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In most iron-based superconductors, the transition to the magnetically ordered state is closely
linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However,
recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-
based superconductors. This novel magnetic ground state can be understood as a double-Q spin
density wave characterized by two order parameters M1 and M2 related to each of the two Q
vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-
vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer
spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic
configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-
energy itinerant models do support a transition from single-Q to double-Q magnetic order, but
with nearly-degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions
of these low-energy models including additional electronic interactions tip the balance in favor of
the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this
paper, we revisit the phase diagram of magnetic ground states of low-energy multi-band models in
the presence of weak disorder. We show that impurity scattering not only promotes the transition
from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex
crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in
the presence of disorder supports the experimental finding that the splitting between the structural
and stripe-magnetic transition is enhanced by disorder.

I. INTRODUCTION

One of the common features of iron-based supercon-
ductors (FeSC) is the emergence of superconductivity in
close proximity to a magnetic instability.1,2 Even more
intriguingly, superconductivity coexists with magnetism
in some of the iron-based compounds.3,4 Thus it is im-
perative to study the nature of the magnetic order in
the FeSC compounds in order to better understand the
superconducting state in these materials.

Most of the undoped compounds of the FeSC family ex-
hibit magnetic stripe order with the spins on the iron sites
lying in the planes and being aligned ferromagnetically
along one direction, and antiferromagnetically along the
other. In addition to the continuous O(3) spin-rotational
symmetry broken below the magnetic transition temper-
ature TN, this stripe-magnetic (SM) state also breaks an
additional Z2 Ising-like symmetry since the ordering vec-
tor of the spin-density wave (SDW) S(r) = MeiQ·r is
either Q = (0, π) or Q = (π, 0). The Z2 (or, equiv-
alently, C2) symmetry breaking can occur at tempera-
tures Ts > TN and entails a structural transition from
tetragonal (C4) to orthorhombic (C2). Furthermore, if
the transitions are split, this allows for an intermediate
phase with broken Z2 symmetry but no magnetic long-
range order. This intermediate phase is dubbed nematic
order5–7. Interestingly, the splitting ∆T = Ts − TN be-
tween the two transitions, and the stabilization of an
intermediate nematic phase, depends on disorder.8–10.

Uncovering the origin of the nematic phase – either a
spin-driven or an orbital-driven mechanism – may also
elucidate the mechanism for superconductivity.

Recently, C4-magnetic phases have been observed in
the hole-doped compounds Ba(Fe1−xMnx)2As2,11

Ba1−xNaxFe2As2,12, Ba1−xKxFe2As2,13–15 and
Sr1−xKxFe2As2

16, suggesting that such phases might
be a general feature in the phase diagram of hole-
doped FeSC17. The magnetic Bragg peaks of these
C4-magnetic phases occur at the same momenta
Q1 = (π, 0) and Q2 = (0, π) as in the stripe-ordered
state and, consequently, such a state can be un-
derstood as the superposition of two spin-density
waves S(r) = M1eiQ1·r + M2eiQ2·r, i. e. a double-Q
SDW, as illustrated in Fig. 1. As in the case of stripe
antiferromagnetism, which is preceded by nematic order,
also these double-Q magnetic states can in principle be
melted in two stages, passing through an intermediate
state of vestigial charge or chiral order.18

The existence of double-Q magnetic states as addi-
tional ground states for the FeSC has also been es-
tablished by different theoretical approaches,19–27 all of
which suggest the two possible double-Q ground states
visualized in Fig. 1 in addition to the single-Q stripe-
magnetic order. Fig. 1(a) shows the charge-spin density
wave (CSDW) that arises from aligning M1 and M2 ei-
ther parallel or antiparallel. This results in a nonuni-
form magnetization with vanishing average moment at
the even lattice sites and staggered-like order at the odd
lattice sites, or vice versa. If M1 and M2 are orthogo-
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FIG. 1. Illustration of the two double-Q magnetically ordered states as a superposition of two single-Q stripe-magnetic states.
(a) Aligning the order parameters M1 = ±M2 (anti)parallel yields a charge-spin density wave. This order is favorable if g < |w|
and w < 0. (b) Aligning the order parameters M1 ⊥M2 perpendicular to each other leads to the formation of a spin-vortex
crystal. This state is favorable if g < 0 and w > 0. Otherwise, single-Q stripe order is favored.

nal, the resulting spin-vortex crystal (SVC) is character-
ized by a noncollinear magnetization that is illustrated
in Fig. 1(b).

All three magnetic states, the stripe-magnetic and the
two double-Q magnetic states, can be rationalized in
terms of a Ginzburg-Landau expansion of the free energy
in terms of the two magnetic order parameters Mi

18,24,28,

F [Mi] = a
(
M2

1 + M2
2

)
+
u

2

(
M2

1 + M2
2

)2
− g

2

(
M2

1 −M2
2

)2
+ 2w (M1 ·M2)

2
. (1)

Depending on the quartic coefficients u, g, and w, the
corresponding energy is minimized by one of the three
magnetic ground states described above, provided that
u > max(0, g,−w).

