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Abstract

Dwork’s conjecture, now proven by Wan [7, 8, 6], states that unit root L-functions “coming from geometry” are p-adic

meromorphic. In this paper we study the p-adic variation of a family of unit root L-functions coming from a suitable

family of toric exponential sums. In this setting, we find that the unit root L-functions each have a unique p-adic unit

root. We then study the variation of this unit root over the family of unit root L-functions. Surprisingly, we find that

this unit root behaves similarly to the classical case of families of exponential sums, as studied in [1]. That is, the unit

root is essentially a ratio of A-hypergeometric functions.

1 Introduction

Dwork conjectured [2] that certain L-functions, constructed as Euler products of p-adic unit roots coming from the fibers

of an algebraic family of L-functions, are p-adic meromorphic. He proved this in a few cases using the idea of an excellent

lifting of Frobenius, but was unable to prove it in general, mainly because excellent lifting in its original form does not

always exist. In a series of papers [7, 8, 6], Wan proved Dwork’s conjecture using a new technique which avoided excellent

lifting. In this paper, we use Wan’s techniques, as established in [4], to study the p-adic variation of unit root L-functions.

To solidify concepts, we first consider an example of a unit root L-function coming from a family of toric exponential

sums. Let Ψ be a nontrivial additive character on Fq. Let f ∈ Fq[λ
±
1 , . . . , λ

±
s , x

±
1 , . . . , x

±
n ] be a Laurent polynomial, and

consider for each λ̄ ∈ (F
×

q )
s and m ≥ 1, the exponential sum

Sm(f, λ̄) :=
∑

x̄∈(F×

qm·deg(λ̄)
)n

Ψ ◦ TrF
qm·deg(λ̄)/Fq

(f(λ̄, x̄)).

Define by L(f, λ̄, T ) := exp(
∑

m≥1 Sm(f, λ̄)T
m

m ) the associated L-function. It is known that L(f, λ̄, T )(−1)n+1

is a rational

function with a unique p-adic unit root, say π0(λ̄), which is also a 1-unit. The unit root L-function of this family is defined

by

Lunit(κ, T ) :=
∏

λ̄∈|Gs
m/Fq|

1

1− π0(λ̄)κT deg(λ̄)
,

where κ takes on values in the p-adic integers Zp. As mentioned above, in this paper we study the p-adic variation of

unit root L-functions such as these. The following setup is similar to that of the above family, but more technical for the
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following reason. As unit root L-functions come from families, and we wish to study a family of unit root L-functions, we

need to consider a family of families. The role of the variables in the following is: x denotes the space variables, λ denotes

the parameters of the family, and t denotes the parameters defining the family of families.

Let A be a finite subset of Zn. We define the Newton polyhedron of A at ∞, denoted ∆∞(A), to be the convex closure

of A ∪ 0 in Rn. We make the simplifying hypothesis that every element u ∈ A lies on the Newton boundary at ∞ of

∆∞(A), that is, the union of all faces of ∆∞(A) which do not contain the origin. In other language this is the same as the

hypothesis that w(u) = 1 for all u ∈ A where w is the usual polyhedral weight defined by ∆∞(A) (see the next section for

definition). The generic polynomial f with x-support equal to A is given by f(t, x) =
∑
tux

u ∈ Fq[{tu}u∈A, x
±
1 , . . . , x

±
n ]

where u runs over A and {tu}u∈A are new variables. Let ∆∞(f)(= ∆∞(A)) be the Newton polyhedron at infinity of f . Let

P (λ, x) ∈ Fq[λ
±
1 , . . . , λ

±
s , x

±
1 , . . . , x

±
n ] be such that the monomials λγxv in the support of P (λ, x) all satisfy 0 < w(v) < 1.

Such deformations were studied in [5]. It is convenient to assume the origin is not in the set A and if λγxv is in the support

of P , then v 6= 0 so that neither f nor P have a constant term (with respect to the x-variables). This assumption will be

made throughout this work. Let G(t, λ, x) := f(t, x) + P (λ, x).

We construct a family of L-functions as follows. Let t̄ ∈ (F
∗

q)
|A|, and denote by deg(t̄) = [Fq(t̄) : Fq] the degree of

t̄, where Fq(t̄) means we adjoin every coordinate of t̄ to Fq. We will often write d(t̄) for deg(t̄). For convenience, write

qt̄ := qd(t̄) so that Fqt̄ = Fq(t̄). Next, let λ̄ ∈ (Fq
∗
)s. Denote by degt̄(λ̄) or dt̄(λ̄) the degree [Fqt̄(λ̄) : Fqt̄ ]; set qt̄,λ̄ := q

dt̄(λ̄)
t̄

and Fqt̄,λ̄ = Fqt̄(λ̄). For each m ≥ 1, define the exponential sum

Sm(t̄, λ̄) :=
∑

x̄∈(F∗
qm
t̄,λ̄

)n

Ψ ◦ TrFqm
t̄,λ̄

/Fq
(G(t̄, λ̄, x̄))

and its associated L-function

L(t̄, λ̄, T ) := exp

(
∞∑

m=1

Sm(t̄, λ̄)
Tm

m

)
.

It is well-known [1] that L(t̄, λ̄, T )(−1)n+1

has a unique reciprocal p-adic unit root π0(t̄, λ̄), which is a 1-unit. Let κ ∈ Zp be

a p-adic integer. For each t̄, the unit root L-function is defined by

Lunit(κ, t̄, T ) :=
∏

λ̄∈|Gs
m/Fqt̄

|

1

1− π0(t̄, λ̄)κT dt̄(λ̄)
,

where κ takes values in the p-adic integers Zp. Wan’s theorem tells us that this L-function is p-adic meromorphic and so

may be written as a quotient of p-adic entire functions:

Lunit(κ, t̄, T )
(−1)s+1

=

∏∞
i=1(1− αi(κ, t̄)T )∏∞
j=1(1− βj(κ, t̄)T )

, αi → 0, βj → 0 as i, j → ∞.

Very little is known about the zeros and poles of unit root L-functions. In Theorem 1.1 below, we show that for each

t̄ and κ, Lunit(κ, t̄, T )
(−1)s+1

itself has a unique unit zero (and no unit poles), which is a 1-unit. We then study the

variation of this unit root as a function of t̄ and κ. We note that the variation of the unit root L-function with respect
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to the parameter κ has been studied before in Wan’s proof of Dwork’s conjecture, and is connected to the Gouvêa-Mazur

conjecture [3]. On the other hand, as far as we know, the study of the p-adic analytic variation of the unit root L-function

with respect to t̄ is new. To state the main result, first denote by π ∈ Qp an element satisfying πp−1 = −p. Next, writing

G(t, λ, x) = f(t, x) + P (λ, x) =
∑
tux

u +
∑
A(γ, v)λγxv ∈ Fq[x

±
1 , . . . , x

±
n , λ

±
1 , . . . , λ

±
s , {tu}u∈Supp(f)], let Â(γ, v) be the

Teichmüller lift of A(γ, v) in Qq for each (γ, v) ∈ Supp(P ). We now replace every coefficient of A(γ, v) or P (λ, x) with a

new variable Λ: set P(Λ, λ.x) :=
∑

(γ,v)∈Supp(P ) Λγ,vλ
γxv and

H(t,Λ, λ, x) := f(t, x) + P(Λ, λ, x).

Note that the series

expπH(t,Λ, λ, x)) =
∑

γ∈Zs,u∈Zn

Kγ,u(t,Λ)λ
γxu

is well-defined, and its coefficientsKγ,u(t,Λ) are themselves elements in the power-series ring Zp[ζp][[{tu}u∈A, {Λγ,v}(γ,v)∈Supp(P )]],

and so converge in the open polydisk D(0, 1−)|A|+|Supp(P )| defined by the inequalities |tu|p < 1 for all u ∈ A and |Λγ,v| < 1

for all (γ, v) ∈ Supp(P ). Of particular interest is K0,0(t), a principal p-adic unit for all t and Λ in the polydisk. Define

F(t,Λ) := K0,0(t,Λ)/K0,0(t
p,Λp) and set Fm(t,Λ) :=

∏m−1
i=0 F(tp

i

,Λpi

).

Theorem 1.1. Let t̂ be the Teichmüller lift of t̄. The function F(t,Λ) analytically continues to the closed polydisc

D(0, 1+)|A|+|Supp(P )| defined by |tu|p ≤ 1, u ∈ A and |Λγ,v| < 1, (γ, v) ∈ Supp(P ). Furthermore, Fad(t̄)(t̂, Â)
κ =

∏ad(t̄)
i=0 F(t̂p

i

, Âpi

)κ is the unique unit root of Lunit(κ, t̄, T )
(−1)s+1

at each fiber t̄ and κ ∈ Zp, where Fad(t̄)(t̂, Â) means

setting each tu = t̂u and Λγ,v = Â(γ, v).

Remark. It is worthwhile to compare this result to the result in [1]. To that end, consider the (total) family H(t,Λ, λ, x)

above. For each t̄ ∈ (F
×

q )
|A| and m ≥ 1, define the exponential sum

Sm(H, t̄) :=
∑

(λ̄,x̄)∈(F×

qm·deg(t̄)
)s×(F×

qm·deg(t̄)
)n

Ψ ◦ TrF
qm·deg(t̄)/Fq

(H(t̄, A, λ̄, x̄)).

