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In this paper, an approximate solution to a specific class of the Fokker-Planck equation is proposed. The solution
is based on the relationship between the Schrödinger type equation with a partially confining and symmetrical
potential. To estimate the accuracy of the solution, a function error obtained from the original Fokker-Planck
equation is suggested. Two examples, a truncated harmonic potential and non-harmonic polynomial, are ana-
lyzed using the proposed method. For the truncated harmonic potential, the system behavior as a function of
temperature is also discussed.
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1. Introduction

Differential equations are used to model different natural phenomena such as diffusion that are of

great importance in many physical, chemical and biological processes [1].

In general, diffusive processes can be treated via the Fokker-Planck equation [2–6]. This equation is

obtained from the Langevin equation and gives the probability of finding a given particle in a state x at

time t . The usual representation of the Fokker-Planck equation is given as follows:

∂P (x, t)

∂t
=−

∂

∂x

[

f (x)P (x, t)
]

+Q
∂2P (x, t)

∂x2
, (1.1)

where t is the time variable, and x is the variable characteristic of the system (which may be identified,

for example, as velocity). Q is the diffusion coefficient and P (x, t) is the probability distribution. The f (x)

function is known as the external force that acts on the system, although this designation is only suitable

when x represents velocity. This function can be identified as the derivative of a potential function V (x):

f (x) =−∂V (x)/∂x.

Different methods for treating the Fokker-Planck equation have been suggested as, for example, its as-

sociation with a Schrödinger type equation [2, 7]. However, there are only a few cases where the equation

(1.1) has an exact analytical solution.

In a recent study [8], an approximate solution for partially confining potentials was proposed, where

part of the solution is written in terms of functions that arise from the solution of the Schrödinger type

equation for bound states and part is composed of functions originating from the free particle. This so-

lution method is discussed in reference [9] for the particular case of the Rosen-Morse potential. This

potential has an exact solution to the Schrödinger equation. As expected, it can be concluded that the

results obtained using the functions derived from the original Schrödinger type equation provide better

solutions than those obtained by the proposed approximate method. However, this approach proves to

be very restrictive, since the number of potentials with exact solutions to the Schrödinger equation is

very small.

© M.T. Araujo, E. Drigo Filho, 2015 43003-1

http://arxiv.org/abs/1512.07787v1
http://dx.doi.org/10.5488/CMP.18.43003
http://www.icmp.lviv.ua/journal


M.T. Araujo, E. Drigo Filho

In this paper, an improvement to the previously proposed solution [8] is suggested, producing a more

accurate result for cases of symmetrical partially-confining potentials. To check the validity of the results,

the error on the results is estimated through direct substitution of the approximate solution into the

Fokker-Planck equation.

In the study of the truncated harmonic potential, the amount of particles that escape from the poten-

tial well are calculated and a phase transition for the systems being studied is identified.

In section 2, there is a brief discussion of the Fokker-Planck equation and the approximate solution

method is presented, with the changes suggested in relation to the previously proposed solution [8]. In

sections 3 and 4, the proposed method is applied to two partially-confining potentials. In the first case,

the region of the well potential is described by a harmonic potential and, for the second case, the well is

given by a non-harmonic polynomial potential. Finally, the conclusions are presented in section 5.

2. The Fokker-Planck equation

Given the importance and difficulty of solving the Fokker-Planck equation (FPE), different methods

have been proposed to study this equation. Such methods include numerical treatments [10, 11] and

mapping the FPE onto a Schrödinger type equation [2, 7, 12]. In the latter case, the expression of P (x, t)

is given by a series of functions as follows:

P (x, t) =
∞
∑

n=0

anφ0(x)φn(x)e−t |λn |, (2.1)

where the eigenfunctions φn(x) and the eigenvalues λn are the solution of the Schrödinger type equation

obtained from the FPE (1.1):

λnφn =−
φn

2

{

d f (x)

dx
+

f 2(x)

2Q

}

+Q
d2φn

dx2
. (2.2)

Comparing equation (2.2) with the Schrödinger equation, it can be seen that the term in parentheses

is equivalent to a potential function. Thus, this term is commonly called the effective potential, Vef(x):

Vef(x) =
1

2

{

d f (x)

dx
+

f 2(x)

2Q

}

. (2.3)

The probability distribution indicated by equation (2.1) assumes that the initial condition for the time

t = 0 is the probability distribution expressed by a delta function P (x,0) = δ(x).