For g > max(0,−w), the stripe-ordered C2-magnetic
phase is the magnetic ground state of systems described
by the free energy ((1)), and it is accompanied by a struc-
tural transition from tetragonal to orthorhombic. This
scenario is supported by itinerant as well as by localized
approaches to magnetism in FeSC, and it is experimen-
tally well established that stripe-SDW is the magnetic
ground state of many compounds of this family of mate-
rials. If, on the other hand, g < max(0,−w), one of the
two above described possibilities of C4-magnetic phases
is realized, depending on whether w > 0 (leading to a
spin vortex crystal) or w < 0 (implying a charge-spin
density wave).

Experimentally, several probes16,29,30 established that
the magnetic moments in the C4-magnetic phase ob-

served in hole-doped FeSC are aligned parallel to the
c axis, i. e., pointing out of plane, and that the magnetic
moment vanishes at every second lattice site while it is
doubled at the others. These features uniquely identify
this C4-magnetic phase as a realization of a charge-spin
density wave, corresponding to w < 0. Therefore, it is
important to elucidate theoretically which generic fea-
tures of low-energy models yield w < 0 and g < |w|.

Localized approaches based on the J1-J2 Heisenberg
model favor the single-Q stripe-ordered state,31 whereas
itinerant approaches allow for both signs of g. Focusing
on the three-band itinerant low-energy model previously
employed in the literature17,20,24, one finds a sign-change
from g > 0 near perfect nesting to g < 0 away from
perfect nesting, implying a transition from single-Q to
a double-Q state. However, due to phase space restric-
tions, this same model generically gives w = 0 (for de-
tails, see Sect. II A), leaving the noncollinear SVC and
the nonuniform CSDW order degenerate (see Fig. 2(a)).
Extensions of this model tend to favor w > 0, in dis-
agreement with the recent experiments – this is indeed
obtained by including residual electronic interactions17,20

or, as we will show below, an incipient fourth pocket.
We note that although Ref. 28 proposed that the prox-
imity to a Néel-like state can favor w < 0, this scenario
is only applicable to Ba(Fe1−xMnx)2As2, since the com-
pound BaMn2As2 displays Néel order – which is not the
case for Ba1−xNaxFe2As2 or Ba1−xKxFe2As2. Note also
that Ref. 32 showed that the spin-orbit coupling leads to
anisotropic quadratic terms in the free energy (1) that
favor the CSDW order, even though w = 0. This how-
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FIG. 2. Evolution of the phase diagrams, as function of increasing scattering rate, of the possible magnetic ground states of
our three-band minimal model of iron-based superconductors. Here we used Γinter

e−e = 0.1Γintra
h , and the phase diagrams are

obtained in the limit δµ � 2πT and δm � 2πT . The regime of single-Q stripe order (SM) is shown in green, the double-Q
spin-vortex crystal (SVC) order is indicated by blue, and the yellow region represents the double-Q charge-spin density wave
(CSDW). In the clean regime, where all scattering rates are zero, SVC and CSDW order are degenerate and we indicated this
region with w = 0 in red. The crosses mark the points in the phase diagram at which we plotted g and w as a function of
scattering rate in Fig. 5 and Fig. 7, respectively.

ever only works near the magnetic transition, since at
low temperatures the quartic terms are the ones that de-
termine the ground state.

Therefore, understanding which additional features
can lead to w < 0 is essential to shed light on the mech-
anisms behind the formation of the C4 phase. Since
charged potential impurities can locally stabilize charge-
spin density wave order,19,27 one promising approach is
the inclusion of doping effects beyond a rigid-band model.
In this paper, we consider the effect of impurity scatter-
ing on the quartic coupling constants g and w of the itin-
erant minimal three-band model. We find that, in the
regime where g > 0 in the clean system, the inclusion
of disorder suppresses g, and may even change its sign.
One of the consequences of this result is that the split-
ting ∆T = Ts − TN between the structural and magnetic
transitions to the stripe-ordered state may, depending on
the vicinity of the system to a tricritical point, enhance
upon increasing disorder, in agreement with recent ex-
periments on BaFe2As2 subject to electron irradiation9.
Furthermore, disorder itself may cause a transition from
single-Q to double-Q order near perfect nesting, as shown
in Figs. 2(b) and (c). Our most important result, how-
ever, is the fate of the vanishing coefficient w in the pres-
ence of disorder. We find that disorder generally lifts the
degeneracy between CSDW and SVC, favoring w < 0
(and therefore CSDW) near perfect nesting (Figs. 2(b)
and (c)). Consequently, this opens the interesting possi-
bility of controlling the magnetic ground state in FeSC
with controlled disorder introduced via irradiation or re-
moved via annealing.

The paper is structured as follows. Section II intro-
duces the microscopic model including disorder, which

we use to calculate the free energy. We start by reca-
pitulating that w = 0 follows immediately from a three-
band model in Section II A, followed by the discussion of
a fourth band in Section II B which only allows for w > 0.
Consequently, we study the effect of disorder as an alter-
native route and show in section II C that the presence
of impurities can indeed render w < 0 already within
the simpler three-band model. The nature of the mag-
netic ground state is determined by the coefficients g and
w, and their dependence on disorder is discussed in Sec-
tion III, also elucidating the disorder dependence of the
splitting between nematic and magnetic transition. Fi-
nally, we combine our results to obtain a phase diagram
of magnetic ground states in the presence of disorder,
which complements the discussion of our conclusions in
Section IV.