Define by L(H, t̄, T ) := exp(
∑

m≥1 Sm(f, λ̄)T
m

m ) the associatedL-function, a rational function overQ(ζp). By [1], L(H, t̄, T )
(−1)s+n+1

has a unique p-adic unit root given by Fad(t̄)(t̂, Â). Conjecturally this type of relation should hold in greater generality.

Remark. The existence of a unique p-adic unit root is a general result for unit root L-functions defined over the torus Gs
m.

This includes the classical case of L-functions over of exponential sums defined over the torus; see [4, Section 3] for details.

To state this result, we use the language of σ-modules. See [4] reference to the following notation. Let K be a finite

extension field of Qp with uniformizer π, ring of integers R, and residue field Fq. Let (M,φ) be a c · log-convergent, nuclear

σ-module over R, ordinary at slope zero of rank one (h0 = 1) with basis {ei}i≥0. Assume further the normalization condition

φe0 ≡ e0 mod(π) and φei ≡ 0 mod(π) for all i ≥ 1. With this setup, it follows that the associated unit root L-function

Lunit(κ, φ, T )
(−1)s+1

has a unique p-adic unit root (and no unit poles). To see this, we first note that by [4, Lemma 2.1]

and [4, equation (9)], Lunit(κ, φ, T )
(−1)s+1

≡ det(1−FB[κ]T ) mod π. Next, it follows from the normalization condition that
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the matrix B[κ] takes the form ( 1 0
0 0 ) mod π, and thus det(1 − FB[κ]T ) ≡ 1 − T mod π. Hence, the Fredholm determinant

det(1− FB[κ]T ) has a unique p-adic unit root proving the results.

2 Lower deformation family

Let f ∈ Fq[{tu}u∈Supp(f), x
±
1 , . . . , x

±
n ] be of the form f(t, x) =

∑
tux

u. In particular, the coefficient of every monomial

xu in f is a new variable tu. Denote by ∆∞(f) the Newton polytope at infinity of f , defined as the convex closure of

Supp(f)∪ {0} in Rn. Let Cone(f) be the union of all rays emanating from the origin and passing through ∆∞(f), and set

M := M(f) := Cone(f) ∩ Zn. We define a weight function w on M as follows. For u ∈ M , let w(u) be the smallest non-

negative rational number such that u ∈ w(u)∆(f). It is convenient to assume w(u) = 1 for all u in the x-support of f . In

particular this implies that f has no constant term. Let D denote the smallest positive integer such that w(M) ⊂ (1/D)Z≥0.

The weight function w satisfies the following norm-like properties:

1. w(u) = 0 if and only if u = 0.

2. w(cu) = cw(u) for every c ≥ 0.

3. w(u+ v) ≤ w(u) + w(v) for every u, v ∈M , with equality holding if and only if u and v are cofacial.

It is also convenient to assume the lower-order deformation P ∈ Fq[λ
±
1 , . . . , λ

±
s , x

±
1 , . . . , x

±
n ] has no constant term so the

origin in Rn is not in the x-support of P . In fact, if we write P (λ, x) =
∑

u∈M Pu(λ)x
u, then 0 < w(u) < 1. Our lower

deformation family then is defined by G(t, λ, x) := f(t, x) + P (λ, x). Set

U :=

{(
1

1− w(u)

)
γ ∈ Qs | (γ, u) ∈ Supp(P )

}
, (1)

and let Γ := ∆∞(U) ⊂ Rs. In a similar way to the above, define M(Γ) := Cone(Γ) ∩ Zs with associated polyhedral weight

function wΓ. Observe that for δ =
(

1
1−w(u)

)
γ ∈ U that wΓ(δ) < 1. We call Γ the relative polytope of the family G(x, t).

Rings of p-adic analytic functions. Let ζp be a primitive p-th root of unity. Let Qq be the unramified extension of Qp

of degree a := [Fq : Fp], and denote by Zq its ring of integers. Then Zq[ζp] and Zp[ζp] are the ring of integers of Qq(ζp) and

Qp(ζp), respectively. Let π ∈ Qp satisfy πp−1 = −p, and let π̃ be an element which satisfies ordp(π̃) = (p− 1)/p2. We may

have occasion to work over a purely ramified extension Ω0 = Qp(π̂) of Qp with uniformizer π̂ which contains Qp(ζp, π̃) and

for which π̃ is an integral power of π̂. Let Ω = Qq(π̂). Denote by R the ring of integers of Ω, and R0 the ring of integers of

Ω0. Set

O0 :=





∑

γ∈M(Γ)

C(γ)π̃wΓ(γ)λγ | C(γ) ∈ R,C(γ) → 0 as γ → ∞



 .

(We note that the fractional powers of π̃ are to be understood as integral powers of a uniformizer of R.) Then O0 is a ring

with a discrete valuation given by ∣∣∣∣∣∣

∑

γ∈M(Γ)

C(γ)λγ π̃wΓ(γ)

∣∣∣∣∣∣
:= sup

γ∈M(Γ)

|C(γ)|.
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Define

C0(O0) :=




ξ =
∑

µ∈M(f̄)

ξ(µ)π̃w(µ)xµ | ξ(µ) ∈ O0, ξ(µ) → 0 as µ→ ∞




 ,

an O0-algebra.

In the following, q = pa is an arbitrary power of p (including the case when a = 0), so we can handle the cases of tq, tp,

and t, at the same time. Define

O0,q :=





∑

γ∈M(Γ)

C(γ)λγ π̃wqΓ(γ) | C(γ) ∈ R,C(γ) → 0 as γ → ∞




 . (2)

This ring is the same as O0 except using a weight function defined by the dilation qΓ (that is, wqΓ(γ) = wΓ(γ)/q). We

note that here O0,1 = O0. A discrete valuation may be defined as follows. If ξ =
∑

γ∈M(Γ) C(γ)π̃
wqΓ(γ)λγ ∈ O0,q then the

valuation on O0,q is given by

|ξ| := sup
γ∈M(Γ)

|C(γ)|.

We may also define the space

C0(O0,q) :=





∑

u∈M(f)

ξux
uπ̃w(u) | ξu ∈ O0,q, ξu → 0 as u→ ∞




 . (3)

For η =
∑

u∈M(f̄) ξuπ̃
w(u)xu ∈ C0(O0,q), we set

|η| = sup
u∈M(f)

|ξu|.

Frobenius. At present, we fix t̄ ∈ (Fq)
|A|, returning to variation in t̄ in the last section. Recall the notation d(t̄) = [Fq(t̄) :

Fq], and qt̄ = qd(t̄). Now let λ̄ ∈ (Fq)
s. Recall we denote by deg(t̄) or d(t̄) the degree [Fq(t̄) : Fq]. Similarly, denote by

deg(λ̄) or d(λ̄) the degree [Fq(λ̄, t̄) : Fq(t̄)], and qt̄,λ̄ = qd(t̄)d(λ̄) .

Dwork defines a splitting function by θ(T ) := expπ(T − T p) =
∑∞

i=0 θiT
i. It is well-known that ordp(θi) ≥

(p−1)
p2 i for

all i ≥ 0. Writing

G(t̄, λ, x) = f(t̄, x) + P (λ, x)

=
∑

t̄ux
u +

∑
Ā(γ, v)λγxv ∈ Fqt̄ [x

±
1 , . . . , x

±
n , λ

±
1 , . . . , λ

±
s ],

we let

Ĝ(t̂, λ, x) :=
∑

t̂ux
u +

∑
Â(γ, v)λγxv ∈ R[x±1 , . . . , x

±
n , λ

±
1 , . . . , λ

±
s ]

be the lifting of G by lifting the coefficients Ā(γ, u) and t̄ by Teichmüller units. Set

F (t̂, λ, x) :=
∏

u∈Supp(f)

θ(t̂ux
u) ·

∏

(γ,v)∈Supp(P )

θ(Â(γ, v)λγxv) (4)
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and for any m ≥ 1,

Fm(t̂, λ, x) :=
m−1∏

i=0

F σi

(t̂, λp
i

, xp
i

), (5)

where σ is the extension of the usual Frobenius generator ofGal(Qq/Qp) to Ω with σ(π̂) = π̂. Then, σ acts on series with coef-

ficients in Ω by acting on these coefficients. Note that if we set Fm(t̂, λ, x) =
∑

u∈M(f) B
m(u)xu =

∑
γ∈M(Γ),u∈M(f) B

m(γ, u)λγxu,

then

ordp(B
m(γ, u)) ≥

wΓ(γ) + w(u)

pm−1
·
p− 1

p2
.

Define ψx by
∑
C(u)xu 7→

∑
C(pu)xu. Set

α1 := σ−1 ◦ ψx ◦ F (t̂, λ, x)

A similar argument to that in [5] demonstrates that α1 maps σ−1-semilinearly C0(O0) into C0(O0,p). Similarly, for m ≥ 1,

if we define

αm := σ−m ◦ ψm
x ◦ Fm(t̂, λ, x),

then αm maps C0(O0) into C0(O0,pm). In particular, αm(π̃w(v)xv) =
∑

u∈M(f) π̃
w(v)−w(u)Bm(pmu − v)π̃w(u)xu, with

ordp(π̃
w(v)−w(u)Bm(pmu − v) ≥ (pm−1)w(u)+(pm−1−1)w(v)

pm−1 ordp(π̃). Summarizing, we have in C0(O0,pm), |αm(π̃w(v)xv)| ≤

|π̃|
w(v) pm−1−1

pm−1 .