In order to obtain the numerical solution shown in equation (2.1), it is necessary to define a criterion

to the cut off in the sum to truncate the series. Another problemarises when one cannot get the solution of

the corresponding Schrödinger equation (2.2). To get around this last problem, an approximate analytical

solution composed of two parts was suggested in a previous paper [8]. This solution involves the discrete

levels of the problem and the other one uses a Gaussian distribution for all continuous states. Although

the solution proposed in [8] agrees with the numerical results, the adopted approach can be improved

upon.

The attention here is focused on specific issues involving symmetrical and partially confined poten-

tials, where it is not possible to get the complete solution of the Schrödinger type equation (2.2). Thus, for

these types of potential, a similar treatment to that of reference [9], for example, is unfeasible. For the

potentials studied, there are regions where the spectrum is continuous and a region where there may be

bound states (i.e., a discrete spectrum). For x > d and x <−d , it is assumed that the potential is constant

and the spectrum is continuous. In −d < x < d , there is a potential well and the spectrum becomes dis-

crete. It is also assumed that the potential is continuous, especially at the points x =±d that correspond

to the intersections between the region where the potential is constant and the well potential region (fig-

ures 1, 6 and 8 exemplify the type of the studied potential). The probability distribution in such cases is

calculated separately for each region of the potential.

P (x, t) =







NIρI(x, t), −d > x,

NIIρII(x, t), −d É x É d ,

NIIIρIII(x, t), x > d .

(2.4)
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The function ρ(x, t ) in (2.4) is the probability distribution for each region; NI, NII and NIII are related

to the normalization in each piece of the probability distribution. For regions (I and III) of the continuous

spectrum, the ρ functions are given by a Gaussian function, as suggested previously [8]

ρI(x, t) = ρIII(x, t) =
1

√

4Qπt
e−x2

/

4Qt (2.5)

and for region II, the function ρ is expressed by the series indicated in (2.1) with a limited number of

eigenvalues ( j )

ρII(x, t) =
j

∑

i=0

aiφ0(x)φi (x)e−t |λi |. (2.6)

The number j corresponds to the number of discrete eigenvalues present in the potential well under

analysis.

As the functions ρI(x, t) and ρIII(x, t ) are equal, because of the symmetry of the problem, one can

assume that the normalization parameters NI and NIII are the same. It can also be assumed that at the

interface points between the potentials (±d), the distribution ρ(x, t ), equation (2.4) should be continuous,

i.e., ρII(d , t ) = ρIII(d , t) and ρI(−d , t ) = ρII(−d , t). Thus, the condition of the continuity of the distribution

and the symmetry of the problem imply that NI = NIII and

NII(t) = NI

e−d 2
/

4Qt

√

4πQt

{

j
∑

i=0

aiφ0(d)φi (d)e−t |λi |
}−1

. (2.7)

This relationship (2.7) shows that the normalization NII depends on NI and also, in general, depends

on time. To simplify the notation, we will rewrite equation (2.7) as NII(t)= NIg (t), such that:

g (t) =
e−d 2

/

4Qt

√

4πQt

{

j
∑

i=0

aiφ0(d)φi (d)e−t |λi |
}−1

. (2.8)

Therefore, the overall probability distribution for a problem with the discussed features (a partially

confining and symmetric potential) is obtained by equation (2.4), subject to the condition (2.7), i.e.,

P (x, t) =



























NI
1p

4Qπt
e−x2

/

4Qt ,

NIg (t)
j
∑

i=0
aiφ0(x)φi (x)e−t |λi |,

NI
1p

4Qπt
e−x2

/

4Qt ,

−d > x,

−d É x É d ,

x > d .