II. MICROSCOPIC MODEL

We consider a minimal multi-band model20,24 for iron-
based superconductors (FeSC) consisting of two circu-
lar hole pockets centered around the Γ point and the
M point of the Fe-only Brillouin zone, i. e. around (0, 0)
and (π, π), respectively, and two elliptical electron pock-
ets centered around X and Y at Q1 = (π, 0) and
Q2 = (0, π), respectively. The pocket at the M point
however is not a generic feature of this class of materials
since it exists only in some of the iron-based compounds.
Moreover, even in the compounds in which the pocket at
the M point exists, this band is not guaranteed to cross
the Fermi level for all values of kz. Our analysis in sec-
tion II B will show that the presence of such an incipient



4

hole pocket at the M point cannot explain the formation
of a charge-spin density wave and hence can be neglected
in the remainder of this paper. The noninteracting part
of the model is described by the Hamiltonian

H0 =
∑
k,σ,λ

ελ,kc
†
λ,k,σcλ,k,σ , (2)

where the fact that the bands are centered around dif-
ferent momenta is reflected in the band index λ ∈
{hΓ,hM , e1, e2} where the hole bands are labeled by hΓ

and hM , and the electron bands by e1 ≡ eX and e2 ≡ eY .

Thus c†λ,k,σ creates an electron in band λ with spin σ,
and the respective dispersions near the Fermi energy can
be parametrized as follows

εhΓ,k = −εk ,
εe1,k = εk − δµ + δm cos(2θ) ,

εe2,k = εk − δµ − δm cos(2θ) ,

εhM ,k = −εk − EM ,

(3)

with εk = k2

2m−ε0 +µ and θ = arctan(ky/kx). δµ charac-
terizes the shift of the chemical potential and is therefore
proportional to doping, and δm is a measure of the el-
lipticity of the electron bands. The top of the hole band
at the M point is lower in energy than the top of the
hole band at the Γ point, i.e. EM > 0, such that it is
not guaranteed to cross the Fermi surface even if it does
exist. Note that EM = δµ = δm = 0 gives perfectly
nested electron and hole bands. The respective nonin-
teracting single-particle Green’s functions are given by
Gλ,k(νn) = (iνn− ελ,k)−1 with νn = 2πT (n+ 1/2) being
a fermionic Matsubara frequency.

Since we are concerned with the nature of the magnet-
ically ordered state, we focus on the electron-electron in-
teraction projected in the spin channel, hereafter denoted
by V . Upon performing a Hubbard-Stratonovich trans-
formation, two magnetic order parameters arise, M1 and
M2, associated with the two ordering vectors Q1 = (π, 0)
and Q2 = (0, π), respectively. Their coupling to the elec-
tronic degrees of freedom is given by

Hint = −
∑
k,i

Mi ·
(
c†hΓ,k,σ1

σσ1,σ2
cei,k,σ2

+ h. c.
)

−
∑
k,i

Mi ·
(
c†hM ,k,σ1

σσ1,σ2ceī,k,σ2 + h. c.
)

(4)

where ī = 2, 1 if i = 1, 2. In the vicinity of the magnetic
phase transition, we can integrate out the electronic de-
grees of freedom and derive the free energy expansion of
the system

F [Mi] =
∑
i

ai|Mi|2 +
∑
i,j

uij |Mi|2|Mj |2

+ 2w(M1 ·M2)2 , (5)

where the coefficients ai, uij and w can be calculated
from the microscopic model introduced above. Due to

the rotational symmetry connecting the electron bands,
it holds that a1 = a2, u11 = u22, and u12 = u21. The free
energy (5) can be brought to the form of Eq. (1) using
u ≡ u12 + u11 and g ≡ u12 − u11.

While the transition temperature is determined by the
vanishing of the quadratic coefficient, the nature of the
magnetic ground state is solely determined by the inter-
play of the quartic coefficients g and w in this expan-
sion as long as u > max(0, g,−w). Since our goal is to
explain the formation of charge-spin density waves in a
low-energy model of the FeSC, we are mainly interested
in scenarios that yield w < 0. In the remainder of this
section, we show that neglecting the incipient hole pocket
at M yields w = 0 in the clean case as a consequence of
phase space restrictions. However, including the incip-
ient pocket in a clean model leads to w > 0 and thus
the spin-vortex crystal would be favorable. Only the in-
clusion of disorder can yield w < 0 and thus render the
nonuniform charge-spin density wave order favorable

