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Abstract

Dwork’s conjecture, now proven by Wan [ [8 [6], states that unit root L-functions “coming from geometry” are p-adic
meromorphic. In this paper we study the p-adic variation of a family of unit root L-functions coming from a suitable
family of toric exponential sums. In this setting, we find that the unit root L-functions each have a unique p-adic unit
root. We then study the variation of this unit root over the family of unit root L-functions. Surprisingly, we find that
this unit root behaves similarly to the classical case of families of exponential sums, as studied in [I]. That is, the unit

root is essentially a ratio of .A-hypergeometric functions.

Introduction

work conjectured [2] that certain L-functions, constructed as Euler products of p-adic unit roots coming from the fibers
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ﬂf an algebraic family of L-functions, are p-adic meromorphic. He proved this in a few cases using the idea of an excellent
8ifting of Frobenius, but was unable to prove it in general, mainly because excellent lifting in its original form does not
('\ilways exist. In a series of papers [7, [8 [6], Wan proved Dwork’s conjecture using a new technique which avoided excellent
Bifting. In this paper, we use Wan’s techniques, as established in [4], to study the p-adic variation of unit root L-functions.
= =, To solidify concepts, we first consider an example of a unit root L-function coming from a family of toric exponential
Qums. Let ¥ be a nontrivial additive character on F,. Let f € F, [Ali, ce )\;F, :Eli, . ,;vff] be a Laurent polynomial, and

Bonsider for each \ € (qu )® and m > 1, the exponential sum

S(f, ) := Z U o TT]qu.deg@ JF, (f(\,Z)).

T X n
Ie(qu-deg(X))

Define by L(f,\,T) := exp(Y_,,>1 Sm(f, 5\)%) the associated L-function. It is known that L(f, X, 7)"D""" is a rational

function with a unique p-adic unit root, say m(A), which is also a 1-unit. The unit root L-function of this family is defined

by

Lunit(s, T) =[] !

_ Y\&Tdeg(N)’
SelGi /e, 1 MOA) T

where x takes on values in the p-adic integers Z,. As mentioned above, in this paper we study the p-adic variation of

unit root L-functions such as these. The following setup is similar to that of the above family, but more technical for the
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following reason. As unit root L-functions come from families, and we wish to study a family of unit root L-functions, we
need to consider a family of families. The role of the variables in the following is: = denotes the space variables, A denotes
the parameters of the family, and ¢ denotes the parameters defining the family of families.

Let A be a finite subset of Z"™. We define the Newton polyhedron of A at oo, denoted A (A), to be the convex closure
of AUO in R™. We make the simplifying hypothesis that every element u € A lies on the Newton boundary at oo of
A (A), that is, the union of all faces of A, (A) which do not contain the origin. In other language this is the same as the

hypothesis that w(u) =1 for all u € A where w is the usual polyhedral weight defined by A, (A) (see the next section for

definition). The generic polynomial f with z-support equal to A is given by f(t,z) = 3t 2% € Fy[{tu}uca, 25, ..., zF]

rrn

where u runs over A and {t, },e.4 are new variables. Let Axo(f)(= A (A)) be the Newton polyhedron at infinity of f. Let

P\ z) € T\, ... AE, 2, ..., 2f] be such that the monomials A7z in the support of P(\,z) all satisfy 0 < w(v) < 1.

rn

Such deformations were studied in [5]. It is convenient to assume the origin is not in the set A4 and if A72" is in the support
of P, then v # 0 so that neither f nor P have a constant term (with respect to the z-variables). This assumption will be
made throughout this work. Let G(t, A\, x) := f(¢,z) + P(\, x).

We construct a family of L-functions as follows. Let t € (FZ)'A‘, and denote by deg(t) = [F,(t) : Fy] the degree of

t, where F () means we adjoin every coordinate of ¢ to F,. We will often write d(t) for deg(f). For convenience, write

g = ¢® so that F,, = F, (). Next, let A € (F,")*. Denote by degi(A) or di()) the degree [F,, (A) : Fy,]; set QGx = q?{(x)

and Fy . = F,.(A\). For each m > 1, define the exponential sum

aE, X

Sm(fv 5\) = Z v OTT]qu, /Fq(G(ﬂ;\aj))

:Ee(lF;,l)"
t, A
and its associated L-function
o e __Tm
Lt \NT) = Sm(t,\)—
a1 o (35002

It is well-known [I] that L(Z, \, T)(_l)n+l has a unique reciprocal p-adic unit root 7o (%, A), which is a 1-unit. Let x € Z, be

a p-adic integer. For each %, the unit root L-function is defined by

_ 1
Lynit(k, t,T) == H a— -
o _ RTdi(%)
S\E\an/]FqH 1 Wo(t,)\) Taz
where x takes values in the p-adic integers Z,. Wan’s theorem tells us that this L-function is p-adic meromorphic and so

may be written as a quotient of p-adic entire functions:

_ . > (1= ai(k, )T
Lumt(m,t,T)(_l) o Hf,jl( @ik, O)T) a; = 0,8; = 0asi,j— oo.

Hj:l(l — Bi(r, 0)T)’

Very little is known about the zeros and poles of unit root L-functions. In Theorem [I.1] below, we show that for each
t and k, Lynit(k,t, T)(’l)s+1 itself has a unique unit zero (and no unit poles), which is a 1-unit. We then study the

variation of this unit root as a function of ¢ and x. We note that the variation of the unit root L-function with respect



to the parameter x has been studied before in Wan’s proof of Dwork’s conjecture, and is connected to the Gouvéa-Mazur
conjecture [3]. On the other hand, as far as we know, the study of the p-adic analytic variation of the unit root L-function
with respect to ¢ is new. To state the main result, first denote by 7 € @p an element satisfying 77! = —p. Next, writing
G(t, A\ x) = f(t,z) + P\ z) = D tyz™ + > A(y,v)N\z? € Fq[ajf, cooxE /\f, o AT, {tu}uesupp(p)l; let /Al(”y, v) be the

Teichmiiller lift of A(y,v) in Q, for each (v,v) € Supp(P). We now replace every coeflicient of A(y,v) or P(A,z) with a

new variable A: set P(A, A.x) =3 (py Ay, 0A 72" and

v,v)ESupp

H(t, AN ) = f(t,z) + P(A, N\ z).

Note that the series

expmH(t, A, A\, x)) = Z Ko u(t, )Nz
YELS uELT

is well-defined, and its coefficients K., , (¢, A) are themselves elements in the power-series ring Zy [Cp] [{tu }ue 4, {Ay,0} (v,0)e Supp(P)]]:

and so converge in the open polydisk D(0,17)IAI+Surp(P)] defined by the inequalities [tulp < lforallu e Aand|A, ] <1

for all (vy,v) € Supp(P). Of particular interest is Ko (t), a principal p-adic unit for all ¢ and A in the polydisk. Define
F(t,A) := Ko o(t, A)/Koo(t?, AP) and set Fp, (£, A) = [[75" F (', AP").