(2.9)

Applying the normalization condition to the probability distribution (2.9), one gets

NI(t)=







2
√

4πQt

∞
∫

d

e−x2
/

4Qt dx + g (t)

d
∫

−d

j
∑

i=0

aiφ0(x)φi (x)e−t |λi |dx







−1

. (2.10)

According to this result, the normalization parameter NI is dependent on time and the probability

distribution (2.9) should be normalized for each time value. Looking at the approximate solution given

by equation (2.9), one can see that when d is close to zero the system approximated to a free particle

system and the probability distribution approximates to a Gaussian. On the other hand, when d is very

large (d →∞), i.e., the size of the system tends to an infinite well, the solution of the problem is given by

the usual discrete series of functions, as shown in equation (2.1).

The difference between the solution given by (2.9) and that shown in reference [8] is that here, the

Gaussian is used only in areas where the potential is constant, while in reference [8], it was suggested

that it should be included in all regions of the space. Numerical results show that the new approach is

more suitable, leading to more accurate results.

In general, when there is a partial confinement, a temporal dependency arises already in the coeffi-

cient NI . Under these conditions, the probability distribution for large times in the region of the potential
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well (region II) may go to zero, which indicates the escape of particles from the minimum region of the

potential.

From the proposed solution it is suggested that the escape of particles from the potential well can be

quantified by the value Y (t ,Q) defined by:

Y (t ,Q)= NI(t)g (t)

d
∫

−d

j
∑

i=0

aiφ0(x)φi (x)e−t |λi |dx. (2.11)

The function Y (t ,Q) gives the number of particles within the confinement region for each time t and

different values of the diffusion coefficient (Q). The functions NI(t) and g (t) are given by expressions

(2.10) and (2.8), respectively.

Equation (2.11) also allows the evaluation of the influence of temperature in the escape process of

the particles in the well. Assuming that the temperature is proportional to the diffusion coefficient [2],

the calculation of the population for different values of Q allows for the analysis of the evolution of the

system in terms of temperature. This information allows, in principle, the study of the thermodynamic

properties of the system, such as phase transitions.

To check the accuracy of the proposed method, we introduce the function ε(x, t ) based on the Fokker-

Planck equation (1.1)

ε(x, t) =
∂P (x, t)

∂t
−

{

−
∂

∂x

[

f (x)P (x, t)
]

+Q
∂2P (x, t)

∂x2

}

. (2.12)

This function provides a quantitative parameter to check if the solution approximates to the actual

solution of the problem. If the solution is accurate, then ε(x, t ) = 0. In this way, the further this function

ε(x, t) is close to zero, the better is the proposed function P (x, t ) to describe the real solution for the

system under study.

Substituting the solution presented in (2.9) into expression (2.12), it can be seen that for x <−d and

x > d , where f (x) is zero, we obtain

εI(x, t) =
1

√

4Qπt
e−x2

/

4Qt dNI(t)

dt
, (2.13)

and for −d < x < d , the expression ε(x, t ) is obtained by direct substitution of the solution in this region

[equation (2.9)] in equation (2.12).

Since the construction of ε(x, t ) involves derivatives of the probability distribution P (x, t), it is worth

noting that, close to the points where the derivative is discontinuous, the use of this criterion is impaired

and should be used with caution. Thus, in this study, ε(x, t ) was not defined for values of x close to

±d . However, the use of the function ε(x, t ) to evaluate the solution avoids comparisons with solutions

obtained by other methods which could, in itself, introduce an additional error.

3. Truncated harmonic oscillator

In this section, we apply the approximate solution of the FPE to a model with a truncated harmonic

oscillator, whose strength is given by

f (x) =
{

−kx,

0,

−d É x É d ,

−d > x and x > d
(3.1)

with (±d) being the interface points between the harmonic potential and the constant potential. Sub-

stituting this expression of force into equation (2.3), it can be seen that the effective potential can be

identified by

V (x) =
{

v0,
k2x2

4Q
− k

2
,

−d > x and x > d ,

−d É x É d ,
(3.2)

where v0 = k2d2/4Q −k/2 is a constant value chosen such that the potential function is continuous.