A. Clean three-band model

We start our considerations with the clean three-band
model, i. e., disregarding the second hole pocket at the
M point which is not present in all FeSC compounds.
The coefficients in the expansion of the free energy, pre-
viously defined in Ref. 24, are given by:

ai =
2

V
+ 2

∫
k

GhΓ,k(νn)Gei,k(νn) ,

u =
1

2

∫
k

G2
hΓ,k(νn)[Ge1,k(νn) +Ge2,k(νn)]2 ,

g = −1

2

∫
k

G2
hΓ,k(νn)[Ge1,k(νn)−Ge2,k(νn)]2 ,

w = 0 , (6)

where we abbreviated
∫
k
. . . ≡ T

∑
n

∫
dk

(2π)2 . . . For con-

venience, we write u and g here in the symmetrized
form, namely u = 1

2 (u11 + u12 + u21 + u22) and g =

− 1
2 (u11 − u12 − u21 + u22). The coefficient w vanishes

in the clean model as a consequence of the trace in spin
space32: The most generic quartic diagram [see Fig. 3(a)]
is proportional to

tr

[∑
ijkl

M
(i)
λ1
σiM

(j)
λ2
σjM

(k)
λ3
σkM

(l)
λ4
σl

]
= 2
[
(Mλ1

·Mλ2
)(Mλ3

·Mλ4
)

− (Mλ1
·Mλ3

)(Mλ2
·Mλ4

)

+ (Mλ1 ·Mλ4)(Mλ2 ·Mλ3)
]
. (7)

Within the minimal model, introduced in Eqs. (2) and
(4), and with the additional simplification of neglecting
the pocket at the M point, the absence of scattering as
well as interactions between the electron bands require
that either λ1 = λ2 and λ3 = λ4, or λ1 = λ4 and λ2 = λ3
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holds, as can be seen from Fig. 3(a). Both conditions
result in tr[(Mλ1

· σ)(Mλ2
· σ)(Mλ3

· σ)(Mλ4
· σ)] =

2|Mλ1
|2|Mλ3

|2 and thus imply w = 0 in the clean case.
On the contrary, the inclusion of interband scattering or
interactions between the two electron pockets at Q1 and
Q2 allows for contributions where λ1 = λ3 and λ2 = λ4,
rendering w finite since then tr[(Mλ1 ·σ)(Mλ2 ·σ)(Mλ3 ·
σ)(Mλ4 · σ)] = 2

[
2(Mλ1 ·Mλ2)− |Mλ1 |2|Mλ2 |2

]
.

B. Incipient hole pocket at the M point

The inclusion of an incipient hole pocket at (π, π) al-
lows for contributions that render w finite in an analo-
gous manner. The contribution to the planar coupling w
that survives the spin trace as a consequence of the pres-
ence of the second hole pocket is depicted diagrammat-
ically in Fig. 3(b). We consider the simplest case where
δµ = 0 = δm, i. e., perfect nesting of the hole band at the
Γ point and the two electron bands, since this yields a
finite value for the planar coupling,

w = 4

∫
k

GhΓ,k(νn)Ge1,k(νn)GhM ,k(νn)Ge2,k(νn)

= 4T

∞∑
n=−∞

ρF

∫ ∞
−∞

dε
1

iνn + ε

1

iνn + ε+ EM

1

(iνn − ε)2

≈

{
7ρFζ(3)
2π2T 2 ≈ 0.43 ρF

T 2 , EM � T ,
4ρF

E2
M

, EM � T ,
(8)

where ζ(z) is the Riemann zeta function, and we assumed
the density of states at the Fermi level to be given by a
constant ρF in all bands.

Hence we find that the inclusion of the second hole
pocket indeed lifts the degeneracy of the two double-Q
magnetically ordered states. However, it can only ac-
count for the formation of a spin-vortex crystal since
w > 0 always. Furthermore, if the pocket at M is shifted
to energies far below the Fermi level, we reproduce the re-
sults of the previously discussed three-band model since

FIG. 3. Diagrams in the absence of disorder. (a) Sketch of
a generic quartic diagram before performing the spin trace:
Each vertex couples the hole band to one of the electron
bands, and the dashed lines indicate that scattering or addi-
tional interactions could alter the diagram. (b) Contribution
to the planar coupling constant w if the incipient hole pocket
at M is taken into account.

the coefficient w vanishes in the limit EM → ∞, which
is the relevant limit for many of the FeSC compounds.

A positive planar coupling w > 0 has also been ob-
tained in previous studies of other extensions of the
clean three-band model such as the perturbative inclu-
sion of additional interactions.17,20 This suggests a dif-
ferent route to w < 0 is needed in order to explain the
formation of the collinear CSDW state within this low-
energy model. In the remainder of this paper, we investi-
gate the effect of disorder on the magnetic ground state.
Furthermore, we neglect the hole pocket at the M point
since it is not a generic feature of the FeSC family and
its inclusion is not able to explain why the nonuniform
CSDW is favored over the noncollinear SVC in the hole-
doped compounds.

C. Impurity scattering

Impurity scattering will affect both the magnetic tran-
sition temperature, determined by the vanishing of ai,
and the nature of the magnetic ground state, determined
by g and w. Hereafter, we focus on the latter effect – the
former gives rise to a suppression of the magnetic transi-
tion temperature with disorder, as shown elsewhere10,33.
In the particle-hole symmetric case (perfect nesting),
where δµ = δm = 0, the nematic coupling constant g
vanishes. Finite ellipticity δm 6= 0, however, causes g to
be finite. The effect of doping can then partially be ac-
counted for by a finite value of the chemical potential,
i. e., δµ 6= 0.