Theorem 1.1. Let i be the Teichmiiller lift of t. The function F(t,A) analytically continues to the closed polydisc
D(0,17)AIFISupr(l defined by |tul, < 1, u € A and |Ayo| < 1, (y,v) € Supp(P). Furthermore, fad(g)(f,fl)“ =

H?jgﬂ f(fpi,flpi)"“ is the unique unit 100t of Lynit(k, 1, T)(_l)s+1 at each fiber t and k € Zy, where Foq) (£, A) means

setting each t, = t, and Aoy = fl(%v).

Remark. It is worthwhile to compare this result to the result in [I]. To that end, consider the (total) family H (¢, A, A, x)

above. For each t € (F: ) A and m > 1, define the exponential sum

Sm(HaB = Z v OTTqu,deg({)/Fq(H(EaAv5‘7'%))'

N X s X n
()"I)G(quzdeg(f)) X (]qu,deg({))

Define by L(H,t,T) := exp(3_,,>1 Sm(f, M) L) the associated L-function, a rational function over Q(¢,). By [I], L(H, %, T)(~1)

m

has a unique p-adic unit root given by F, 4 (t, A) Conjecturally this type of relation should hold in greater generality.
Remark. The existence of a unique p-adic unit root is a general result for unit root L-functions defined over the torus G;,.
This includes the classical case of L-functions over of exponential sums defined over the torus; see [4, Section 3] for details.

To state this result, we use the language of o-modules. See [4] reference to the following notation. Let K be a finite
extension field of Q, with uniformizer 7, ring of integers R, and residue field F,. Let (M, ¢) be a ¢ - log-convergent, nuclear
o-module over R, ordinary at slope zero of rank one (hg = 1) with basis {e;}i>0. Assume further the normalization condition
peo = ep mod(w) and ¢e; = 0 mod(w) for all ¢ > 1. With this setup, it follows that the associated unit root L-function
Lunie(r, ¢, )" has a unique p-adic unit root (and no unit poles). To see this, we first note that by [4 Lemma 2.1]

and [4] equation (9)], Lunit(k, ¢, 7)Y = det(1 — FgiyT) mod 7. Next, it follows from the normalization condition that

s+n+1



the matrix BI*! takes the form (} ) mod 7, and thus det(1 — FguT) = 1 — T mod 7. Hence, the Fredholm determinant

det(1 — Fgi«T) has a unique p-adic unit root proving the results.

2 Lower deformation family

Let f € Fq[{tu}uesupp(f),xf, ..., xF] be of the form f(t,r) = > t,z*. In particular, the coefficient of every monomial

xu

in f is a new variable ¢,. Denote by A, (f) the Newton polytope at infinity of f, defined as the convex closure of
Supp(f)U{0} in R™. Let Cone(f) be the union of all rays emanating from the origin and passing through A, (f), and set
M := M(f) := Cone(f)NZ". We define a weight function w on M as follows. For u € M, let w(u) be the smallest non-
negative rational number such that u € w(u)A(f). It is convenient to assume w(u) = 1 for all u in the a-support of f. In

particular this implies that f has no constant term. Let D denote the smallest positive integer such that w(M) C (1/D)Zx>o.

The weight function w satisfies the following norm-like properties:
1. w(u) = 0 if and only if u = 0.
2. w(cu) = cw(u) for every ¢ > 0.
3. w(u+v) < w(u) + w(v) for every u,v € M, with equality holding if and only if v and v are cofacial.

It is also convenient to assume the lower-order deformation P € F[Af,... , A\F, 2, ..., ] has no constant term so the
origin in R™ is not in the z-support of P. In fact, if we write P(\,z) = >, .5, Pu(M)z", then 0 < w(u) < 1. Our lower
deformation family then is defined by G(¢, A\, x) := f(¢,z) + P(\, x). Set

0= { (1= ) e @ 1w € sumip) 1)

and let I' := A (U) C R®. In a similar way to the above, define M (I") := Cone(I') N Z* with associated polyhedral weight

function wr. Observe that for § = (T(u)) ~v € U that wr(d) < 1. We call " the relative polytope of the family G(z, ).

Rings of p-adic analytic functions. Let (, be a primitive p-th root of unity. Let Q, be the unramified extension of Q,
of degree a := [F, : F)], and denote by Z, its ring of integers. Then Z[(,] and Z,[(,] are the ring of integers of Q4(¢,) and
Qp(Cp), respectively. Let 7 € Q,, satisfy 77~ = —p, and let @ be an element which satisfies ord,(7) = (p — 1)/p*>. We may
have occasion to work over a purely ramified extension Q¢ = Q,(7) of Q, with uniformizer 7 which contains Q,((,,7) and
for which 7 is an integral power of 7. Let & = Qq(7). Denote by R the ring of integers of 2, and Ry the ring of integers of
Qp. Set

Op = Z C()FUr N | C(7) € R,C(y) = 0 as v — oo
yEM(T)

(We note that the fractional powers of 7 are to be understood as integral powers of a uniformizer of R.) Then Oy is a ring

with a discrete valuation given by

Y cNEr = sup |C(v)].

yeEM(T) yeM(T)



Define

Co(Op) =1 &= Z E(p “)w“|§(u)€(’)o,§(u)—>0asu—>oo ,

peM(f)
an Oy-algebra.
In the following, ¢ = p® is an arbitrary power of p (including the case when a = 0), so we can handle the cases of t9, t?,

and ¢, at the same time. Define

Oogi=13 >, CN7w [ Cly) € R,Cly) > 0asy—o0p. (2)

yEM(T)
This ring is the same as Oy except using a weight function defined by the dilation ¢I' (that is, wer(y) = wr(v)/q). We
note that here Op; = Op. A discrete valuation may be defined as follows. If £ = ZweM(P) CO(y)7warMAY € Op,, then the

valuation on Oy 4 is given by

l§]:=sup [C(7)]-

yEM(T)
We may also define the space
Co(Oo,q) := Z Euxt7 ™ | ¢, € Oo0,q:6u > 0asu— o0 p. (3)
ueM(f)
For n = ZuGM(f) E Wy ¢ Co(Op,q), we set
Inl = sup [€ul.
ueM(f)

Frobenius. At present, we fix € (F,)!4!, returning to variation in £ in the last section. Recall the notation d(f) = [F,(f) :
F,], and ¢z = ¢*®. Now let A € (F,)*. Recall we denote by deg(t) or d(f) the degree [F,(f) : F,]. Similarly, denote by
deg(A) or d(X) the degree [Fq(A,f) : Fy(f)], and gz 5 = DA

Dwork defines a splitting function by 0(T) := expn(T —T?) = > .2 6;T". It is well-known that ord,(6;) > ( )i for

all ¢ > 0. Writing

G(t,\z) = f(t,z)+ P(\x)

= qux" —I—Z[l(”y,v))\'yxv S S D bl I

we let

Gt A x) = f,2"+ Y Ay, 0)N2" € Rlat, ..., xk AT, ..., AF]

be the lifting of G by lifting the coefficients A(y,u) and # by Teichmiiller units. Set