Fibers. Define

αt̄,λ̄ := ψad(t̄)d(λ̄)
x ◦ Fad(t̄)d(λ̄)(t̂, λ̂, x),

where t̂ and λ̂ are the Teichmüller representatives of t̄ and λ̄, respectively. Notice that αt̄,λ̄ is an endomorphism of C0(λ̂),

where C0(λ̂) denotes the space obtained from C0(O0) by applying the map on O0 which sends λ to λ̂.

To relate the L-function L(t̄, λ̄, T ) to the operator αt̄,λ̄ it is convenient to introduce the following operation: for any

function g(T ), define g(T )δq := g(T )/g(qT ). Set qt̄,λ̄ := qd(t̄)d(λ̄). Dwork’s trace formula states

(qmt̄,λ̄ − 1)nTr(αm
t̄,λ̄ | C0(λ̂)) =

∑

x̄∈

(

F∗
qm
t̄,λ̄

)n

Ψ ◦ TrFqm
t̄,λ̄

/Fq
(G(t̄, λ̄, x̄))

Equivalently,

L(t̄, λ̄, T )(−1)n+1

= det(1− αt̄,λ̄T | C0(λ̂))
δnq

t̄,λ̄ .

This is a rational function, and it is well-known that L(t̄, λ̄, T )(−1)n+1

has a unique unit (reciprocal) root π0(t̄, λ̄) (see [1]

for example). This unit root is a 1-unit, so it makes sense to define, for any p-adic integer κ, the unit root L-function at

the fibre t̄:

Lunit(κ, t̄, T ) :=
∏

λ̄∈|Gs
m/Fq(t̄)|

1

1− π0(t̄, λ̄)κ T deg(λ̄)
.
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Denote the roots of det(1 − αt̄,λ̄T | C0(λ̂)) by πi(t̄, λ̄), and order them such that ordp πi(t̄, λ̄) ≤ ordp πi+1(t̄, λ̄) for i ≥ 0.

For each m ≥ 0, define

L(m)(κ, t̄, T ) :=
∏

λ̄∈|Gs
m/Fqt̄

|

∏
(1 − π0(t̄, λ̄)

κ−r−mπi1 (t̄, λ̄) · · ·πir (t̄, λ̄) · πj1 (t̄, λ̄) · · ·πjm(t̄, λ̄)T deg(λ̄))−1

where the inner product runs over all r ≥ 0, 1 ≤ i1 ≤ i2 ≤ · · · , and 0 ≤ j1 < · · · < jm. Note that the factors indexed

by the various ik are allowed to repeat, whereas the factors with indices jl are distinct. Intuitively, the inner product is

det(1− Symκ−mαt̄,λ̄ ⊗ ∧mαt̄,λ̄T ). From [4, Lemma 2.1],

Lunit(κ, t̄, T ) =

∞∏

i=0

L(i)(κ, t̄, T )(−1)i−1(i−1) = L(0)(κ, t̄, T )
∏

i≥2

L(i)(κ, t̄, T )(−1)i−1(i−1). (6)

In the next section, we will show each L(i) with i ≥ 1 has no unit root or pole, whereas L(0) will. This will show

Lunit(κ, t̄, T )
(−1)s+1

has a unique unit root.

3 Infinite symmetric powers

Denote by S(λ̂) := R[λ̂][[{eu}u∈M\{0}]] the formal power series ring over R[λ̂] in the variables {eu}u∈M\{0} which are

formal symbols indexed by the M \ {0}. We equip this ring with the sup-norm on coefficients (in R[λ̂]). This ring will

play the role of the formal infinite symmetric power of C0(λ̂) over R[λ̂] in a way we describe below. It is convenient to

write the monomials of degree r in the variables {eu} using the notation eu := eu1 · · · eur
, where u1, . . . , ur ∈ M(f) \ {0}

for r ≥ 0. It helps to fix ideas to assume we have a linear order on M(f) \ {0} with the property that if w(u) ≤ w(v) for

u, v ∈ M(f) \ {0}, then u ≤ v. We may extend this to all of M(f) by taking 0 as the least element. We emphasize then

in the notation eu := eu1 · · · eur
for a monomial of degree r we have 0 < u1 ≤ u2 ≤ · · · ≤ ur, and we allow the variables

to repeat. When r = 0 we understand there is only the monomial 1 of degree 0. We extend the weight function w to such

monomials by defining, for eu := eu1 · · · eur
, the weight w(u) := w(u1)+ · · ·+w(ur). Denote by S(M) the set of all indices

u corresponding to monomials eu. We emphasize that we will often equate elements u ∈ S(M) with the monomials eu; it

should be clear from the context which meaning is desired. We may assume S(M) has a linear order defined on it such

that the weight w(u) is non-decreasing and such that the restriction of this linear order to M(f) is our earlier linear order.

We may identify C0(λ̂) as an R[λ̂]-submodule of S(λ̂) by defining an R[λ̂]-linear map

Υ : C0(λ̂) → S(λ̂) via
∑

u∈M(f)

ξuπ̃
w(u)xu 7−→ ξ0 +

∑

u∈M(f)\{0}

ξueu.

That is, the image Υ(C0(λ̂)) consists of the powers series with support in the monomials of S(λ̂) of degree ≤ 1 and with

coefficients {ξu}u∈M(f) ⊂ R[λ̂] satisfying ξu → 0 as u → ∞. Note that Υ(π̃w(u)xu) = eu for u ∈ M \ {0}, and Υ(1) := 1.
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Define the R[λ̂]-subalgebra of S(λ̂)

S0(λ̂) :=




ξ =
∑

u∈S(M)

ξ(u)eu | ξ(u) ∈ R[λ̂], ξ(u) → 0 as w(u) → ∞




 .

Hence, Υ(C0(λ̂)) ⊂ S0(λ̂). Note that we may write αt̄,λ̄(1) = 1 + η(x) for some element η ∈ C0(λ̂) satisfying |η| < 1 and

with support of η in M(f) \ {0}. For ξ =
∑
ξ(u)eu ∈ S0(λ̂), define |ξ| :=

∑
u∈S(M) |ξ(u)|, which makes S0(λ̂) a p-adic

Banach algebra over R[λ̂]. Then for any ζ ∈ C0(λ̂), |Υ(ζ)| = |ζ|. It follows that (Υ ◦ αt̄,λ̄(1))
τ is defined and belongs to

S0(λ̂) for any τ ∈ Zp. Define [αt̄,λ̄]κ : S0(λ̂) → S0(λ̂) by extending linearly over R[λ̂] the action on monomials of degree r

[αt̄,λ̄]κ(eu1 · · · eur
) := (Υ ◦ αt̄,λ̄(1))

κ−r(Υ ◦ αt̄,λ̄(π̃
w(u1)xu1 )) · · · (Υ ◦ αt̄,λ̄(π̃

w(ur)xur )).

By a similar argument to [4, Corollary 2.4, part 2],

det(1− [αt̄,λ̄]κT | S0(λ̂)) =
∞∏

r=0

∏(
1− π0(t̄, λ̄)

κ−rπi1(t̄, λ̄) · · ·πir (t̄, λ̄)T
)

where the inner product runs over all multisets {i1, . . . , ir} of positive integers of cardinality r satisfying 1 ≤ i1 ≤ i2 ≤ · · · .

Infinite symmetric power on the family. Denote by S(O0) := O0[[{eu}u∈M\{0}]], the formal power series ring supported

by the monomials S(M), with coefficients in the ring O0. As in the constant fibre case above, this ring is equipped with

the sup-norm on coefficients. Define the p-adic Banach algebra over O0,

S0(O0) : = {ξ =
∑

u∈S(M)

ξ(u)eu | ξ(u) ∈ O0, ξ(u) → 0 as w(u) → ∞}

= {ξ =
∑

γ∈M(Γ),u∈S(M)

C(γ,u)π̃wΓ(γ)λγeu | C(γ,u) ∈ R,C(γ,u) → 0 as wΓ(γ) + w(u) → ∞},

and similarly, for any q = pa an arbitrary power of p (including the case when a = 0),

S0(O0,q) := {
∑

u∈S(M)

ξ(u)eu | ξ(u) ∈ O0,q, ξ(u) → 0 as w(u) → ∞}.

Note that S0(O0,q) is a p-adic Banach algebra over O0,q with S(M) an orthonormal basis. We embed C0(O0,q) →֒ S0(O0,q)

via a map Υ defined in the same way as on the fibers. Again, (Υ ◦ αm(1))τ ∈ S0(O0,pm) for any τ ∈ Zp. We define a map

[αm]κ : S0(O0) → S0(O0,pm) as follows. On a basis element eu = eu1 · · · eur
with r > 0 and 0 < u1 ≤ · · · ≤ ur,

[αm](eu) := [αm]κ(eu1 · · · eur
) := (Υ ◦ αm(1))κ−r(Υ ◦ αm(π̃w(u1)xu1)) · · · (Υ ◦ αm(π̃w(ur)xur )).

If r = 0,

[αm]κ(1) := Υ(αm(1))κ.
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We may calculate an estimate for αm(π̃w(u)xu), where we recall αm := σ−m ◦ψm
x ◦Fm(t̄, λ, x). As noted earlier, we may

write

Fm(t̂, λ, x) =
∑

γ∈M(Γ),v∈M(f)

B(γ, v)π̃(wΓ(γ)+w(v))/pm−1

λγxv, (7)

with ordp B(γ, r) ≥ 0, and set Bm(γ, v) = B(γ, v)π̃(wΓ(γ)+w(v))/pm−1

. So

αm(π̃w(u)xu) = ψm
x

(
Fm(t̂, λ, x) · π̃w(u)xu

)

=
∑

π̃(wΓ(γ)+w(pmv−u))/pm−1+w(u)−wΓ(γ)/p
m−1−w(v)B(γ, pmv − u) · π̃wΓ(γ)/p

m−1

λγ · π̃w(v)xv.