Meanwhile, doping also introduces disorder, which has
a different effect on the electronic structure than the rigid
band shift assumed by changing the chemical potential.34

For instance, it has been shown that impurity scattering
can locally stabilize charge-spin density wave order,27

thus suggesting that the inclusion of disorder for the
itinerant electrons participating in the formation of the
magnetically ordered state is an important ingredient for
the investigation of the CSDW state. Hence we consider
an arbitrary realization of nonmagnetic impurities, thus
adding the term

Hdis =
∑
λ,λ′

∑
k,k′

∑
σ

c†λ,k,σWλλ′(k,k′)cλ′,k′,σ (9)

to the Hamiltonian. As usual, we are not interested in
quantities that depend on the microscopic disorder real-
ization, but rather in self-averaged physical observables.
Therefore, we are interested in disorder-averaged quanti-
ties where all information about the disorder is encoded
in the correlation function〈

Wλ1λ′
1
(k1,k

′
1)Wλ2λ′

2
(k2,k

′
2)
〉

dis
(10)

= Γλ1λ′
1λ2λ′

2
(k1,k

′
1,k2,k

′
2)δ(k1 + k2 − k′1 − k′2 + K)

where 〈. . .〉dis denotes the average over disorder config-
urations which restores translation invariance, and K is
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a vector from the reciprocal lattice. Thus the correlator
constitutes a measure of impurity strength and is propor-
tional to the scattering rate Γ characterizing the respec-
tive scattering process. These scattering rates depend on
the impurity concentration as well as on the strength of
the disorder potential itself.

In the remainder, we concentrate on the simplest type
of impurities and thus assume the disorder to be spatially
local, δ-correlated, and sufficiently smooth such that the
momentum dependence of the scattering rates can be ne-
glected for momenta from the same pocket of the Fermi
surface. Then, scattering within one band or between two
bands is characterized by constant scattering rates Γintra

e ,
Γintra

h or Γinter
e−e , Γinter

e−h , respectively. Here we assume that
both electron bands are affected in the same way by im-
purities, and thus the respective scattering rates are equal
– consistent with the tetragonal symmetry of the system.
Note that in a multiband model, the effect of impurity
scattering can have subtle consequences35 which we avoid
here by requiring that all scattering processes be charac-
terized by real numbers, i. e., the impurities do not break
time-reversal invariance locally. Furthermore, we assume
the impurity potential to be sufficiently weak such that
single-particle interference effects can be neglected. In
this case, calculating the self-energy within the Born ap-
proximation is appropriate, resulting in

Gλ,k(νn) =
(

iνn − ελ,k + i
2τλ

sgn(νn)
)−1

(11)

for the propagator in band λ in the presence of impurities.
Here, we introduced the elastic scattering time

τλ = (2πρFΓtotal)
−1, (12)

which is determined by the total scattering rate includ-
ing all intraband and interband scattering processes that
affect propagation of electrons in band λ.

III. RESULTS

In multiband systems, the interplay of a multitude
of different intraband and interband scattering processes
can affect physical properties. Fortunately, in the iron-
based systems, experiments as well as ab-initio calcu-
lations reveal that not all of them are equally impor-
tant.36–43 This allows us to devise models of impurity
scattering that concentrate on the dominant scattering
processes relevant for the calculation of w and g. Such a
simplification allows one to draw conclusions about the
dominant effects that are to be expected due to impu-
rity scattering, but of course restricts exact quantitative
predictions.

For many aspects it is sufficient to discriminate be-
tween intraband and interband scattering processes,
and thus it is important to note that interband scat-
tering (which for example causes pair breaking in

the superconducting state) is much weaker than the
dominant intraband scattering process affecting trans-
port properties.36–38 Furthermore, as demonstrated
by transport measurements,39,40 scanning tunneling
microscopy,41 and first-principles density functional the-
ory calculations,42,43 the intraband scattering rate in the
hole band exceeds the intraband scattering rate in the
electron bands. For these reasons, we consider the fol-
lowing hierarchy of scattering rates in the remainder of
the paper:

Γinter
e−e ,Γ

inter
e−h ,Γ

intra
e � Γintra

h . (13)

The main advantage of the minimal three-band model
of Section II A is that it allows for a well-defined per-
turbative expansion near the perfect-nesting limit (δµ =
δm = 0) and the clean limit (Γi = 0), since in this case
g = w = 0, and the degeneracy of the magnetic ground
state is maximal (i.e. the stripe-magnetic, CSDW, and
SVC phases are all degenerate). Therefore, one can assess
qualitatively how different types of perturbations favor
distinct ground states.