FiE ) = ][] oG- J[  0A(R0)NY) (4)

u€Supp(f) (v,v)€Supp(P)



and for any m > 1,
m—1

Fo(t A\ 2) =[] F7E N, a"), (5)
1=0

where o is the extension of the usual Frobenius generator of Gal(Q4/Qp) to Q with o(#) = #. Then, ¢ acts on series with coef-
ficients in {2 by acting on these coefficients. Note that if we set Fip, (1, A, 2) = }_, e pr(p) B™ (u)z" = EWEM(F),UEM(]”) B (y, u) A\,
then

wr(n) +wl) p-1

OTdP(Bm(’Yvu)) 2 pm_l p2

Define ¢, by > C(u)z" — > C(pu)z™. Set
ay =0 Yo, o F(t,\ x)

A similar argument to that in [5] demonstrates that oy maps o~ !-semilinearly Co(Qp) into Co(Qo,p). Similarly, for m > 1,
if we define

Ay, 1= o™ Ow;n OFm(f,)\,(E),

then a,, maps Co(Op) into Co(Oppm). In particular, o, (7@™av) = ZuEM(f) g —w) gm(pmy — )@ gt with

ord, (7w Bm (pmy — 4) > (pmfl)w("?jn(f’lnilfl)w(v) ord,(7). Summarizing, we have in Co(Op pm ), |am (7@ z?)| <
pm—lo1
|7~T|w(v)w'

Fibers. Define

gy = PO o B ooy (A ),

where £ and A are the Teichmiiller representatives of £ and X, respectively. Notice that az x is an endomorphism of Co(j\),
where Co(j\) denotes the space obtained from Cy(Og) by applying the map on Oy which sends A to A
To relate the L-function L(#, A\, T) to the operator az y it is convenient to introduce the following operation: for any

function g(T'), define g(T)% := g(T)/g(qT). Set gz 5 = ¢4 Dwork’s trace formula states

(g7 — )" Tr(af | Co(N) = Z Uo TT]Fqng /5, (G(E, A, T))

Equivalently,

71)n+1

L(ENT) =det(1 — az 3T | Co(A)) 1553

This is a rational function, and it is well-known that L(Z, \,7)("D""" has a unique unit (reciprocal) root mo(Z, A) (see [I]

for example). This unit root is a 1-unit, so it makes sense to define, for any p-adic integer s, the unit root L-function at

the fibre %:
_ 1
Lunit(k, 8, T) := H =

— )k Tdeg(N)”
sele (o) L T 0B AT T




Denote the roots of det(1 — oz 5T | Co(\)) by (£, A), and order them such that ord, m; (£, \) < ord, miy1(f,A) for i > 0.

For each m > 0, define

LTy = [ ] = m@E N " m, (EA) i (EA) -, () -y, (£, AT~
A€E[GS, /Fqy
where the inner product runs over all r > 0, 1 <47 <is < ---,and 0 < j; < -+ < j;m. Note that the factors indexed

by the various i are allowed to repeat, whereas the factors with indices j; are distinct. Intuitively, the inner product is

det(1 — Sym" "a; 5 ® N"a; xT'). From [4, Lemma 2.1],

Lunit (%5, 8, T)) HL D, &, T) V00 = LO (s £, 1) T L9 (5,8, 1) D60, (6)

i>2

In the next section, we will show each L(Y with i > 1 has no unit root or pole, whereas L(®) will. This will show

Lunit (K, £, T)(*l)s+1 has a unique unit root.

3 Infinite symmetric powers

Denote by S(\) = R[j\][[{eu}ueM\{o}]] the formal power series ring over R[\] in the variables {ew}uenr\foy Which are
formal symbols indexed by the M \ {0}. We equip this ring with the sup-norm on coefficients (in R[\]). This ring will
play the role of the formal infinite symmetric power of Co(A) over R[A] in a way we describe below. It is convenient to
write the monomials of degree r in the variables {e,} using the notation ey := €y, - - - €., where uy,...,u, € M(f)\ {0}
for » > 0. It helps to fix ideas to assume we have a linear order on M (f) \ {0} with the property that if w(u) < w(v) for
u,v € M(f)\ {0}, then u < v. We may extend this to all of M(f) by taking 0 as the least element. We emphasize then
in the notation ey := ey, - - - e,, for a monomial of degree r we have 0 < u; < ug < --- < u,, and we allow the variables
to repeat. When r = 0 we understand there is only the monomial 1 of degree 0. We extend the weight function w to such
monomials by defining, for ey := ey, - - - €,,., the weight w(u) := w(u1) + - - - + w(u, ). Denote by S(M) the set of all indices
u corresponding to monomials e,,. We emphasize that we will often equate elements u € S(M) with the monomials ey; it
should be clear from the context which meaning is desired. We may assume S(M) has a linear order defined on it such
that the weight w(u) is non-decreasing and such that the restriction of this linear order to M (f) is our earlier linear order.

We may identify Co(\) as an R[A]-submodule of S()) by defining an R[A]-linear map

YT:C(\) = S(\)  via YooarMat e+ Y e
weM(f) ueM(f)\{0}

That is, the image T (Co())) consists of the powers series with support in the monomials of S(A) of degree < 1 and with

coefficients {&u }uenr(p) C R\ satisfying &, — 0 as u — co. Note that T(7*Wg") = e, for u € M \ {0}, and Y(1) :=



Define the R[\]-subalgebra of S(})

So(N) :=1&6= D &()en |£(u) € R (1) — 0 as w(u) — oo

uesS(M)

Hence, T(Co())) C So()). Note that we may write a;x(1) = 1+ n(z) for some element 7 € Co()) satisfying |n| < 1 and
with support of 1 in M(f)\ {0}. For &€ = S &(u)ey € So()), define |¢] := > ues(n [§(w)], which makes So(N) a p-adic
Banach algebra over R[A]. Then for any ¢ € Co()), |T(¢)| = [¢|. It follows that (Y o a; 5(1))7 is defined and belongs to

So(A) for any 7 € Z,,. Define [« i xln : So(A) = So(A) by extending linearly over R[)] the action on monomials of degree r
[z sl (Cus - ew,) = (Toags (1)) (Toag (@ D)) (T o ap5 (7 a)).
By a similar argument to [4, Corollary 2.4, part 2],
det(1 — [ag5]T | So(A HH 1—mo(t, )" "miy (8, A) - - i (M) T)

where the inner product runs over all multisets {41, ...,%,} of positive integers of cardinality r satisfying 1 < iy <ig < ---.