We note that

w(pmv − u)

pm−1
+ w(u)− w(v) ≥ pw(v) −

w(u)

pm−1
+ w(u)− w(v)

≥ (p− 1)w(v) +
pm−1 − 1

pm−1
w(u).

Hence,

|Υ(αm(π̃w(u)xu))| ≤ |π̃|
pm−1−1

pm−1 w(u)
(8)

The R-linear map ψλ : S0(O0,p) → S0(O0) is defined by

ψλ :
∑

γ∈M(Γ),u∈S(M)

A(γ,u)λγeu 7−→
∑

γ∈M(Γ),u∈S(M)

A(pγ,u)λγeu

We may in the usual manner view S0(O0) as a p-adic Banach space over R with orthonormal basis {π̃wΓ(γ)λγeu | γ ∈

M(Γ),u ∈ S(M)}. Then

βκ,t̄ := ψ
ad(t̄)
λ ◦ [αad(t̄)]κ : S0(O0) → S0(O0)

is a completely continuous operator (over R). Set B := {eu | u ∈ S(M)}. Let B
[κ]
t̄ (λ) be the matrix of [αad(t̄)]κ with respect

to B, the basis of S0(O0) over O0 (as well as S0(O0,pm) over O0,pm). The entries of B
[κ]
t̄ (λ) are series with support in B and

coefficients in O0,pm (which tend to 0 as w(u) → ∞). We may write B
[κ]
t̄ (λ) =

∑
γ∈M(Γ) b

[κ]
γ λγ , where b

[κ]
γ is a matrix with

rows and columns indexed by M(Γ) and entries in R. We define the matrix F
B

[κ]

t̄

:= (b
[κ]
qt̄γ−µ)(γ,µ) indexed by γ, µ ∈M(Γ),

and we set b
[κ]
qt̄γ−µ := 0 if qt̄γ−µ 6∈M(Γ). Note that F

B
[κ]

t̄

is a matrix with entries in R whose (γ, µ) entry is again a matrix

in R with rows and columns indexed by M(Γ). As we showed in [5, §2.3], F
B

[κ]

t̄

is the matrix of the completely continuous

9



operator βκ,t̄, and as such it has a well-defined Fredholm determinant. In particular, the Dwork trace formula gives

(qmt̄ − 1)sTr(βm
κ,t̄) = (qmt̄ − 1)sTr(Fm

B
[κ]

t̄

)

=
∑

λ̂
qm
t̄ =λ̂

Tr
(
B

[κ]
t̄ (λ̂q

m−1
t̄ ) · · ·B

[κ]
t̄ (λ̂qt̄)B

[κ]
t̄ (λ̂)

)

=
∑

λ̄∈(F∗
qm
t̄

)s

λ̂=Teich(λ̄)

Tr
(
[αt̄,λ̄]

m
κ | S0(λ̂)

)
.

Using an argument similar to that succeeding [4, Equation 8], it follows that

L(0)(κ, t̄, T )(−1)s+1

= det(1− βκ,t̄T )
δsqt̄ . (9)

Since the Fredholm determinant det(1 − βκ,t̄T ) is p-adically entire, this demonstrates the meromorphic continuation of

L(0)(κ, t̄, T ). Since the matrix of βκ,t̄ shows that det(1 − βκ,t̄T ) has a unique unit root, it follows that L(0)(κ, t̄, T )(−1)s+1

has a unique unit root equal in fact to the unique unit root of det(1− βκ,t̄T ).

In a similar way, define on the space S0(O0)⊗∧mC0(O0), the operator β
(m)
κ,t̄ := ψ

ad(t̄)
λ ◦ ([αad(t̄)]κ−m ⊗∧mαad(t̄)). Then

L(m)(κ, t̄, T )(−1)s+1

= det(1− β
(m)
κ,t̄ T )

δsqt̄ .

In particular, for m ≥ 2, due to the wedge product, L(m)(κ, t̄, T )(−1)s+1

has no zeros or poles on the closed unit disk. Hence,

by (6), we have:

Theorem 3.1. Lunit(κ, t̄, T )
(−1)s+1

has a unique p-adic unit root which in fact is the unique unit root of L(0)(κ, t̄, T )(−1)s+1

.

4 Dual theory

In this section, we define a dual theory for the operator βκ,t̄ acting on S0(O0). We begin by defining a dual map to αad(t̄).

For q = pa an arbitrary power of p (including the case a = 0) define the O0,q-module

C∗
0 (O0,q) :=





∑

u∈M(f)

ξ(u)π̃−w(u)x−u | ξ(u) ∈ O0,q




 ,

equipped with the sup-norm on the set of coefficients {ξ(u)}u∈M(f). Define the projection (or truncation) map

prM(f) :
∑

u∈Zn

A(u)x−u 7−→
∑

u∈M(f)

A(u)x−u.

For each m ≥ 1, define

α∗
m := prM(f) ◦ Fm(t̂, λ, x) ◦ Φm

x ◦ σm,

where σ ∈ Gal(Ω/Ω0) acts on coefficients (as mentioned above), and Φx acts on monomials by Φx(x
u) := xpu.
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Lemma 4.1. α∗
m : C∗

0 (O0,pm) → C∗
0(O0,pm) is a linear map over O0,pm . Furthermore, writing

α∗
m(π̃−w(v)x−v) =

∑

z∈M(f)

Cv(z)π̃
−w(z)x−z

with Cv(z) ∈ O0,pm , then Cv(z) → 0 in O0,pm as w(v) → ∞. In addition, we may write α∗
m(1) = 1 + η∗m(λ, x), with

η∗m(λ, x) ∈ C∗
0 (O0,pm) having |η∗m| ≤ |π̃|.

Proof. We consider α∗
m(π̃−w(v)x−v) with v ∈M(f). Using (7), we may write this as

α∗
m(π̃−w(v)x−v) =

∑

z∈M(f),γ∈M(Γ)

B(γ,−z + pmv)π̃w(γ)/pm−1

λγ · π̃w(z)+(w(−z+pmv)/pm−1) · π̃−w(z)x−z .

Since

−w(v) + w(z) +
1

pm−1
w(−z + pmv) ≥

pm−1 − 1

pm−1
w(z) + pw(v),

we see that

α∗
m(π̃−w(v)x−v) = π̃(p−1)w(v)ζ∗v (λ), (10)

where ζ∗v (λ, x) ∈ C∗
0(O0,pm).

If ξ∗ ∈ C∗
0 (O0,pm) with ξ∗ =

∑
v∈M(f) Av(λ)π̃

−w(v)x−v, then

α∗
m(ξ∗) =

∑

v∈M(f)

π̃(p−1)w(v)Av(λ)η
∗
v(λ) ∈ C∗

0(O0,pm).

Finally, note that by the above,

α∗
m(1) = 1 +

∑

γ∈M(Γ)−0

B(γ, 0)π̃w(γ)/pm−1

λγ +
∑

z∈M(f)−0,γ∈M(Γ)

B(γ,−z)π̃w(z)+(w(−z)/pm−1)(π̃w(γ)/pm−1

λγ)(π̃w(−z)x−z).

This proves the lemma.

Define

A0 :=





∑

γ∈M(Γ)

A(γ)λγ : A(γ) ∈ R and A(γ) → 0 as w(γ) → ∞




 .

For q1 and q2 any two powers of the prime p, define a pairing (·, ·) : C0(O0,q1)× C∗
0 (O0,q2) → A0 by

(ξ, ξ∗) := the constant term with respect to x of the product ξ · ξ∗.

This product is well-defined since if {η1(v)}v∈M(Γ) ⊂ O0,q1 with η1(v) → 0 as w(v) → ∞, and {η2(v)}v∈M(Γ) ⊂ O0,q2 , then

∑
v∈M(Γ) η1(v)η2(v) ∈ A0. Next, observe that for ξ ∈ C0(O0) and ξ

∗ ∈ C∗
0 (O0,pm), writing Fm for Fm(t̂, λ, x), then

((ψm
x ◦ Fm)ξ, ξ∗) = (Fmξ,Φ

m
x ξ

∗) = (ξ, (prM(f) ◦ Fm ◦ Φm
x )(ξ∗)). (11)
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Symmetric powers. We construct in a now familiar manner formal k-th symmetric powers of C0(O0) and C∗
0 (O0,pm)

over O0. Similar to the construction used above, we consider a linear order on {u ∈ M(f)} under which the weight is

nondecreasing, say 0 = u0 ≤ u1 ≤ · · · . We will for convenience of notation write the “basis” as {Eu := π̃w(u)xu | u ∈M(f)},

and the k-th symmetric power of the basis as

Eu := Euj1
Euj2

· · ·Eujk
, 0 ≤ j1 ≤ j2 ≤ · · · ≤ jk,

where u runs over multisets of indices of cardinality k, say

{u = (uj1 , uj2 , . . . , ujk) | 0 ≤ uj1 ≤ uj2 ≤ · · · ≤ ujk}.