43003-4
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Figure 1. Comparative graph of the truncated harmonic potential (solid line) and the usual harmonic

potential (dashed line) for Q = 1, k = 1.4, d = 1.5.

Figure 1 shows the harmonic potential graph (dotted line) and the truncated harmonic potential,

equation (3.2) (continuous line). For the potential studied, the solid line in figure 1 shows that there are

two distinct regions: one is a potential well region described by a harmonic potential and the other is

described by a constant potential.

The harmonic oscillator problem is a case in which equation (2.2) has a full analytical solution [2] and

the probability distribution is given by:

P (x, t) =
∞
∑

n=0

(

1

2n n!

√

α

π

)

e−αx2

Hn

(p
αx

)

Hn (0)e−t |λn |, (3.3)

where Hn are Hermite polynomials, α = k/2Q and k is a constant. The eigenvalues λn are equal to

nk (n = 0,1,2, . . . ,∞). Therefore, replacing the function f (x), equation (3.1), in the FPE (2.2), using the

approach presented in the previous section, the proposed solution for this example is given by:

P (x, t)=











NI
1p

4Qπt
e−x2

/

4Qt , −d > x and x > d ,

NIg (t)
j
∑

n=0

(

1
2n n!

√

α
π

)

e−αx2
Hn

(p
αx

)

Hn (0)e−t |λn |, −d É x É d
(3.4)

with j being the maximum number of discrete states in the potential well region. The function g (t) in

this case is found by substituting the discrete functions of equation (3.4) in equation (2.8) and thus

g (t)=
e−d 2

/

4Qt

√

4πQt

{

j
∑

n=0

(

1

2nn!

√

α

π

)

e−αx2

Hn

(p
αx

)

Hn (0)e−t |λn |
}−1

(3.5)

and NI(t) is obtained by normalization, equation (2.10),

NI(t) =







2
√

4πQt

∞
∫

d

e−x2
/

4Qt dx + g (t)

d
∫

−d

j
∑

i=0

(

1

2i i !

√

α

π

)

e−αx2

Hi

(p
αx

)

Hi (0)e−t |λi |dx







−1

. (3.6)

It is assumed that, within the well, the truncation of the potential only slightly alters the original so-

lutions of the harmonic oscillator. Thus, for the region between −d É x É d , the eigenfunctions [equation

(3.3)] and eigenvalues (λn = nk) are the same as for the harmonic potential. The only difference is that

the number of terms of the series was limited taking into account the height of the potential well.
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(a) (b)

Figure 2. (a) The probability distribution (3.4) versus x for different values of time. The parameters used

are: v0 = 0.5, d = 1.55, k = 1.4, Q = 1. (b) Estimated error ε(x, t ) for each solution.

Figure 2 shows the approximate probability distribution (3.4) for the truncated harmonic potential

[figure 2 (a)] and the error associated with this solution given by the function ε(x, t) [figure 2 (b)], equation

(2.12), for different values of time. In the construction of figure 2, the values for the constants k = 1, Q = 1,

d = 1.55 v0 = 0.5 were used. In this example there is only one discrete level in the well with an eigenvalue

of zero, λ0 = 0.

Observing the figure 2 (a), one can see that the probability distribution is greater in the region of

minimum potential, even for extended periods of time. Since the given solution was constructed using

an approximate method, one can see from figure 2 (b) that the probability distribution (3.4) does not

completely satisfy the Fokker-Planck equation, in other words, ε(x, t) , 0. However, it is noted that the

calculated errors are small and decrease as time increases. The larger relative errors appear when the

probability distribution is calculated within the region of the well potential.

In the vicinity of the interface points (±d), the error of the solution shows a discontinuity. This discon-

tinuity is expected since the potential behavior studied is composed by joining different functions, and

their profile (figure 1) is not smooth for the whole curve.

Through the probability distribution P (x, t), equation (3.4), the variation of the number of particles

in the region of minimum potential can be calculated, equation (2.11). The curves in figure 3 show the

variation in the number of particles in the region of the potential well for different values of the diffusion

coefficient.