Infinite symmetric power on the family. Denote by S(Oy) := Oq[[{eu}uerr f01]]; the formal power series ring supported
by the monomials S(M), with coefficients in the ring Oy. As in the constant fibre case above, this ring is equipped with

the sup-norm on coeflicients. Define the p-adic Banach algebra over Oy,

So(Oo) i ={6= > &(u)en|&(w) € Op,&(n) = 0 as w(u) — oo}

uesS(M)

={¢{= > C(y, w7 r M \7ey | C(y,u) € R,C(v,u) = 0 as wr(y) + w(u) = oo},
yEM(T'),ueS(M)

and similarly, for any ¢ = p® an arbitrary power of p (including the case when a = 0),

So(Ooq) ={ Y &u)en|E(u) € Opq, (1) = 0 as w(u) — oo},

ueS(M)

Note that Sp(Oo,q) is a p-adic Banach algebra over Qg ; with S(M) an orthonormal basis. We embed Co(Oo,q) < So(Oo,q)
via a map T defined in the same way as on the fibers. Again, (YT o o, (1))" € So(Op pm) for any 7 € Z,. We define a map

[am]k : So(Op) = So(Op pm ) as follows. On a basis element ey = €y, -+ €y, wWithr >0and 0 <uy <--- < u,,
[am](en) =[]k (e -+ eu,) = (Toan(1)" "(To am(ﬁw(ul)xul)) (T o o (7 w(uT)qu))'

Ifr=0,
[am]s (1) == T(am(1))".



We may calculate an estimate for a,, (7% az%), where we recall ay,, 1= 0~™ 09y o F,,, (£, \, ). As noted earlier, we may
write

Fm (£7 >\’ I) = Z B(FY’ v)ﬁ(wr(7)+W(v))/pm71 A’Y‘rv’ (7)
YEM(T),veM(f)

with ord, B(v,7) > 0, and set B™(v,v) = B(y,v)7wrM+w@)/p™ ™" g,

o (AW ) = wm( (A ) - ”"(“)x“)

- Zﬁ(wr(7)+w(pmv*u))/pm’1+w(U)*wr(’Y)/pm’1*W(U)B(%pmv — ) - Fwr(M/P" T\ zw(v) g
We note that
(pmv—u)+ ()_ )> )_w(u)+ _ (
s w(u) —w(v) > pw(v et w(u) —w(v)
m—1
p -1
(p —Dw(v) + —=—w(u)
p
Hence,
~w(u) u - P w(u)
T (o (7 2"))| < |7] > (8)
The R-linear map ¥y : So(Op,p) = So(Oyp) is defined by
(N > Ay, w)A ey — > A(py,u)\ eq
yEM(T),ueS(M) YyEM(T),ueS(M)

We may in the usual manner view So(Qp) as a p-adic Banach space over R with orthonormal basis {7“T()X\Ve, | v €
M(T),ue S(M)}. Then

B i= V54D o [ ]n : So(O0) = So(Op)

is a completely continuous operator (over R). Set B := {e, | u € S(M)}. Let By"] (A) be the matrix of [crgq(7)]x With respect
to B, the basis of Sp(Oyp) over Oy (as well as So(Og pm ) over Op pm). The entries of Btw (A) are series with support in B and
coefficients in Qg ,m (which tend to 0 as w(u) — o0). We may write Btw A =2 emm b[f] A7, where bLf} is a matrix with

+,u) indexed by v, u € M(T),

rows and columns indexed by M(I') and entries in R. We define the matrix Fy. = (bz[zé}'yfu)(

and we set bz[z }'y :=0if ¢y —pu & M(T). Note that FBL“] is a matrix with entries in R whose (7, ut) entry is again a matrix

in R with rows and columns indexed by M (T"). As we showed in [5] §2.3], F Bl is the matrix of the completely continuous



operator 3, 7, and as such it has a well-defined Fredholm determinant. In particular, the Dwork trace formula gives

(" =) Tr(Bp) = (g = 1)*Tr(Fpin)

= Z Tr (BtL”](;\q%nfl) . Btl'“] (j\qz)BtLﬁ} (;\))
A% =5
S Tr(lanali S
RE(Fy)°
S\:Teich(j\)

Using an argument similar to that succeeding [4, Equation 8], it follows that
LO(k, £, )V = det(1 — 8, 7T) . (9)

Since the Fredholm determinant det(1 — S, {T") is p-adically entire, this demonstrates the meromorphic continuation of
LO(k,,T). Since the matrix of 3, ; shows that det(1 — 3, ;T) has a unique unit root, it follows that L (x,t, T)=H"
has a unique unit root equal in fact to the unique unit root of det(1 — 3, ;T').

In a similar way, define on the space So(Qp) ® A™Co(Op), the operator Bintf) = wid(ﬂ o ([agaee)]w—m ® A aqq(r)). Then
m - —1)s+1 m [
L (1, £,7) D = det(1 — pUT)

In particular, for m > 2, due to the wedge product, L(m)(li, t, T)(_l)s+1 has no zeros or poles on the closed unit disk. Hence,

by (@), we have:

Theorem 3.1. Lypi(k, T, T)(fl)s+1 has a unique p-adic unit Toot which in fact is the unique unit root of L) (k. 1, T)(’l)sﬂ.

4 Dual theory

In this section, we define a dual theory for the operator j3, ; acting on So(QOp). We begin by defining a dual map to aqq()-

For ¢ = p® an arbitrary power of p (including the case a = 0) define the Op 4-module
C5(Qug) =4 D, & Ma™ &) € Oog
u€M(f)

equipped with the sup-norm on the set of coefficients {£(u)}yen(y). Define the projection (or truncation) map

Pras(sy Z A(u)x™ — Z A(u)x ™.

uezn wEM(f)

For each m > 1, define

m

QU 2= DTag(f) © Fon(t,\,z) 0o ®™ 0 o™,
where o € Gal(2/9g) acts on coeflicients (as mentioned above), and @, acts on monomials by ®,(x*) := zP*.
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Lemma 4.1. o, : C5(Ooppm) = C5(Op pm) is a linear map over O pm. Furthermore, writing

a;(ﬁ_ w(v Z C w(z)

zeM(f)

with Cy(z) € Ogpm, then Cy(z) — 0 in Oy pm as w(v) — oo. In addition, we may write o, (1) = 1 + n}, (A, z), with

i (A @) € C5(Oo,pm) having |17, | < |7

Proof. We consider o, (7~ z~") with v € M(f). Using (7)), we may write this as

al(GFUWaY = ST By, —z 4 pT) TN G0 )y
zeM(f),yeM(T)

Since
1 m pmfl _
—w(v) +w(z) + pm_lw(—z +p"v) > ————w(2) + pw(v),
we see that
ap, (7 g7y = #P=Decn(y), (10)

where (X, z) € C3(Op pm ).
If £ € C§(Oppm) with € =37 pyepy Au(N)T 27", then

an (€)= Y ®TA NN € C5(Oopm).

veEM(f)
Finally, note that by the above,
o (1) =1+ Z B(%O);Tw(v)/p’"*l)\v + Z B(y, —z)7w @2/ (guwM)/p7 7\ (ze(=2) g2
yeEM(T)— 2€M(f)—0,yeM(T)
This proves the lemma. O
Define
Ay = Z A~y (7) € R and A(y) — 0 as w(y) = o0

~yeM(T')

For ¢; and g2 any two powers of the prime p, define a pairing (-, -) : Co(Oo,q,) X C&(Oo,4,) — Ao by
(£,£%) := the constant term with respect to x of the product £ - £*.