Defining

Symk
O0

C0(O0) :=



ξ =

∑

|u|=k

ξu(λ)Eu | ξu(λ) ∈ O0, ξu(λ) → 0 as w(u) → +∞



 ,

then we define the map

Symkαm : Symk
O0

C0(O0) → Symk
O0,pm

C0(O0,pm)

as follows. Let

αm(π̃w(u)xu) =
∑

v∈M(f)

Am
v,u(λ)π̃

w(v)xv

=
∑

v∈M(f)

Am
v,u(λ)Ev.

We know from Section 2 that

Am
u,v =

∑

γ∈M(Γ),v∈M(f)

π̃(u)−w(v)Bm(γ, pmv − u)λγ

Then

Symkαm(Euj1
Euj2

· · ·Eujk
) =

∑
Am

vl1 ,uj1
(λ) · · · Am

vlk ,ujk
(λ)Evl1

· · ·Evlk
,

where the sum runs over all vli ∈ M(f) for each i, 1 ≤ i ≤ k. Since by above, |αm(π̃w(u)xu)| ≤ |π̃|
w(u)pm−1−1

pm−1 , therefore

Symk(αm) is a completely continuous map. The map Υ may be extended to Symk
O0

(C0(O0)) →֒ S0(O0) as follows. For

u = (uj1 , . . . , ujk) an ordered multiset of cardinality k with elements in M(f), set

Υ(Eu) =






eu if j1 > 0

eujr+1
eujr+2

· · · eujk
if j1 = j2 = · · · = jr = 0.

Thus Υ(Symk
O0

C0(O0)) consists of all power-series with coefficients in O0 and support in monomials eu of degree ≤ k, with

coefficients going to 0 as w(u) = w(u1) + · · ·+ w(ur) → ∞.
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We have as well a dual variant

Symk
O0,pm

C∗
0 (O0,pm) := {

∑

|u|=k

Au(λ)E
∗
u
| Au(λ) ∈ O0,pm}

where we denote E∗
u := π̃−w(u)x−u for each u ∈ M(f), and using the linear order above write for each multiset u =

(uj1 , . . . , ujk) of cardinality k of indices, with j1 ≤ · · · ≤ jk we set E∗
u
:= E∗

u1
· · ·E∗

uk
. Then

Symk
O0,pm

C∗
0(O0,pm) = {

∑

|u|=k

ξ(u)E∗
u
| ξ(u) ∈ O0,pm},

there being no requirement here that the coefficients tend to 0 as w(u) → ∞. Since α∗
m : C∗

0 (O0,pm) → C∗
0(O0,pm), we may

define for u = (uj1 , . . . , ujk),

Symk(α∗
m)(E∗

u
) =

∑
A∗

vl1 ,uj1
(λ)A∗

vl2 ,uj2
(λ) · · · A∗

vlk ,ujk
(λ)E∗

v

where v = (vl1 , . . . vlk), the sum runs over vli ∈ {π̃−w(u)x−u | u ∈M(f)}, and where α∗
m(π̃−w(u)x−u) =

∑
v∈M(f) A

∗
u,v(λ)π̃

−w(v)x−v.

The map Symk(α∗
m) then is defined on Symk

O0,pm
since as we noted earlier in (10), |α∗

m(π̃−w(u)x−u)| ≤ |π̃|w(u)(p−1).

We extend the pairing above to these symmetric power spaces by “linearly” extending the following: for decomposable

elements ξ = ξ1 · · · ξk ∈ Symk
O0,q1

C0(O0,q1) and ξ
∗ = ξ∗1 · · · ξ

∗
k ∈ Symk

O0,q2
C∗
0(O0,q2 ),

(ξ, ξ∗) := (ξ1 · · · ξk, ξ
∗
1 · · · ξ

∗
k)k :=

1

k!

∑

σ∈Sk

k∏

i=1

(ξi, ξ
∗
σ(i)), (12)

where Sk denotes the symmetric group on k letters. This pairing (·, ·)k is well-defined since A0 is a ring. Observe that it

follows from (11) that for ξ ∈ SymkC0(O0) and ξ
∗ ∈ SymkC∗

0(O0,qt̄),

(Symk αad(t̄)ξ, ξ
∗)k = (ξ, Symk α∗

ad(t̄)ξ
∗)k. (13)

Infinite symmetric powers. Denote by S∗
0 (O0) := O0[[e

∗
u : u ∈ M \ {0}]] the formal power series ring over O0 in the

variables {e∗u}u∈M\{0}, a set of formal symbols indexed by M \ 0. We endow S∗
0 (O0) with the sup-norm on coefficients.

Monomials in S∗
0 (O0) have the form e∗

u
:= e∗u1

e∗u2
· · · e∗ur

, where u1, . . . , ur ∈M(f) \ {0} for r > 0, and e∗0 := 1 when r = 0.

Thus, elements in the ring may be described by

S∗
0 (O0) :=




ξ
∗ =

∑

u∈S(M)

ξ∗(u)e∗
u
| ξ∗(u) ∈ O0




 .

Using the same notation as before, define the embedding Υ : C∗
0 (O0) →֒ S∗

0 (O0) by Υ(π̃−w(u)x−u) := e∗u for u ∈ M \ {0},

and Υ(1) := e∗0 = 1. For each m ≥ 1, recall from Lemma 4.1, α∗
m(1) = 1 + η∗m(λ, x) for some element η∗m ∈ C∗

0 (O0,pm)

satisfying |η∗m| < 1. It follows that (Υ ◦ α∗
m(1))

τ
∈ S∗

0 (O0,pm) for any τ ∈ Zp. For m ≥ 1, we define the map [α∗
m]κ :

13



S∗
0 (O0,pm) → S∗

0 (O0,pm) by

[α∗
m]κ(e

∗
u1

· · · e∗ur
) := (Υ(α∗

m(1)))κ−r(Υ(α∗
m(π̃−w(u1) x−u1))) · · · (Υ(α∗

m(π̃−w(ur)x−ur ))).

The product on the right side makes sense and lives in S∗
0 (O0,pm) since S∗

0 (O0,pm) is a ring and each factor is clearly in

S∗
0 (O0,pm). Furthermore,

|[α∗
m]κ(e

∗
u
)| ≤ |π̃(p−1)w(u)|. (14)

Define the R module

O∗
0,q :=




ζ
∗ =

∑

γ∈M(Γ)

ζ∗(γ)π̃−wqΓ(γ)λ−γ | ζ∗(γ) ∈ R




 .

Here we do not insist that coefficients go to 0 and we do not claim O∗
0,q is a ring. As usual we define an absolute value on

O∗
0,q by |ζ∗| := supγ∈M(Γ) |ζ

∗(γ)|. For series in λ, we define a projection (or truncation) map

prM(Γ) :
∑

γ∈Zs

A(γ)λ−γ 7−→
∑

γ∈M(Γ)

A(γ)λ−γ .

Note that for any q a power of the prime p, if γ, γ′, and δ all belong toM(Γ) with γ−γ′ = −δ then wqΓ(γ)− wqΓ(γ
′) ≥ −wqΓ(δ).

It follows that for ξ ∈ O0,q and ξ∗ ∈ O∗
0,q,

prM(Γ)(ξ · ξ
∗) ∈ O∗

0,q. (15)

Define the R module

S∗
0 (O

∗
0) :=



ω

∗ =
∑

γ∈M(Γ),u∈S(M)

ω∗(γ,u)π̃−wΓ(γ)λ−γe∗
u
| ω∗(γ,u) ∈ R





Define the map Φλ by λ 7→ λp. We define an R-linear map

β∗
κ,t̄ := prM(Γ) ◦ [α

∗
ad(t̄)]κ ◦ Φ

ad(t̄)
λ

by “linearly” extending over R the action

β∗
κ,t̄(λ

−γe∗
u
) = prM(Γ)

(
λ−qt̄γ · [α∗

ad(t̄)]κ(e
∗
u
)
)
.

Lemma 4.2. β∗
κ,t̄ is an R-linear endomorphism of S∗

0 (O
∗
0).

Proof. We have remarked already that [α∗
ad(t̄)]κ is a well-defined endomorphism of S∗

0 (O0,qt̄). As such, we may write for

each u ∈ S(M),

[α∗
ad(t̄)]κ(e

∗
u
) =

∑

σ∈M(Γ),v∈S(M)

Bu(σ,v)π̃
wqt̄Γ

(σ)λσe∗
v
∈ S∗

0 (O0,qt̄),

with Bu(σ,v) ∈ R, Bu(σ,v) → 0 as wqt̄Γ(σ) + w(v) → ∞ using (14). For ω∗ =
∑

γ∈M(Γ),u∈S(M) ω
∗(γ,u)π̃−wΓ(γ)λ−γe∗

u
∈
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S∗
0 (O

∗
0), we have

β∗
κ,t̄(ω

∗) = prM(Γ)




∑

γ∈M(Γ),u∈S(M)

ω∗(γ, u)π̃−wΓ(γ)λ−qt̄γ · [α∗
ad(t̄)]κ(e

∗
u
)




= prM(Γ)




∑

γ∈M(Γ)

λ−qt̄γ
∑

u∈S(M)

ω∗(γ,u)
∑

σ∈M(Γ),v∈S(M)

Bu(σ,v)π̃
−wqt̄Γ

(σ)π̃−wΓ(γ)λσe∗
v





=
∑

τ∈M(Γ),v∈S(M)

C(τ,v)π̃−wΓ(τ)λ−τe∗
v
,

where

C(τ,v) :=
∑

u∈S(M)

∑

γ,σ∈M(Γ)
qt̄γ−σ=τ

ω∗(γ,u)Bu(σ,v)π̃
−wΓ(γ)+wqt̄Γ

(σ)+wΓ(τ).