In the definition of the potential used, equation (3.2), the depth of the well (related to v0) depends

on the diffusion coefficient (Q) and the interface point (d).Thus, to maintain the fixed value of v0 (equal

to 0.5) for different values of Q , it is necessary to change the value of d . Maintaining a fixed value v0

ensures that, within the potential well, the number of eigenvalues j that are solutions of the Schrödinger

type equation (2.2) is fixed. In the example discussed here, v0 = 0.5, there is only one eigenvalue of this

kind.

Since it is assumed that the diffusion coefficient is proportional to temperature [2], lower values of Q

represent lower system temperatures. Figure 3 shows that the decrease in the population of the region of

the potential well depends on the value of Q , i.e., it depends on the temperature.

Initially the number of particles in the region of the well has the maximum value and with the in-

crease in time this number of particles decreases. This drop in the number of particles is more pro-

nounced for larger values of Q . This behavior is expected and consistent with the behavior of a system

subject to a non-confining potential.

Figure 4 represents the behavior of the function Y (t ,Q), equation (2.11), for a very large time value
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Figure 3. Curves describing the population near the

minimum of potential, equation (2.11) versus time

t for k = 1.4 and the well depth v0 = 0.5.

Figure 4. Curve of Y (t ,Q ), equation (2.11) versus Q

for the truncated harmonic oscillator with only one

state within the well [equation (2.9) with j = 0] and

for a large value of time (t = 104).

(t = 104). In this figure, it can be seen that for small values ofQ (typicallyQ lower than 0.1), the population

is confined to the minimum potential region. On the other hand, for larger values of Q , the number of

particles within the well of potential decreases to zero. This behavior shows a phase transition in which

the particles remain in the well of potential at low temperatures, and at high temperatures the potential

well becomes emptied.

Another example can be got by increasing the depth of the potential well for v0 = k2d2/4Q −k/2 = 1.5

with k = 1.4 and d = 2.1. The solution of (3.4) under these conditions gives two terms of the series (λ0 = 0

and λ1 = k) and the probability distribution is represented in figure 5, along with the associated error

ε(x, t ) [equation (2.12)].

(a) (b)

Figure 5. (a) P(x, t ), equation (3.4) versus x for different values of time for k = 1.4 and d = 2.1, Q = 1 and

v0 = 1.5. (b) Estimated error ε(x, t ) for each time value.

43003-7
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Figure 6. Curve of Y (t ,Q ), equation (2.11) versus Q for the truncated harmonic oscillator with two states

within the well [equation (2.9) with j = 0] and long time (t = 104).

Comparison of figures 2 (a) and 5 (a) shows that the curve of the probability distribution is smooth

and the peak is more pronounced when the depth of the well is increased [figure 5 (a). As previously

discussed, the calculation of the error ε(x, t) shows a discontinuity at the points (x =±d). It can be seen

that, as time increases, there is a decrease in the calculated error indicating that the proposed solution is

best for longer times.

In figure 6, the evolution of the number of particles as a function of the diffusion coefficient Q for a

long time, t = 104 is shown. Again, one can see a phase transition in the system. However, this transition

is less sudden and its effects are noticeable at values of Q higher than in the previous case (figure 4). This

effect is a result of the increased depth of the well, which makes the particle escape more difficult.

4. A non-harmonic polynomial potential

As a second example, the force associated with the system is assumed to be given by

f (x) =
{

0, −d > x and x > d ,

−ax3 −bx, −d É x É d ,
(4.1)

where a and b are two constants. On substituting this expression f (x), equation (4.1), in the Schrödinger

type equation, the effective potential, equation (2.3), can be written as,

Vef(x) =
{

v0, −d > x and x > d ,
a2x6

4Q
+ abx4

2Q
+

(

b2

4Q
− 3a

2

)

x2 − b
2

, −d É x É d ,
(4.2)

where the constants are chosen to ensure the continuity of the potential. For the region corresponding to

x > d and x <−d , the potential Vef(x) has a constant value v0 equal to

v0 =
a2d6

4Q
+

abd4

2Q
+

(

b2

4Q
−

3a

2

)

d2 −
b

2
. (4.3)

Figure 7 shows the curve of the partially confining potential given by equation (4.2). The value of v0

was fixed equal to 1 and the values of constants a and b were adjusted to allow just one minimum inside

the potential well, the values used are a = 0.45 and b = 1.75. For these values of a and b, if Q = 1, the

intersection points are d =±1.37.