This product is well-defined since if {71(v) }yerrry € Qo,q, With 71(v) — 0 as w(v) — oo, and {n2(v) }verr(r) C Oo,g,, then

> ven(r) M (v)n2(v) € Ag. Next, observe that for £ € Co(Op) and £* € C5(Op pm ), writing Fy, for Fon(t, A\, 2), then

(3" 0 Fn)§,€7) = (Fin€, @7°€7) = (&, (Prag(y) © Fim 0 D77)(€7))- (11)

11



Symmetric powers. We construct in a now familiar manner formal k-th symmetric powers of Co(Op) and C§(Og pm)
over Op. Similar to the construction used above, we consider a linear order on {u € M(f)} under which the weight is
nondecreasing, say 0 = ug < u; < ---. We will for convenience of notation write the “basis” as { £, := #*(Wz* | u € M(f)},
and the k-th symmetric power of the basis as

FEy=F

Ujq

E

Ujo

. E

’u,jk Y

where u runs over multisets of indices of cardinality k, say
{u: (’Ule,’UJjw---,Ujk) | 0< Ujy S Ujp -0 < ujk}'

Defining

Symé,Co(Oo) == €= > &u(N)Eu | &a(N) € Op,&u(N) = 0 as w(u) = +00 5,

|lu|=k
then we define the map

SymF oy, : Syme, Co(Oo) — Sym’éoypmco((’)o)pm)

as follows. Let

am(frw(u)xu) — Z .A Fw 'u) v

veEM(f)
= > Al

veEM(f)

We know from Section [2] that
A;n'u = Z ~(u - U)Bm(p)/ap U= ’U’))"Y
yeM(T),veM(f)
Then
Symkam(Euh Eujz T Eujk) = -Aglll gy ()‘) o "Agllk,ujk ()‘)Evzl T Evzka
pm—l_

where the sum runs over all v;, € M(f) for each i, 1 < i < k. Since by above, |a, (7*®"z%)| < |7r| T 1, therefore

SymF(auy,) is a completely continuous map. The map T may be extended to Symg, (Co(Op)) < So(Oo) as follows. For

u = (uj,,...,u;,) an ordered multiset of cardinality & with elements in M(f), set
€u if jl >0
T(Ey) =
e“jT+1e“jr+2'”e“jk ifjl:jz:'”:jT:O'

Thus T (S ym’éOCo(Oo)) consists of all power-series with coefficients in Oy and support in monomials e, of degree < k, with

coefficients going to 0 as w(u) = w(uy) + - - - + w(u,) = oo.
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We have as well a dual variant

Sym, mCi(Oopm) :=1{ D Aul Au(\) € Op pm
lul=k
where we denote E¥ := #~*(Wz~" for each u € M(f), and using the linear order above write for each multiset u =

(ujys - .- ug,) of cardinality k of indices, with j; < --- < ji we set E}, := E}; ---E . Then

Symb, . Co(Oopm) = { Y E(WE | E(w) € Opym},
lul=k
there being no requirement here that the coefficients tend to 0 as w(u) — oo. Since o, : C§(Oo,pm) — C§(Op pm ), we may

define for u = (ujy, ..., uj ),

Sym Z'Avll u“ vlz u]2( ) ‘A;k)lk Ujp ()‘)E\t

where v = (v, , ... vy, ), the sum runs over v;, € {7~z =% |y € M(f)}, and where o, (g ~4) = venm(s) AuoNT —w(v) pmv
The map Sym*(af,) then is defined on Sym’(%o’pm since as we noted earlier in (IQ), |, (F~*Waz=)| < |7|w@E-1),
We extend the pairing above to these symmetric power spaces by “linearly” extending the following: for decomposable

elements § = & -+ & € Symey, | Co(Oo,q,) and £ = & -+ & € Sym,  C5(Oo,4,),

(575*) = (5 €k,§1 k ' Z H 51; a( 7 (12)

kit og€Sy =1

where Sy denotes the symmetric group on k letters. This pairing (-, -)x is well-defined since A is a ring. Observe that it

follows from () that for £ € Sym*Cy(Op) and £* € Sym*C§(Op 4, ),

(Sym” Quan &, €)1 = (& Sym” g &) (13)

Infinite symmetric powers. Denote by S;(Op) := Op[lel : u € M \ {0}]] the formal power series ring over Oy in the
variables {e}},ean 03, a set of formal symbols indexed by M \ 0. We endow S;(Op) with the sup-norm on coefficients.
Monomials in S§(Op) have the form e}, := e} e’ ---e¥ | where uy,...,u, € M(f)\ {0} for r > 0, and e := 1 when r = 0.

U U2 Ur?

Thus, elements in the ring may be described by

S55(0p) : &= Z & ( £ (u) € Op

ueS(M)

Using the same notation as before, define the embedding T : C5(Qp) — Sg(Op) by T(7~*Wax=v) = ef for u € M \ {0},
and Y(1) := e = 1. For each m > 1, recall from Lemma ET] o, (1) = 1 + n}, (A, x) for some element 7}, € C;(Op pm)

satisfying |nf,| < 1. It follows that (T oaj,(1))" € S;(Oppm) for any 7 € Z,. For m > 1, we define the map [}, ],
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S5 (0o pm) = S5(Oo,pm ) by

[ le(en, - en,) = (Tlah, (1) (X (ay, (7= 27m))) - (Tlag, (7 mur))).

m U1 U

The product on the right side makes sense and lives in S} (Op pm) since SF(Op pm) is a ring and each factor is clearly in
S85(Op pm). Furthermore,
) (ex)] < [FE=Dw0), (14)

m

Define the R module

Opg:=4C = > i rMA7 [ (*(7)eR

yEM(T)
Here we do not insist that coefficients go to 0 and we do not claim Of , is a ring. As usual we define an absolute value on

05,4 by |C* == sup,enr(ry [€* (7). For series in A, we define a projection (or truncation) map

Py YL AMAT = Y AT

YEZ® ~yeM(T)

Note that for any g a power of the prime p, if v,~/, and ¢ all belong to M (I") with y—v" = —6 then wqr (y) — wer(v') > —wqr (9).
It follows that for £ € Op,4 and §* € O ,,

prum)(§-€7) € Og - (15)

Define the R module

S0 =1w= 3 wwirOre v () € R
YyEM(T),ueS(M)

Define the map @) by A — AP. We define an R-linear map

Bz =prm) © [gqmls © S

by “linearly” extending over R the action
L 7en) = prarry (A [ elen)) -

Lemma 4.2. 3* - is an R-linear endomorphism of Sg(Og).