Observe that the exponent of π̃ satisfies

−wΓ(γ) + wqt̄Γ(σ) + wΓ(τ) ≥

(
1−

1

qt̄

)
wΓ(τ),

so that the term π̃−wΓ(γ)+wqt̄Γ
(σ)+wΓ(τ) is bounded in norm by 1 since w(τ) ≥ 0, and ω∗(γ,u) and Bu(σ, v) ∈ R. On the

other hand, Bu(σ,v) → 0 as wΓ(σ) + w(v) → ∞ so that the coefficient C(τ,v) is defined, in R, and β∗
κ(ω

∗) ∈ S∗
0 (O

∗
0).

Clearly it is R-linear.

Estimation using finite symmetric powers. It is useful to estimate βκ,t̄ and β
∗
κ,t̄ using finite symmetric powers. For

monomials eu or e∗
u
, with u ∈ S(M), u = (u1, . . . , ur) ∈ (M(f) \ 0)r, we say as usual that the degree or length of eu or e∗

u

is r. For ξ ∈ S0(O0), define length(ξ) as the supremum of the lengths of the monomials eu in the support of ξ (i.e. those

terms appearing with non-zero coefficients). In the case length(ξ) = r, we may write ξ =
∑

|u|≤r ξ(u)eu, and ξ may be a

series (not a polynomial), since M(f) and the set of monomials of degee ≤ r are infinite in general. Similarly for ξ∗
u
.

Let k be a positive integer. Define S
(k)
0 (O0) := {ξ ∈ S0(O0) | length(ξ) ≤ k}. Then the map

Ek−r
0 Eu1 · · ·Eur

7−→ eu1eu2 · · · eur

identifies SymkC0(O0) with S
(k)
0 (O0) as O0-submodules in S0(O0). Similarly, we identify SymkC∗

0 (O0) in S∗
0 (O0) as the

O0-submodule S
∗(k)
0 (O0) of power series in {e∗

u
| |u| ≤ k} with coefficients in O0. By transfer of structure, we have a pairing

(·, ·)k : S
(k)
0 (O0)× S

∗(k)
0 (O0) → O0.

We now work over R and define a new pairing 〈·, ·〉k : S
(k)
0 (O0)×S

∗(k)
0 (O∗

0) → Ω as follows. (Here again S
∗(k)
0 (O∗

0) is the

R-submodule of S∗
0 (O

∗
0) of series with support in monomials of degree ≤ k, namely {e∗

u
| |u| ≤ k}, with coefficients in O∗

0 .)

Let ξ :=
∑

γ∈M(Γ),u∈S(M) ξ(γ,u)π̃
wΓ(γ)λγeu ∈ S

(k)
0 (O0), and ξ∗ :=

∑
σ∈M(Γ),v∈S(M) ξ

∗(σ,v)π̃−wΓ(σ)λ−σe∗
v
∈ S

∗(k)
0 (O∗

0),

set

〈ξ, ξ∗〉k :=
∑

γ∈M(Γ),u∈S(M)

ξ(γ,u)ξ∗(γ,u)(eu, e
∗
u
)k,
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where (·, ·)k was defined above. (Observe that as defined, a denominator k! is introduced, so (eu, e
∗
u
)k is a rational number

with p-adic valuation bounded below by −k/(p− 1). This is independent of u, so 〈ξ, ξ∗〉k is well-defined and takes values

in the R-submodule of Ω consisting of elements with ordpc ≥ −k/(p− 1).) It is useful to think of 〈ξ, ξ∗〉k as the constant

term with respect to λ and the eu and e∗
u
of the product ξ · ξ∗, where the product eu · e∗

v
is defined to be zero if u 6= v, and

(eu, e
∗
u
)k if u = v.

Let km be a sequence of positive integers which tend to infinity (in the usual archimedean sense) and such that

limm→∞ km = κ p-adically. For each m we have a Frobenius map Symkm(αad(t̄)) on SymkmCo(O0), as well as a Frobe-

nius map Symkm(α∗
ad(t̄)) on SymkmC∗

0 (O0,qt̄). By transport of structure, we have then a Frobenius map [αad(t̄)](κ;m) on

S
(km)
0 (O0) and a dual Frobenius [α∗

ad(t̄)](κ;m) on S∗
0 (O0,qt̄). We extend by zero these maps to all of S0(O0) and S∗

0 (O0,qt̄),

respectively. That is, we define

[αad(t̄)](κ;m)(eu) :=





[αad(t̄)]km
(eu) if |u| ≤ km

0 otherwise.

To avoid any possible confusion, we note

[αad(t̄)](κ;m)(eu1 · · · eur
) = (Υ ◦ αad(t̄)(1))

km−r(Υ ◦ αad(t̄)π̃
w(u1)xu1 ) · · · (Υ ◦ αad(t̄)π̃

w(ur)xur ))

∼=
(
Symkmαad(t̄)

)
(Ekm−r

0 Eu1 · · ·Eur
),

when r ≤ km. Similarly

[α∗
ad(t̄)](κ;m)(e

∗
u
) :=





[α∗
ad(t̄)]km

(e∗
u
) if |u| ≤ km

0 otherwise.

Lemma 4.3. limm→∞[αad(t̄)](κ;m) = [αad(t̄)]κ as maps from S0(O0) → S0(O0,qt̄).

Proof. Write

(
[αad(t̄)](κ;m) − [αad(t̄)]κ

)
(eu1eu2 · · · eur

) =
(
Υ(αad(t̄)(1))

km−r −Υ(αad(t̄)(1))
κ−r
)
(Υ(αad(t̄)(π̃

w(u1)xu1))) · · · (Υ(αad(t̄)(π̃
w(ur)xur ))).

(16)

If r ≤ km, then the first factor on the right may itself be factored into

−Υ(αad(t̄)(1))
κ−r(1− (Υ(αad(t̄)(1))

km−κ).

Writing κ = km + pτ(m)σm (with τ(m) → ∞ and σm ∈ Zp) then

|1− (Υ(αad(t̄)(1))
km−κ| ≤ |π̃τ(m)+1|

as in the proof of [4, Lemma 2.2], and using the estimate (8). If r > km then (16) becomes

(
[αad(t̄)](κ;m) − [αad(t̄)]κ

)
(eu) = −[αad(t̄)]κeu = −Υ(αad(t̄)(1))

κ−r(Υ(αad(t̄)(π̃
w(u1)xu1))) · · · (Υ(αad(t̄)(π̃

w(ur)xur )))
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so that focussing on the r rightmost factors,

∣∣([αad(t̄)](κ;m) − [αad(t̄)]κ
)
eu
∣∣ ≤ |π̃|

pad(t̄)−1−1
p−1

1

pad(t̄)−1
w(u)

coming from (8). But w(u) ≥ rw0 > kmw0 (where w0 := min{w(u) | u ∈M(f) \ {0}}). In terms of the operator norm,

‖[αad(t̄)]κ − [αad(t̄)](κ;m)‖ ≤ |π̃|
min

{

τ(m)+1, p
ad(t̄)−1−1

p−1
1

pad(t̄)−1
kmw0

}

.

As km and τ(m) both tend to infinity as m grows, we see that limm→∞[αad(t̄)](κ;m) = [αad(t̄)]κ.

In an altogether similar manner, we have by Lemma 4.1, for u 6= 0, α∗
m(π̃−w(u)x−u) belongs to C∗

0 (O0,pm), and (recalling

(10))

|α∗
m(π̃−w(u)x−u)| ≤ |π̃|(p−1)w(u).

Also α∗
m(1) = 1+ η∗(λ) with η∗(λ) ∈ O0,pm and |η∗(λ)| ≤ |π̃|. With these observations, an entirely similar argument shows

limm→∞[α∗
ad(t̄)](κ;m) = [α∗

ad(t̄)]κ as maps from S∗
0 (O0,qt̄) → S∗

0 (O0,qt̄). Define

β(κ;m),t̄ := ψ
ad(t̄)
λ ◦ [αad(t̄)](κ;m)

β∗
(κ;m),t̄ := prM(Γ) ◦ [α

∗
ad(t̄)](κ;m) ◦ Φ

ad(t̄)
λ .

As ψλ and Φλ are bounded maps, it follows that as operators on S0(O0) and S∗
0 (O

∗
0), respectively,

lim
m→∞

β(κ;m),t̄ = βκ,t̄ (17)

lim
m→∞

β∗
(κ;m),t̄ = β∗

κ,t̄.

Lemma 4.4. For ξ ∈ S
(km)
0 (O0) and ξ

∗ ∈ S
∗(km)
0 (O∗

0),

〈β(κ;m),t̄ξ, ξ
∗〉km

= 〈ξ, β∗
(κ;m),t̄ξ

∗〉km
. (18)

Proof. With ξ ∈ S
(km)
0 (O0) and ξ

∗ ∈ S
∗(km)
0 (O0,qt̄), we may rewrite (13) as

([αad(t̄)](κ,m)ξ, ξ
∗)km

= (ξ, [α∗
ad(t̄)](κ;m)ξ

∗)km
. (19)

Next, by linearity we only need consider ξ = λγeu and ξ∗ = λ−σe∗
v
where γ, σ ∈M(Γ) and u,v ∈ S(M). We may write

(eu, [α
∗
ad(t̄)](κ;m)e

∗
v
)km

=
∑

τ∈M(Γ)

C(τ)λτ .

