, it does slightly better than BP3 in terms of signal significance in the mono-jet

analysis. BP4 despite having smaller production cross-section than BP1, has a better

signal significance for multi-jet + E/T final state due to the presence of more number

of harder jets. On the other hand, BP1 does better if mono-jet + E/T final state

is considered. BP2 prevails over all the other benchmark points in terms of signal

significance in both the final states due to its large production cross-section. BP6
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and BP10 having very heavy q̃-g̃ spectrum, are unlikely to be probed even at high

luminosities.

4 Summary and conclusion

In this work, we have considered the compressed SUSY scenario within the phe-

nomenological MSSM framework that is consistent with all the present collider and

DM data. We observe that achieving a substantial compression in the whole SUSY

spectrum while being consistent with the observed Higgs boson mass requires rela-

tively heavy masses for the sparticles. Since at least one of the stop masses needs to

be heavy (above TeV) in order to enhance the lightest CP-even Higgs boson mass to

the allowed range, better compression in the parameter space is obtained as we con-

sider heavier LSP masses which nonetheless address the naturalness problem. Such

mass ranges, we emphasize, are beyond the reach of the 8 TeV run, and therefore,

warrant a close investigation in the context of 13/14 TeV LHC. We observe that

having a large µ-parameter, too, can achieve tighter compression in the remaining

spectrum.

We select ten representative benchmark points from the currently allowed param-

eter space with all kinds of mass hierarchies and explore their detection possibility

at the 13 TeV run of the LHC. Similar results can be expected if the upgradation

to 14 TeV takes place. We analyse both the conventional multi-jet +E/T channel and

the mono-jet +E/T channel. We observe that although mono-jet +E/T channel may be

a viable option for this kind of scenario, a multi-jet +E/T final state provides better

statistical significance over the SM background for all our benchmark points.
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