Proof. We have remarked already that [o} d(f)]"”v is a well-defined endomorphism of S§(Qg,q;). As such, we may write for
each u € S(M),

[agaeple(en) = > By(o, V)7 I\ e € 85(0o,q,),
o€ M(T),veS(M)

with By(o,Vv) € R, Bu(o,v) = 0 as wg,r(o) + w(v) — oo using (I4)). For w* = ZVQM(F)VHGS(M)w*(v,u)ﬁ‘wf(ﬂ)\_"*efl €
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S5(04), we have

Bri(w™) = prar) > W (7, w)E TP OINTET L [ar o] (en)
yEM(T'),ueS(M)

PraL(T) Z AT Z w*(y,u) Z Bu(U,V)ﬁ_wqfr(“)ﬁfwf('y)/\"ef,
yEM(T) ueS(M) oeM(T),veS(M)

= Z C(r,v)a wr(M =Tek

TeM(T),veS(M)

where

Cirv)= Y Y Wy u)Bulo,v)aerOtusr)tur),
ueS(M) v,0€M(T)
qgy—o=T

Observe that the exponent of 7 satisfies

wr(7) + wgur (o) + wp(r) > (1 - qi> wr(r),

so that the term 7~ %r(M+war(@+wr() js hounded in norm by 1 since w(r) > 0, and w*(7y,u) and By(o,v) € R. On the
other hand, By(o,v) — 0 as wr(o) + w(v) — oo so that the coefficient C(7,v) is defined, in R, and 8%(w*) € S;(O5).

Clearly it is R-linear. O

Estimation using finite symmetric powers. It is useful to estimate §, ; and B:,f using finite symmetric powers. For
monomials e, or €, with u € S(M), u= (u1,...,u,) € (M(f)\0)", we say as usual that the degree or length of e, or e,
is r. For £ € §y(Qy), define length(§) as the supremum of the lengths of the monomials e, in the support of ¢ (i.e. those
terms appearing with non-zero coefficients). In the case length(§) = r, we may write £ = Z\u\gr ¢(u)ey, and € may be a
series (not a polynomial), since M (f) and the set of monomials of degee < r are infinite in general. Similarly for &*.

Let k be a positive integer. Define Sék)(Oo) = {& € So(Op) | length(§) < k}. Then the map

k—r
Ey7"Ey, By, = ey Cuy ey

r

identifies Sym*Cy(Op) with S(()k) (Op) as Op-submodules in Sy(Op). Similarly, we identify SymFCi(Op) in S;(0p) as the
Op-submodule Sg(k) (Op) of power series in {e}, | |u| < k} with coefficients in Oy. By transfer of structure, we have a pairing
() = S8 (09) x 85 (0g) — O

We now work over R and define a new pairing (-, ) : Sék) (Op) x Sg(k) (OF) — Q as follows. (Here again Sg(k) (Op) is the
R-submodule of S5 (Of) of series with support in monomials of degree < k, namely {e, | |u| < k}, with coefficients in Of.)
Let £ := EVGM(F),UGS(M)5(7=u)7~rwr('y))"yeu € 8§ (0p), and ¢* = > oemmyveson (0, v)F-er@ e e §M(0y),
set

<§7§*>/€ = Z 6(’77“)5*(’7711)(611763)7@7

yeEM(T'),ueS(M)
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where (-, ) was defined above. (Observe that as defined, a denominator k! is introduced, so (ey, €5 is a rational number
with p-adic valuation bounded below by —k/(p — 1). This is independent of u, so (£, £*) is well-defined and takes values
in the R-submodule of Q consisting of elements with ord,c > —k/(p —1).) It is useful to think of (£,£*)s as the constant
term with respect to A and the e, and e}, of the product £ - £*, where the product ey, - € is defined to be zero if u # v, and
(en,e)k if u=v.

Let k., be a sequence of positive integers which tend to infinity (in the usual archimedean sense) and such that
lim,, o0 km = K p-adically. For each m we have a Frobenius map Sym®m (aad@) on S’ymkMCO(OO), as well as a Frobe-
nius map SymFm () on Sym*nC§(Og.q,). By transport of structure, we have then a Frobenius map [atgq(s)](xm) On
Sékm)(Oo) and a dual Frobenius [o], ;| (;m) on S5(Oo,q;). We extend by zero these maps to all of So(Op) and S;(Qo,q;);
respectively. That is, we define

[Qad() ]k (€u) i [u| < Ky

[O‘ad(ﬂ] (Kk;m) (eu) =
0 otherwise.

To avoid any possible confusion, we note

[aad(ﬂ](ﬁ;m) (eu1 T e'lh") = (T © aad(f)(l))km_T(T © aad(f)ﬁw(UI)xUI) T (T © aad(ﬂﬁw(UT)xUT))

= (Sym* " agam) (B™ " Bu, -+ Eu,),

when r < k,,,. Similarly

ol ten) i ul < ki

[O‘:d(ﬂ](n;m) (eq) =
0 otherwise.

Lemma 4.3. limy, o0 [Qad@)](xim) = [Qad@]x as maps from So(Oo) — So(Oo,q;)-

Proof. Write

([O‘ad(ﬂ](n;m) - [aad(f)]n) (eu1 Cuy 'euT) = (T(aad(f)(l))km_T - T(O‘ad(ﬂ(l))ﬁ_r) (T(aad(f) (ﬁw(UI)$U1))) T (T(O‘ad(ﬂ (ﬁw(UT)‘TUT)))
(16)

If r < k,,, then the first factor on the right may itself be factored into
=T (aaie (1) (1 = (T(aqaqp (1) 7).
Writing & = ky, + p” (™o, (with 7(m) — oo and 7y, € Z,) then
11— (T (Qqap) (1) ] < [77 M+
as in the proof of [4 Lemma 2.2], and using the estimate (). If r > k,, then (I0) becomes

([aad(f)](li;m) - [aad(ﬂ]ﬁ) (eu) = _[aad(ﬂ]neu = _T(aad(ﬂ(l))n_r(’r(aad(ﬂ (ﬁ_w(uﬂxul))) T (T(aad(ﬂ (ﬁw(UT)‘TUT)))
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so that focussing on the r rightmost factors,

pad®=1_4

‘([O‘ad(ﬂ](n;m) - [aad(f)]n) €u| < |ﬁ—| o

pad(li)—l w(u)

coming from (). But w(u) > rwy > knwoe (where wp := min{w(u) | u € M(f)\ {0}}). In terms of the operator norm,

. ad(t)—1_4
_ min T(m)"‘lvpfa%kmwo}
letaad]r = [@aa@sm | < |7 { PTh et :

As kp, and 7(m) both tend to infinity as m grows, we see that lim,, e [0aa(®)] (xim) = [Qad(@)]r- O

In an altogether similar manner, we have by LemmaldT] for u # 0, o, (7

@)

w()z=%) belongs to Cg(Op pm ), and (recalling

|a;kn(7~fw(u)xfu)| < |7~T|(pfl)w(u).