Next, observe that

〈ψλξ, ξ
∗〉km

= 〈ξ,Φλξ
∗〉km

.
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Hence, in the case ξ = λγeu and ξ∗ = λ−σe∗
v
,

〈β(κ;m)ξ, ξ
∗〉km

= 〈[αad(t̄)](κ;m)ξ,Φ
ad(t̄)
λ ξ∗〉km

= constant term of
[
λγ−qt̄σ([αad(t̄)](κ;m)eu, e

∗
v
)km

]

= constant of
[
λγ−qt̄σ(eu, [α

∗
ad(t̄)](κ;m)e

∗
v
)km

]
by (19)

= constant of



λγ−qt̄σ
∑

τ∈M(Γ)

C(τ)λτ





=






C(qt̄σ − γ) if qt̄σ − γ ∈M(Γ)

0 otherwise.

In the other direction, again setting ξ = λγeu and ξ∗ = λ−σe∗
v
,

〈ξ, β∗
(κ;m)ξ

∗〉km
= constant term of

[
λγ · prM(Γ)

(
λ−qt̄σ(eu, [α

∗
ad(t̄](κ;m)e

∗
v
)km

)
)]

= constant of



λγ · prM(Γ)




∑

τ∈M(Γ)

C(τ)λ−(qt̄σ−τ)









= constant of


λ

γ ·
∑

τ∈M(Γ) s.t.
qt̄σ−τ∈M(Γ)

C(τ)λ−(qt̄σ−τ)




=






C(qt̄σ − γ) if qt̄σ − γ ∈M(Γ)

0 otherwise.

Observe that β(κ;m),t̄ and βκ,t̄ are completely continuous operators on the p-adic Banach R-algebra S0(O0) (viewed

as R-algebra) with orthonormal basis {π̃wΓ(γ)λγeu | γ ∈ M(Γ),u ∈ S(M)}. Let T0(R) be S0(O0) viewed in this way as

R-algebra. Similarly, write T ∗
0 (R) for the b(I)-space (over R) in Serre’s terminology with “basis” I := {π̃−wΓ(γ)λ−γe∗

u
| γ ∈

M(Γ),u ∈ S(M)} with coefficients in R. Again, T ∗
0 (R) is just S

∗
0 (O

∗
0) viewed over R. Then

lim
m→∞

det(1− β(κ;m),t̄T ) = det(1− βκ,t̄T ).

Similarly, β∗
(κ;m),t̄ is a continuous R-linear endomorphism of T ∗

0 (R) to itself. We may consider a matrix B
∗(κ;m),t̄ with

entries in R defined by

β∗
(κ;m),t̄(π̃

−wΓ(γ)λ−γe∗
u
) =

∑
B

∗(κ;m),t̄
(δ,v),(γ,u)π̃

−wΓ(δ)λ−δe∗
v
.

Using the matrixB∗(κ;m),t̄, we define in the usual way the Fredholm determinant det(1−β∗
(κ;m),t̄T ) =

∑
j≥0(−1)j+1Cj(β

∗
(κ;m),t̄)T

j

where C0 = 1 and Cj is the series of all principal j × j subdeterminants of the matrix B
∗(κ;m),t̄. The 〈·, ·〉km

-adjointness of
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β(κ;m),t̄ and β
∗
(κ;m),t̄ implies Cj(β(κ;m),t̄) = Cj(β

∗
(κ;m),t̄), so that

det(1− β∗
(κ;m),t̄T ) = det(1− β(κ;m),t̄T ).

The uniform convergence limm→∞ B
∗(κ;m),t̄ =: B∗

κ,t̄ over the entries implies that the series
∑

j≥0(−1)j+1Cj(B
∗
κ,t̄)T

j is

well-defined, and is the coefficient-wise limit of det(1−B
∗
(κ;m),t̄T ) as m→ ∞. If we then define

det(1− β∗
κ,t̄T ) :=

∑

j≥0

(−1)j+1Cj(B
∗
κ,t̄)T

j,

then we have shown:

Theorem 4.5. det(1 − βκ,t̄T ) = det(1− β∗
κ,t̄T ), and thus from (9),

L(0)(κ, t̄, T )(−1)s+1

= det(1− β∗
κ,t̄T )

δsqt̄ . (20)

5 Eigenvector

Recall that G(t, λ, x) = f(t, x)+P (λ, x) =
∑
tux

u+
∑
A(γ, v)λγxv ∈ Fq[x

±
1 , . . . , x

±
n , λ

±
1 , . . . , λ

±
s , {tu}u∈Supp(f)]. Let Â(γ, v)

be the Teichmüller lift in Qq for each (γ, v) ∈ Supp(P ), and denote the lifting of G by Ĝ(t, λ, x) := f̂(t, x) + P̂ (λ, x) =

∑
tux

u +
∑
Â(γ, v)λγxv ∈ Qq[x

±
1 , . . . , x

±
n , λ

±
1 , . . . , λ

±
s , {tu}u∈Supp(f)]. We now replace every coefficient of G (w.r.t the

variables x and λ) with a new variable Λ: set f(Λ, x) =
∑

u∈Supp(f) Λux
u and P(Λ, λ.x) =

∑
(γ,v)∈Supp(P )Λγ,vλ

γxv and

H(Λ, λ, x) := f(Λ, x) + P(Λ, λ.x).

As before, let ∆∞(H) denote the Newton polytope at infinity in Rs+n of H (in λ and x variables). Let Cone(H) be the

cone in Rs+n over ∆∞(H) and M(H) = Cone(H) ∩ Zs+n be the relevant monoid. Clearly M(H) ⊂ M(Γ) ×M(f). By

our hypothesis that the x-support of P is contained in ∆∞(f) we have the polyhedral weight function on this polytope wH

dominates the total weight wtot := wΓ + wf relative to the polyhedron Γ×∆∞; more precisely

wtot(γ, u) ≤ wH(γ, u)

for all (γ, u) ∈M(H).

Now recall as well the projection map defined earlier,

prM(f) :
∑

u∈Zn

C(u)x−u 7−→
∑

u∈M(f)

C(u)x−u.

We define K := R[[Λ]] and

K0 := {ξ ∈
∑

v∈Zt
≥0

ξvΛ
v ∈ K | ξv → 0 as v → ∞},
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where t is the cardinality of {Supp(f)} ∪ {Supp(P )}. We endow both spaces with the sup norm on coefficients.

Define the spaces

W(K0) := {
∑

γ∈M(Γ)

ξγ(Λ)π̃
−wΓ(γ)λ−γ | ξγ(Λ) ∈ K0}

W0(K0) := {
∑

γ∈M(Γ)

ξγ(Λ)π̃
−wΓ(γ)λ−γ | ξγ(Λ) ∈ K0, ξγ(Λ) → 0 as γ → ∞}.

Similarly, we define as well

D(W(K0)) := {
∑

(γ,u)∈M(Γ)×M(f)

ξγ,u(Λ)π̃
−wΓ(γ)−w(u)λ−γx−u | ξγ,u(Λ) ∈ K0}

D0(W0(K0)) := {
∑

(γ,u)∈M(Γ)×M(f)

ξγ,u(Λ)π̃
−wΓ(γ)−w(u)λ−γx−u | ξγ,u(Λ) ∈ K0, sup

γ
|ξγ,u(Λ)| → 0 as u→ ∞}.

We proceed similar to our work above. We define a K0-module

S∗
0 (W(K0)) := {

∑

γ∈M(Γ),u∈S(M)

Aγ,u(Λ)π̃
−wΓ(γ)λ−γe∗

u
| Aγ,u ∈ K0}.

and a W0(K0)-algebra

S∗
0 (W0(K0)) := {

∑

γ∈M(Γ),u∈S(M)

ξ∗
u
(Λ, λ)e∗

u
| ξ∗

u
(Λ, λ) ∈ W0(K0)}.

As before define an embedding Υ : D(W(K0))) →֒ S∗
0 (W(K0)) by π̃−w(u)x−u 7→ e∗u for u ∈ M \ {0} and Υ(1) := 1. We

define a relative Frobenius map as follows. First, set

F (Λ, λ, x) :=
∏

u∈Supp(f)

θ(Λux
u) ·

∏

(γ,v)∈Supp(P )

θ(Λγ,vλ
γxv)

Fm(Λ, λ, x) :=

m−1∏

i=0

F (Λpi

, λp
i

, xp
i

),

and note that, similar to before,

Fm(Λ, λ, x) =
∑

(γ,u)∈M(H)

Fm
γ,u(Λ)λ

γxu

with Fm
γ,u(Λ) = Bγ,u(Λ)π̃

wtot(γ,u)/p
m−1

= Bγ,u(Λ)π̃
wH (γ,u)/pm−1

. It follows that, if we set (as before)

α∗
m(Λ, λ) := prM(f) ◦ Fm(Λ, λ, x) ◦ Φm

x ,

where Φx sends xu 7→ xpu and prM(f) was defined above, then an argument similar to Lemma 4.1 shows

α∗
m,Λ : D0(W0,pm(K0)) → D0(W0,pm(K0)),
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where W0,pm is defined by replacing π̃wΓ with π̃wpmΓ in the definition of W0. Furthermore,

α∗
m,Λ(π̃

−w(v)x−v) =
∑

u∈M(f)

Cu,v(Λ, γ)π̃
−w(u)x−u

with Cu,v(Λ, λ) ∈ W0,pm(K0) and Cu,v(Λ, λ) → 0 as w(u) → ∞. For any κ ∈ Zp, we define [α∗
m]κ : S∗

0,pm(W0(K0)) →

S∗
0,pm(W0(K0)) using (14). By an argument similar to Lemma 4.2, the map

β∗
κ,t̄,Λ : S∗

0 (W(K0)) → S∗
0 (W(K0))

defined by

β∗
κ,t̄,Λ := prM(Γ) ◦ [α

∗
ad(t̄)]κ ◦Φ

ad(t̄)
λ .

is an endomorphism over K0.