In general, for non-harmonic polynomial potentials, the Schrödinger equation (2.2) has no exact/ana-

lytical solution. However, it is possible to determine part of the solution (partially soluble potential [13,

43003-8



Approximate solution for Fokker-Planck equation

Figure 7. Curve of potential (4.2) versus x for a = 0.45, b = 1.75, the depth v0 = 1, Q = 1 and d = 1.37.

14]). In such cases, the approach introduced in this work can be used, approximating the solution for the

original potential to that of the truncated potential and building P (x, t ) from function (2.9), that is,

P (x, t) =











NI
1p

4Qπt
e−x2

/

tQ , −d > x and x > d ,

NIg (t)
j
∑

i=0
aiφ0(x)φi (x)e−t |λi |, −d É x É d .

(4.4)

In equation (4.4) the functions φi (x) are chosen in order to satisfy the Schrödinger equation (2.2) with

the potential (4.2). The region of the well potential, described by equation (4.2), does not give a general

analytic/exact solution to all eigenfunctions φi (x). In this case, just the ground state is determined. How-

ever, depending on the well depth more eigenfunctions are necessary. Then, one possibility to get around

this problem is to use other approximate methods, for example, the variational method [15].

Considering the potential characteristics studied and the parameters used (a = 0.45, b = 1.75, Q = 1,

d =±1.37 and v0 = 1), there is only one state in the potential well region. Thus, only the first term of the

series, should be considered in the region −d É x É d :

P (x, t) = NIg (t)φ0(x)2e−tλ0 . (4.5)

Then, in this example, when the potential is not truncated, just the ground state solution is analytically

determined. In this case the eigenvalue (λ0) is equal to 0 and the function φ2
0(x) is the same adopted

solution of stationary ground state of the Schrödinger type equation when the potential well is infinite.

Thus, the function to be used in equation (4.5) is:

φ2
0(x) ∝ exp

{

−
a

4Q
x4 −

b

2Q
x2

}

. (4.6)

Therefore, the probability distribution for the force given by equation (4.1) is represented as,

P (x, t) =







NI(t) 1p
4Qπt

e−x2
/

tQ , −d > x and x > d ,

NI(t)g (t)e
− a

4Q x4− b
2Q x2

, −d É x É d ,
(4.7)

where the function g (t) is given by

g (t)=
e−d 2

/

Qt

√

4πQt
ev0/Q (4.8)
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(a) (b)

Figure 8. a) The probability distribution (4.7) versus x, for truncated non-harmonic potential (4.2). b)

Error ε(x, t ) of the approximate solution. The numeric constants used are a = 0.45, b = 1.75, Q = 1 and

v0 = 1.

and the normalization NI(t) is obtained from equation (2.10),

NI(t) =







2
√

4πQt

∞
∫

d

e−x2
/

tQ dx + g (t)

d
∫

−d

e
− a

4Q x4− b
2Q x2

dx







−1

. (4.9)

Figure 8 shows the probability distribution (4.7) and the associated error ε(x, t ), equations (2.12), for

different values of time. The potential (4.2) has the constants a and b equal to 0.45 and 1.75, respectively.

For numerical calculations, the depth of the well was fixed as v0 = 1, which implies a unique eigen-

value λ0 = 0. The interface points between the regions are d =±1.37 and the value used for the diffusion

coefficient to construct the curves shown in figure 8 is Q = 1.

It can be seen from figure 8 (a) that the probability distribution P (x, t ) has a peak in the region of

the potential well even for very long times. Initially, there is a very distinct peak probability (t = 1) and,

as time passes, this peak decreases and there is an increase in the width of the curve P (x, t) at its base.

The increased width of the probability distribution indicates the escape of the particles from the central

region to the region of constant potential.