Also o, (1) = 14+n*(A) with n*(A) € Og pm and |[n*(N)| < |7|. With these observations, an entirely similar argument shows

limm_,oo[azd(f)](,{;m) = [azd({)],g as maps from S;(Oo.q;) = S (Oo,q;). Define

ad
ﬁ(n;m),f = 1/})\ @ 0 [aad(ﬂ](fi;m)

* * ad(t
B(n;m),f =Prymr © [aad(a](ﬁ;m) °© (I))\ ()

As 1y and @y are bounded maps, it follows that as operators on Sp(Qp) and Sg(Of), respectively,

lim ﬂ(ﬁ;m),f = 6&,5 (17)

m—r oo

77}51100 ﬁ(n;m),f = Bn,f'
Lemma 4.4. For ¢ € S8 (0p) and ¢* € S;%)(0F),
<ﬂ(n;m),f€7 §*>km = <§a /Bzﬁﬁ;;m))fg*>km' (18)

Proof. With £ € Sékm)(Oo) and £* € Sg(k’")(OQqE), we may rewrite (I3]) as

([2aa®] (w.m)&s € ke = (& [@0a@) (m:m)E komn - (19)

Next, by linearity we only need consider £ = \Ve, and £* = A7%¢% where v,0 € M(T') and u,v € S(M). We may write

(em[a:;d(f)](mm)ewkm: Z C(T)A.

TEM(T)

Next, observe that

<¢)\§7§*>km = <§7(I))\§*>k:m'
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Hence, in the case £ = \7ey and £ = A" %¢%

v

<B(n;m)§7§*>km = <[aad(ﬂ](ﬁ;m)§u ¢§d(a§*>km

= constant term of [A7"% ([ataq(®)] (3m) €u, €5 )k |

= constant of {ny‘”g (eu, [a:d(ﬂ](n;m)ei)km} by ([19)

= constant of |[\7T%7 Z C(T)A
TEM(T)

C(go —v) if ggo —y e M(T)

0 otherwise.

In the other direction, again setting £ = A7ey and £ = A7 %¢}

(&5 Blsm)€ Vo = constant term of {XV - Prar(r) ()fqt’o(eu, [azd(g](ﬁ;m)ef,)km))}

= constant of | A7 - pry; Z C(r 4o=T)
TeM(T)

= constant of [\7 - Z C(r)a~(ao=7)

TeM(T) s.t.
ggo—T7EM(T)

C(go —~) if ggo —~v e M(T)

0 otherwise.

O

Observe that f3(.;m)z and B, ;7 are completely continuous operators on the p-adic Banach R-algebra So(Op) (viewed
as R-algebra) with orthonormal basis {7*T()\Ve, | v € M(T),u € S(M)}. Let To(R) be So(Op) viewed in this way as
R-algebra. Similarly, write 75" (R) for the b(I)-space (over R) in Serre’s terminology with “basis” I := {#=“r(M\=Ves | v €
M(T),u e S(M)} with coefficients in R. Again, 75 (R) is just S5(Of) viewed over R. Then

lim det(1 — Bmy,iT) = det(1 — B, iT).

m— 00

Similarly, ﬂémn) ; is a continuous R-linear endomorphism of 73" (R) to itself. We may consider a matrix B*(mim).t with
entries in R defined by

—w *(kym),t Fow *
Bl i IONTeg) = S W mTrOA e

Using the matrix B*(%™):¢ we define in the usual way the Fredholm determinant det(1— Blaimyil) = ijo(—l)jHCj (ﬁzkn;m),f)Tj

where Cy = 1 and C} is the series of all principal j x j subdeterminants of the matrix p*(mm)t  The (-, Yk, -adjointness of
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Bymy,& and B, 7 implies C (B(rym),7) = Cj (5@%),5)’ so that
det(1 — ﬁzkn;m),ET) = det(1l — B(,{;m)ﬁgT).

The uniform convergence lim,, ., B*(#m):t = B ; over the entries implies that the series Zj>0(—1)j+1Cj (B )T is

well-defined, and is the coefficient-wise limit of det(1 — T) as m — oo. If we then define

* —
(kym),t

det(1 = B 4T) == Y (=11 C;(B; )T,

j=>0
then we have shown:

Theorem 4.5. det(1 — B, ;1) = det(1 — By ;T), and thus from (),

—q)s+?

LO(k,7,T) = det(1 — B2 ;). (20)

5 Eigenvector

Recall that G(t, A\, ) = f(t,2)+P(\,z) = Ytz + > A(y, 0)Na? € Fylat, ... a5 AT, ., AT, {tutuesupp(p)]- Let A(v,v)
be the Teichmiiller lift in Q, for each (y,v) € Supp(P), and denote the lifting of G by G(t, A\, x) := f(t,2) + P(\,z) =
Steat 4+ S A(y, 0)Na € Qqlrt, ... aE N, AE, {tu}uesupp(s)]- We now replace every coefficient of G (w.r.t the
variables 2 and \) with a new variable A: set f(A,2) =)

() Auz™ and P(A, Az) =37 (py Ay,0A72" and

u€Supp v,v)ESupp

H(A N z) =f(A,z) + P(A, Ax).

As before, let Ay (H) denote the Newton polytope at infinity in R¥*™ of H (in A and x variables). Let Cone(H) be the
cone in R¥*t" over A (H) and M(H) = Cone(H) N Z*t™ be the relevant monoid. Clearly M(H) C M(T) x M(f). By
our hypothesis that the z-support of P is contained in A (f) we have the polyhedral weight function on this polytope wy

dominates the total weight wiot := wr + wy relative to the polyhedron I' X A,; more precisely

wtot(%u) < UJH(%U)

for all (y,u) € M(H).

Now recall as well the projection map defined earlier,
Pras(f) Z Clu)x™ — Z Cu)x™™.
ueZn weEM(f)

We define K := RJ[[A]] and
Ko :={¢¢€ Z &N €K& — 0asv— oo},

UGZEO
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where ¢ is the cardinality of {Supp(f)} U {Supp(P)}. We endow both spaces with the sup norm on coefficients.

Define the spaces

W(Ko) :={ > &N)a rOINTT &, (A) € Ko}
YyEM(T)

Wo(Ko) :=1{ > &A)F"rMIXTT | &, (A) € Ko, & (A) = 0 as y — oo}
yEM(T)

Similarly, we define as well

D(W(Ko)) :=A{ >, &y u(M)FTTITINTIT | € (M) € Ko}
(30 €MD) X M ()

Do(Wo(Ko)) = { > & u(M)aTerM=wl == | ¢ (A) € Ko,sup &, o (A)| = 0 as u — oo},
(y,w)eMI)x M(f) K

We proceed similar to our work above. We define a Ky-module

SEW(Ko)) == { > Ay W (M7 ONTTVer | Ay w € Ko}
yeEM(T),ueS(M)

and a Wy (Ko)-algebra

S;MoKo))=={ Y. &ANes | &(AN) € Wo(Ko)}.
yEM(T'),ueS(M)

As before define an embedding Y : DW(Ky))) — Si(W(Ky)) by #~*Wa=" s e* for u € M\ {0} and Y(1) := 1. We

define a relative Frobenius map as follows. First, set

F(ANz) = [ 0w J[ 00X %)

u€Supp(f) (7,v) €Supp(P)
m—1
F(A @) = [ PP, 0 a7,
i=0
and note that, similar to before,
Frn(A N 2) = Flu (M)A Tz
(v,u)eM (H)
with FI",(A) = By (Ao )/ — B (A)7wn (hw)/p7 T Tt follows that, if we set (as before)

(A A) == DI pgpy © Fin (A A, ) 0 @7,

where ®, sends 2" — 2P and pr; ;) was defined above, then an argument similar to Lemma [4.1] shows

a2 DoWo pm (Ko)) — Do(Wo pm (Ko)),
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where Wy pm is defined by replacing 7T with 7#*»™r in the definition of Wy. Furthermore,

AT W) = N Cu(Ay)E W
ueM(f)

with Cy(A,A) € Wopm (Ko) and Cy (A, A) — 0 as w(u) — oco. For any s € Zjp, we define [ay, ] @ S5 pm (Wo(Ko)) —

S5 pm (Wo(Ko)) using (I4). By an argument similar to Lemma [4.2] the map
B+ So(W(Ko)) = S5 (W(Ko))

defined by

* * ad(t
Bre i = Prarr) © [Qaqepr © ) @,

is an endomorphism over K.