Eigenvector. Set M0(Γ) = M(Γ) ∩ (−M(Γ)),M0(f) = M(f) ∩ (−M(f)), and M0(H) = M(H) ∩ (−M(H)). Define the

projection map

pr0 :
∑

γ∈Zs,u∈Zn

C(γ, u)λγxu 7−→
∑

γ∈M0(Γ),u∈M0(f)

C(γ, u)λγxu.

If we write expπH(Λ, λ, x) =
∑
Av,γ,uΛ

vλγxu then clearly Av,γ,u ∈ R. Let us write then expπH(Λ, λ, x) =
∑
Aγ,u(Λ)λ

γxu

with Aγ,u(Λ) ∈ R[[Λ]] and the indices (γ, u) ∈M(H) ⊂M(Γ)×M(f). We will also write

pr0(expπH(Λ, λ, x)) =
∑

(γ,u)∈M0(Γ)×M0(f)

Jγ,u(Λ)π̃
−wΓ(γ)−w(u)λ−γx−u =

∑

(γ,u)∈M0(H)

J̃γ,u(Λ)π̃
−wH (γ)λ−γx−u.

The running indices (γ, u) in all these sums may be taken in M0(H). Of course,

Jγ,u(Λ) = A−γ,−u(Λ)π̃
wΓ(γ)+w(u) = J̃γ,uπ̃

wΓ(γ)+w(u)−wH(γ,u) (21)

for every (γ, u) ∈ M0(H), and J0,0 = J̃0,0 = A0,0 ∈ 1 + ΛK. That is, J0,0(Λ) is a power series in the variables Λ with

coefficients in R and constant term 1. So J0,0(Λ) is a unit in K. Define

η(Λ, λ, x) : =
1

J00(Λ)
pr0 expπH(Λ, λ, x)

= 1 +
∑

(γ,u)∈M0(H)
(γ,u) 6=(0,0)

J̃γ,u(Λ)

J0,0(Λ)
π̃−wH (γ,u)λ−γx−u. (22)

In [1], it was shown that J0,0(Λ)/J0,0(Λ
p) and J̃γ,u(Λ)/J0,0(Λ) converge on the closed unit polydisk |Λ| ≤ 1 for every Λ.

Equivalently, J0,0(Λ)/J0,0(Λ
p) and J̃γ,u(Λ)/J0,0(Λ) belong to K0. The same holds as well for Jγ,u(Λ)/J0,0(Λ) using (21),

since A−γ,−u(Λ) ∈ R[[Λ]].
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Since Jγ,u(Λ) = A−γ,−uπ̃
wΓ(γ)+w(u), we have

∣∣∣∣∣∣

∑

γ∈M0(Γ)

Jγ,u(Λ)

J0,0(Λ)
π̃−wΓ(γ)λ−γ

∣∣∣∣∣∣
≤ |π̃|w(u),

and so η(Λ, λ, x) ∈ D0(W0(K0)) ⊂ D(W(K0)).

Set F(Λ) := J00(Λ)/J00(Λ
p). Observe that

prM(f) ◦ Fm(Λ, λ, x) ◦ pr0(expπH(Λp, λp, xp)) = prM(f)(expπH(Λ, λ, x))

so that

α∗
1,Λ(η(Λ

p, λp, x)) = F(Λ)prM(f)

(
expπH(Λ, λ, x)

J00(Λ)

)

= F(Λ) (η(Λ, λ, x) + ω̃(Λ, λ, x)) ,

where each λγ appearing in ω̃ lies in M(Γ) \M0(Γ).

Iterating this, if we set

Fm(Λ) :=

m−1∏

i=0

F(Λpi

),

then we have

α∗
ad(t̄),Λη(Λ

qt̄ , λqt̄ , x) = Fad(t̄)(Λ) (η(Λ, λ, x) + ω(Λ, λ, x)) , (23)

where each λγ appearing in ω lies in M(Γ) \M0(Γ).

For notational convenience, set Qγ,u := Qγ,u(Λ) := Jγ,u(Λ)/J0,0(Λ) so that

η(Λ, λ, x) = 1 +
∑

γ∈M0(Γ),u∈M0(f)
(γ,u) 6=(0,0)

Qγ,uπ̃
−wΓ(γ)−w(u)λ−γx−u.

Next, write

Υ(η) = 1 +
∑

γ∈M0(Γ),u∈M0(f)
(γ,u) 6=(0,0)

Qγ,uπ̃
−wΓ(γ)λ−γe∗u,
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and observe that Υ(η) and 1/Υ(η) are elements of S∗
0 (W0(K0)). For κ ∈ Zp, we compute

(Υ(η))κ =

∞∑

l=0

(
κ

l

)
(
∑

Qγ,uπ̃
−wΓ(γ)λ−γe∗u)

l

=

κ∑

l=0

(
κ

l

) ∑

γ1,...,γl∈M0(Γ)
u1,...,ul∈M0(f)

(γj ,uj) 6=(0,0) for every j

Qγ1,u1 · · ·Qγl,ul
π̃−wΓ(γ1)−···−wΓ(γl)λ−(γ1+···+γl)e∗u1

· · · e∗ul

=
∞∑

l=0

(
κ

l

) ∑

γ1,...,γl∈M0(Γ)
u1,...,ul∈M0(f)

(γj ,uj) 6=(0,0) for every j

Q̃γ,u · π̃−wΓ(γ1+···+γl)λ−(γ1+···+γl)e∗u1
· · · e∗ul

where

Q̃γ,u := Qγ1,u1 · · ·Qγl,ul
π̃−wΓ(γ1)−···−wΓ(γl)+wΓ(γ1+···+γl).

Hence, (Υ(η))κ ∈ S∗(W0(K0)). As every λ
γ appearing in Υ(ω) (from equation (23)) satisfies γ ∈M(Γ) \M0(Γ), it follows

that the same is true for (Υ(ω)/Υ(η))r for any r ∈ Z≥1. Hence,

prM(Γ)

(
1 +

Υ(ω)

Υ(η)

)κ

= 1.

Unit root formula. We may now finish the proof of Theorem 1.1. For convenience, write η(Λ, λ, x) = 1 + h(Λ, λ, x) so

that Υ(η)κ = (1 + Υ(h))κ =
∑∞

l=0

(
κ
l

)
Υ(h)l. Observe that

β∗
κ,t̄,ΛΥ(η(Λqt̄ , λ, x))κ = prM(Γ) ◦ [α

∗
ad(t̄),Λ]κ ◦ Φ

ad(t̄)
λ Υ(η(Λqt̄ , λ, x))κ

= prM(Γ) ◦ [α
∗
ad(t̄),Λ]κΥ(η(Λqt̄ , λqt̄ , x))κ

= prM(Γ) ◦ [α
∗
ad(t̄),Λ]κ

∞∑

l=0

(
κ

l

)
Υ(h(Λqt̄ , λqt̄ , x))

l

= prM(Γ)

∞∑

l=0

(
κ

l

)(
Υ ◦ α∗

ad(t̄),Λ · 1
)κ−l (

Υ ◦ α∗
ad(t̄),Λh(Λ

qt̄ , λqt̄ , x)
)l

by definition of [α∗
ad(t̄),Λ]κ

= prM(Γ)

(
Υ ◦ α∗

ad(t̄),Λ · 1 + Υ ◦ α∗
ad(t̄),Λh(Λ

qt̄ , λqt̄ , x)
)κ

= prM(Γ)

(
Υ ◦ α∗

ad(t̄),Λη(Λ
qt̄ , λqt̄ , x)

)κ

= prM(Γ) Fad(t̄)(Λ)
κ (Υ(η(Λ, λ, x) + Υ(ω(Λ, λ, x))

κ
by (23)

= prM(Γ) Fad(t̄)(Λ)
κΥ(η(Λ, λ, x))κ

(
1 +

Υ(ω(Λ, λ, x))

Υ(η(Λ, λ, x))

)κ

= Fad(t̄)(Λ)
κΥ(η(Λ, λ, x))κ.

Finally, we may specialize this equality taking Λ at the Teichmüller unit coefficients of Ĝ(t̂, λ, x):

Λu = t̂u and Λγ,v = Â(γ, v) for all u and γ, v in the support of H,
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and setting

ηsp(λ, x) :=
(
η(Λ, λ, x) specialized at Λu = t̂u and Λγ,v = Â(γ, v)

)
,

then we see that

β∗
κ,t̄Υ(ηsp(λ, x))

κ = Fad(t̄)(t̂)
κΥ(ηsp(λ, x))

κ (24)

This demonstrates that Fad(t̄)(t̂)
κ is the unique unit root of L(0)(κ, t̄, T )(−1)s+1

by (20), which, together with Theorem 3.1,

completes the proof of Theorem 1.1.
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