A. Effect of disorder on the nematic coupling g

We first analyze how disorder affects g, since this cou-
pling constant determines whether the system condenses
in a single-Q or double-Q state. While g = 0 at perfect
nesting, the nematic coupling constant takes a finite value
within the three-band model as a consequence of the el-
lipticity of the electron bands; although orbital dressing
effects can make it nonzero even at perfect nesting44. Fo-
cusing on the contribution from the dominant scattering
rate Γintra

h , see Eq. (13), and expanding near perfect nest-
ing, δµ, δm � T , we find

FIG. 4. Leading-order diagrams contributing to the quartic
coefficients that determine the magnetic ground state. Dou-
ble lines indicate that the respective propagators acquire a
finite lifetime due to impurity scattering whereas single lines
are used for propagators in bands that, within our model,
are not affected by impurity scattering. Additional scattering

processes are indicated by a dashed line. (a) and (b) G(1)i and

G(2)i (i ∈ {1, 2}) are the contributions to g (as well as to u) in
the presence of intraband scattering in the hole band which
is the dominant scattering mechanism in FeSC. (c) W is the
contribution to w which is finite owing to interband scattering
between the two electron bands, and in the presence of the
dominant intraband scattering in the hole band.
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g = −T
2

∑
n

∫
dk

(2π)2
G2

hΓ,k(νn) [Ge1,k(νn)−Ge2,k(νn)]
2 − Γintra

h

T

2

∑
n

[∫
dk

(2π)2
G2

hΓ,k(νn)[Ge1,k(νn)−Ge2,k(νn)]

]2

= G(1)
2 − G(1)

1 + G(2)
2 − G(2)

1 = − ρFδ
2
m

1536π4T 4

[
ψ4

(
1

2
+
ρFΓintra

h

4T

)
−

δ2
µ

32π2T 2
ψ6

(
1

2
+
ρFΓintra

h

4T

)]
, (14)

FIG. 5. Nematic coupling constant g in the presence intra-
band scattering in the hole band, characterized by the scat-
tering rate Γintra

h . We chose δµ = δm = 0.2 (blue, dotted line)
as an example of small ellipticity and detuning which guar-
antees w < 0 and g > 0, and δµ = δm = 0.35 (green, dashed
line) as an example where disorder can tune g and w to be
either positive or negative. The red lines represent the results
at particle-hole symmetry, δµ = δm = 0.

where ψn(z) is the nth derivative of the digamma func-

tion. The contributing diagrams G(1)
i and G(2)

i are de-
picted in Fig. 4(a) and (b), and correspond respectively
to the disorder-induced Green’s function renormaliza-
tion and to the vertex correction. Here, we used that
u11 = u22 and u12 = u21 holds for the quartic coefficients
in the expansion (5) also in the presence of disorder, and

that G(2)
2 − G(2)

1 ∝
∫

dθ
2π cos(2θ) = 0.

In the clean limit, Γintra
h = 0, g ∝ δ2

m changes sign from
positive to negative for sufficiently large δµ, as shown

in Fig. 2(a) and in agreement with previous results17.
This describes the transition from a single-Q to a double-
Q magnetic ground state as the carrier concentration
increases. The resulting coupling constant g as a function
of the scattering rate Γintra

h , plotted for different values of
detuning δµ and ellipticity δm, is shown in Fig. 5. In the
particle-hole symmetric case, g = 0 as a consequence of
δm = 0, regardless of whether the system is in the clean
or dirty limit. Interestingly, if g is positive (negative) in
the clean limit, the addition of disorder suppresses g and
can even induce a sign-change. Therefore, the transition
from a single-Q to a double-Q state can be controlled not
only by carrier concentration, but also by the disorder
potential.

Even when the suppression of g by disorder does not
induce a sign-change, it has important consequences for
the phase diagram. In particular, as shown in Ref. 24, the
splitting ∆T = Ts − TN between the nematic/structural
and the magnetic transitions is controlled by the inverse
dimensionless nematic coupling constant u/g and the di-
mensionality d. In particular, for 2 < d < 3, which
mimics an anisotropic 3D system, the two transitions
are simultaneous and first order for (u/g) < (u/g)c1 =
1/ (3− d). For (u/g)c1 < (u/g) < (u/g)c2 , the tran-
sitions are split and one of them remains first-order
whereas the other transition is second-order. In this
regime, an increase in u/g results in an enhanced splitting
∆T , whereas deep in the regime of two split second-order
phase transitions, (u/g) � (u/g)c2 = (6− d) / (6− 2d),
increasing the ratio u/g reduces the splitting ∆T . To
compute the dimensionless parameter u/g, we compute
u analogously to the case of g

u =
T

2

∑
n

∫
dk

(2π)2
G2

hΓ,k(νn) [Ge1,k(νn) +Ge2,k(νn)]
2

+ Γintra
h

T

2

∑
n

[∫
dk

(2π)2
G2

hΓ,k(νn)[Ge1,k(νn) +Ge2,k(νn)]

]2

= G(1)
1 + G(1)

2 + G(2)
1 + G(2)