Eigenvector. Set My(T') = M(T) N (=M(T)), Mo(f) = M(f) N (=M (f)), and Mo(H) = M(H)N (=M (H)). Define the
projection map

pry Z Cy,u)\"z" — Z C(y,u)\"x".

YEZLS uEL™ YEMo(T),ueMo(f)
If we write exp mH (A, A\, z) = > A, 5w A" A7z" then clearly A, -, € R. Let us write then expmH(A, X\, z) = Y A, w(A)A7z"
with A, ,(A) € R[[A]] and the indices (y,u) € M(H) C M(I") x M(f). We will also write

pro(expmH (A, N\, x)) = Z Jyu(A)FerM—wl) =7 —u Z Ty u(A)7 oI \=rg
(7,u) EMo(T) x Mo (f) (v,u)€Mo(H)

The running indices (v, u) in all these sums may be taken in My(H). Of course,

J, W(A) = A, _u(A)ﬁ—wF(V)"‘w(u) _ jv u;TIUF(W)-i-W(U)—WH(WU) (21)

)

for every (v,u) € Mo(H), and Joo = J~070 = Apo € 1+ AK. That is, Joo(A) is a power series in the variables A with
coefficients in R and constant term 1. So Jyo(A) is a unit in K. Define
(A, N 2) L e H(A N 2)
A T) = ———Ppryexpm A\
n JOQ(A) p 0 p
Jyu(A
T S (A) s (o) y =7 g (22)

J
(y,u)eMo(H)
(7,u)#(0,0)

In [I], it was shown that Joo(A)/Jo.0(AP) and J, . (A)/Jo.0(A) converge on the closed unit polydisk [A| < 1 for every A.
Equivalently, Jo0(A)/Joo(AP) and J, ,(A)/Joo(A) belong to Ko. The same holds as well for J, ,(A)/Joo(A) using 2T,
since A_, _,(A) € R[[A]].
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Since J, ,(A) = A_, _,#Ur(M+v(®)  we have

Jru(A)

ool F=wr(¥) =7 < |ﬁ—|w(u)7
0,0

YEMo(T)

and so (A, A, z) € Do(Wo(Ko)) C D(W(Ky)).
Set F(A) := Joo(A)/Joo(AP). Observe that

Pras(p) © Fn (AN, x) o pro(expmH (AP, NP, zP)) = P ar(f) (expmH (A, N, x))

so that

O‘I,A(H(Ap, NP, I)) = ]:(A)prM(f) <W)

= F(A) (n(A, N\ ) + D(A, N, x))

where each A7 appearing in @ lies in M (T') \ My(T).

Iterating this, if we set

then we have

a:d(ﬂ,An(Aqfv )\q57 ‘I) = ]:ad(ﬂ (A) (n(Aa Av ‘I) + W(A, Av ‘I)) )

where each A7 appearing in w lies in M (T') \ My(T).

For notational convenience, set Q~,u = Q~,u(A) := Jy u(A)/Jo,0(A) so that

n(A N 2) =1+ Z Q%uﬁfwr('v)*w(u))\*ﬁ’xfu'

YEMo(T),u€ Mo (f)
(7,u)#(0,0)

Next, write

T(n) =1+ Z Q’Y’uﬂ.fwr(’Y)/\*'YeZ,
YEMo(T'),u€Mo(f)
(7,u)#(0,0)

22



and observe that Y (n) and 1/Y(n) are elements of S§(Wy(Ko)). For k € Z,, we compute

) =3 (5) (X Qua ey

=0

3 " T W —e—w — * *
(l) > Qs+ Qo 7m0 PO\~ ek
0

V1o IEMp (T)
u1,...,ur € Mo(f)
(75:u;)#(0,0) for every j

oo
I{ o~
. ~—a Qe (i * *
_ E (l) E Quu -7 r(m ) \—n ’Yz)eu1 e
V1500, EMo(T)
u1,...,ur € Mo(f)
(75:u;)#(0,0) for every j

where

@,Y w = Qnyuy  Qry ulﬁ-—wl"(Vl)—"'_wF(’Yl)‘f‘wI‘(Vl+"'+Vl)'

Hence, (T(n))" € S*Wo(Ko)). As every X7 appearing in T (w) (from equation ([23)) satisfies v € M (T') \ My(I'), it follows

that the same is true for (Y(w)/Y(n))" for any r € Z>1. Hence,

DI as(r) (1 + %)K =1.

Unit root formula. We may now finish the proof of Theorem [[.Il For convenience, write n(A, \,z) = 1 + h(A, A\, z) so
that T(n)* = (1+ T(h))" =32 (§)Y(h)!. Observe that

* F K * ad - K
BR,f,AT(n(Aqtha I)) = prM(F) 0 [aad(ﬂ,/\]’i 0 (I))\ (E)T(T](Aqtha I))

= Prag(r) © [anq@, ale L (AT, AT, 2))"

* = R _ _
= prM(F) o [aad(ﬂ,/\]” Z (l)T (h(A‘Zt, Agt,fl;))l
=0

> /K . Kk—l1 . o l . .
= P Z <l> (T °© Uga(py A 1) (T 0 o), AR (AT, )\qf,aj)) by definition of a7 alx

= Pra(r) (T ) azd(ﬂﬁA -1+7o O‘:d(ﬂ,Ah(AQE, P :C))
= PI'a(r) (T 0 vy ), AT(AY, AT, :v))

= PTp(r) ]:ad(ﬂ (A)K (T(n(Aa /\7 ‘T) + T(W(Av >‘a I))K by (IZ‘H)

T(w(A,A,I)))“

= Pr'an(n) fad(ﬂ(A)nT(n(A’ /\7;5))K <1 * T(W(A A ZC))

= Faa@ (D)L (n(A, A, z))".
Finally, we may specialize this equality taking A at the Teichmiiller unit coefficients of G(f, A, T):

Ay =ty and Ay = A(v,v) for all w and ~y, v in the support of H,
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and setting

Nsp (A, ) == (n(A, \, z) specialized at A, = f, and A, ,, = A(~, v)) ,

then we see that

Bri TN )" = Foa ()Y (nsp (A, 2))" (24)

This demonstrates that F,q(p (£)* is the unique unit root of L (k,, T)(’l)s+1 by (20), which, together with Theorem 1]

completes the proof of Theorem [I1]
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