2 = − ρF

8π2T 2

[
ψ2

(1

2
+
ρFΓintra

h

4T

)
+
ρFΓintra

h

12T
ψ3

(1

2
+
ρFΓintra

h

4T

)]
+

ρF

768π4T 4
ψ4

(1

2
+
ρFΓ

4T

) [
3δ2
µ + δ2

m

]
+

ρ2
FΓintra

h

30720π4T 5
ψ5

(1

2
+
ρFΓ

4T

) [
10δ2

µ + 3δ2
m

]
(15)

in accordance with previous work.45 Near particle-hole
symmetry, where δµ/(2πT ) and δm/(2πT ) are sufficiently

small, and the magnetic ground state is the stripe one,
g/u decreases monotonically with increasing scattering
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FIG. 6. Dependence of the dimensionless nematic coupling
constant g/u on disorder. (a) Close to particle-hole symme-
try, g/u decreases monotonically with increasing scattering
rate. (b) and (c) With increasing distance to particle-hole
symmetry, an initial increase of the dimensionless nematic
coupling constant is found for small scattering rates, but for
stronger disorder, the ratio g/u decreases again.

rate as shown in Fig. 6(a). Thus, if the system initially is
near the regime of first-order simultaneous transitions, as
it is the case in undoped BaFe2As2, the addition of dis-
order is expected to cause (or enhance) a splitting in the
magnetic and structural transitions. This agrees with re-
cent experiments in BaFe2As2, which observed enhanced
splitting of the transitions upon electron irradiation.9

This result is also consistent with the theoretical finding

of Ref. 10 that disorder stabilizes the nematic phase. We
note, however, that the dependence of the ratio g/u on
disorder is nonuniversal (see Fig. 6(b) and (c)). In par-
ticular, farther away from particle-hole symmetry, the
dependence of g/u on disorder is no longer monotonic:
g/u first increases with increasing scattering rate, and
above a critical value starts decreasing again.

B. Effect of disorder on the planar coupling w

Having established that g can become either positive or
negative in both clean and dirty systems, we now analyze
w. As discussed above and illustrated in Fig. 3(a), in
the clean three-band model w = 0 always. Following
the analysis of the generic fourth-order diagram in Fig. 3
and Eq. (7), the only scattering processes that gives rise
to a nonzero contribution to w is the one coupling the
electron pocket at Q1 and the electron pocket at Q2,
characterized by the scattering rate Γinter

e−e . For the sake of
clarity, we neglect all other interband scattering processes
since they give subleading contributions to w, i.e. w =
0 always as long as Γinter

e−e = 0. Then, in the presence
of the dominant scattering process, intraband scattering
in the hole band and, additionally, interband scattering
between the electron bands, we find

w = 2Γinter
e−e T

∑
n

[∫ dk

(2π)2
GhΓ,k(νn)Ge1,k(νn)Ge2,k(νn)

]2
= 2W = −

ρ2
FΓinter

e−e

96π2T 3

[
ψ3

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)
−

10δ2
µ + δ2

m

320π2T 2
ψ5

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)]
,

(16)

where we assumed the density of states at the Fermi sur-
face to be given by a constant ρF in all three bands,
and we expanded to leading order in δµ and δm to ob-
tain the results. The respective diagram denoted by W
is depicted in Fig. 4(c). Note that contributions with
more than one scattering process between electron bands
vanish upon momentum integration and thus the above
result already includes contributions up to infinite order
in Γinter

e−e .
We show the coefficient w as a function of the scatter-

ing rate for different values of detuning δµ and elliptic-
ity δm in Fig. 7. In the absence of impurity scattering, we
recover w = 0. At particle-hole symmetry, δµ = δm = 0,
disorder leads to w < 0, thus favoring the formation
of a charge-spin density wave (see Fig. 1(a)) as long as
g < |w|. In contrast, finite detuning and ellipticity yield
a contribution of opposite sign and thus, depending on
the scattering rate and the distance from particle-hole
symmetry, w can be either positive or negative, allowing
for both proposed double-Q states, CSDW and the SVC.
This conclusion holds also in the presence of magnetic
impurities. In this case, however, the global prefactor
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FIG. 7. Planar coupling w as a function of intraband scat-
tering rate in the hole band, Γintra

h , where we set Γinter
e−e =

0.1Γintra
h . We chose δµ = δm = 0.2 (blue, dotted line) as an

example of small ellipticity and detuning which guarantees
w < 0 and g > 0, and δµ = δm = 0.35 (green, dashed line)
as an example where disorder can tune w and g to be either
positive or negative. The red lines represent the results at
particle-hole symmetry, δµ = δm = 0.

and the total scattering rate are altered as compared to
the case of nonmagnetic impurities since for magnetic
impurities, the evaluation of the trace tr[σiσjσkσlσjσm]
allows for additional contributions including other inter-
band scattering processes between the electron pockets
e1 and e2.

IV. SUMMARY AND CONCLUSIONS

Recent experiments revealed the existence of C4-
magnetic phases in hole-doped iron-based superconduc-
tors, further fueling the discussion about the nature of
the magnetic ground state of the parent compounds. We
considered a three-band model of iron-based supercon-
ductors complemented by an incipient fourth pocket at
the M point and investigated how the interplay of im-
purity scattering and disorder effects in a rigid-band ap-
proach affect the magnetic ground state.

The phase diagram is governed by the interplay of
nematic and planar couplings, g and w, respectively.
If g > max(0,−w), stripe-magnetic order with either
M1 = 0 or M2 = 0 is favored, as it has been observed
in many compounds of the iron pnictide and iron chalco-
genide families. If g < max(0,−w), a double-Q state
with |M1| = |M2| minimizes the free energy, and the sign
of w determines whether M1 ⊥M2 (spin vortex crystal,
for w > 0) or M1 = ±M2 (charge-spin density wave, for
w < 0) is more favorable. So far, only the charge-spin
density wave has been observed experimentally,16,29,30 in
contrast to theoretical models.17,20,31

Although generic three-band low-energy models for the
description of FeSC allow for C4-magnetic ground states,
they leave the spin vortex crystal (SVC) and the charge-
spin density wave (CSDW) degenerate since w = 0. Our
analysis shows that the existence of an incipient pocket

at (π, π) lifts the degeneracy, however, it would favor the
formation of a spin-vortex crystal (w > 0) and thus can-
not explain the experimental findings. The investigation
of other extensions to the three-band model such as the
consideration of additional interactions has lead to the
same conclusion that the SVC state is favorable.

Our investigation of impurity scattering, in contrast,
provides a natural explanation for the formation of a
charge-spin density wave in doped FeSC. Since the three-
band model under consideration yields w = 0 in the
absence of impurity scattering, we concentrated on the
interband scattering process between the two electron
bands that can render w finite. In addition, we con-
sidered intraband scattering in all three bands. We find
w < 0 at particle-hole symmetry as well as for small el-
lipticity and detuning, suggesting that disorder can pro-
mote charge-spin density waves. However, sufficiently
large ellipticity and detuning in combination with impu-
rity scattering also allow for w > 0, i. e., a spin vortex
crystal.

Our findings are summarized in the phase diagrams
depicted in Fig. 2 where we show the magnetic ground
states that are favored in different regimes of detuning
and ellipticity. Disorder favors the double-Q charge-spin
density wave over the single-Q stripe-magnetic SDW at
small ellipticity and detuning, and increasing scattering
rate increases the parameter regime in which CSDW or-
der is expected to occur.

We further investigated the effect of the dominant im-
purity scattering process in FeSC, intraband scattering in
the hole band, on the nematic coupling g, which in the
three-band model assumes a finite value as long as the
electron bands exhibit finite ellipticity. In the absence
of impurity scattering and for δµ = 0, g is positive, and
increasing intraband scattering in the hole band reduces
the nematic coupling constant, concordant with the ex-
perimental finding that electron irradiation enhances the
splitting between structural and magnetic transition in
the stripe-ordered phase.

Previously, controlled disorder has been proposed as a
way to tune the properties of the superconducting state
in the iron-based materials.46 Analogously, our findings
provide a promising control knob to tune their magnetic
ground state. In particular, addition of impurities via
electron irradiation in hole-doped compounds near the
composition where the single-Q to double-Q magnetic
transition is observed could stabilize a C4-magnetic phase
as the leading instability of the system – currently, the
C4-magnetic phase has been mostly observed inside the
C2-magnetic phase boundary. Similarly, removal of im-
purities via annealing in samples that display the double-
Q magnetic order could change the nature of the C4

phase from charge-spin density wave to spin-vortex crys-
tal.
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14 Böhmer A. E., Hardy F., Wang L., Wolf T., Schweiss P.,
and Meingast C., “Superconductivity-induced re-entrance
of the orthorhombic distortion in Ba1−xKxFe2As2,” Nat
Commun 6, 7911 (2015).

15 J. M. Allred, S. Avci, D. Y. Chung, H. Claus, D. D.
Khalyavin, P. Manuel, K. M. Taddei, M. G. Kanatzidis,
S. Rosenkranz, R. Osborn, and O. Chmaissem, “Tetrag-
onal magnetic phase in Ba1−xKxFe2As2 from x-ray and
neutron diffraction,” Phys. Rev. B 92, 094515 (2015).

16 J. M. Allred, K. M. Taddei, D. E. Bugaris, M. J. Krogstad,
S. H. Lapidus, D. Y. Chung, H. Claus, M. G. Kanatzidis,
D. E. Brown, J. Kang, R. M. Fernandes, I. Eremin, S.
Rosenkranz, O. Chmaissem, and R. Osborn, “Double-
Q spin-density wave in iron arsenide superconductors,”
arXiv:1505.06175.

17 Xiaoyu Wang, Jian Kang, and Rafael M. Fernandes,
“Magnetic order without tetragonal-symmetry-breaking in
iron arsenides: Microscopic mechanism and spin-wave
spectrum,” Phys. Rev. B 91, 024401 (2015).

18 R. M. Fernandes, S. A. Kivelson, and E. Berg, “Is there a
hidden chiral density-wave in the iron-based superconduc-
tors?” arXiv:1504.03656 (2015).

19 J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, “Com-
peting orders in FeAs layers,” Phys. Rev. Lett. 101, 186402
(2008).

20 I. Eremin and A. V. Chubukov, “Magnetic degeneracy and
hidden metallicity of the spin-density-wave state in ferrop-
nictides,” Phys. Rev. B 81, 024511 (2010).
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