In the same way as for the harmonic case, the suggested solution is substituted in the Fokker-Planck

equation to evaluate the error of the proposed method by determining the function ε(x, t ) [figure 8 (b)].

One can see that the approximate solution is better for large values of time than for shorter times. It is

also noted that the largest error is in the region within the potential well and is smaller in the side regions

where the potential is constant.

5. Conclusion

This paper presents an approximate analytical solution to the Fokker-Planck equation for partially

confining potentials. The suggested solution corresponds to an adaptation of a previous proposal [8]

from the same authors. Here, there is suggested the removal of the Gaussian function from the region

of potential well, which permits a greater numerical accuracy of solution. This can be noted by using the

expression ε(x, t), equation (2.12).

In all the cases studied, following the initial condition P (x,0) = δ(x) and with the values of the con-

stants as given in the examples, the probability distribution has a peak in the central region of the po-
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tential well. As the time increases, the curves P (x, t) show a widening and a reduction in height. The

calculation of ε(x, t ), equation (2.12), as a way of assessing the accuracy of the approximate solutions in

each example, indicates that the solutions have smaller errors for longer values of time than for shorter

times.

The approach outlined above allows for the study of a large number of problems whose solution

proves difficult or impossible to obtain by other methods. For example, the truncated potentials discussed

here could not be handled by the procedure given in reference [9], since it is not possible to get the

exact/analytical solutions of the associated Schrödinger type equation.

The suggested solution method has the advantage of being extended to classes of partially confining

systems that do not have an exact analytical solution. Thus, an analytical expression, albeit approximate,

of the probability distribution provides important information, allowing the study of a much larger num-

ber of systems. In addition to this, the use of the test function ε(x, t ) [equation (2.12)] permits a quantita-

tive measure of the accuracy of the result.

Analyzing the first example studied, i.e., the truncated harmonic potential with different depths, a

transition phase can be identified involving the escape of particles from the well region of the potential.

At low temperatures, the particles are trapped, while for higher temperatures the particles can escape.

This escape leads to the emptying of the well. These results are very reliable, since they are obtained for

long periods of time, a condition at which the proposed method turns out to be more accurate.

As afinal remark, one observes that the approach introduced here can be addressed to thewell known

problem of the diffusion controlled escaping from a potential well [16, 17]. In this kind of problem, the

calculation of the rate coefficients has a central importance [18] and the calculation developed in the

present work can be used to compute these quantities. Particularly, the escape rate problem is hard to

analyze when the system is trapped in a potential well which correspond to the only point of minimum

in the potential [19]. In this context, the proposed function Y (t ,Q), equation (2.11), can be useful.

Acknowledgements

The authors acknowledge the financial support by the Brazilian agency CNPq (Proj. ESN

No. 233776/2014-1 and Proj. PDE No. 232865/2014-0) and the financial support of the Spanish MINECO

(Project MTM2014-57129-C2-1-P) and Junta de Castilla y León (UIC 011).

References

1. Crank J., The Mathematics of Diffusion, Oxford Science Publications, Oxford, 1980.

2. Risken H., The Fokker-Planck Equation, Springer, Berlin, 1984.

3. Coffey W. T., Kalmykov Y.P., The Langevin Equation: With Applications to Stochastic Problems in Physics, Chem-

istry and Electrical Engineering, World Scientific Publishing Company, London, 2012.

4. Sjöberg P., Lötstedt P., Elf J., Comput. Visual. Sci., 2009, 12, 37; doi:10.1007/s00791-006-0045-6.

5. Pannuzzo M., Grassi A., Raudino A., J. Phys. Chem. B, 2014, 118, 8662; doi:10.1021/jp505617b.

6. Burada P.S., Schmid G., Talkner P., Hänggi P., Reguera D., Rubí J.M., Biosystems, 2008, 93, 16;

doi:10.1016/j.biosystems.2008.03.006.

7. Polotto F., Araujo M.T., Drigo Filho E., J. Phys. A: Math. Theor., 2010, 43, 015207;

doi:10.1088/1751-8113/43/1/015207.

8. Araujo M.T., Drigo Filho E., J. Stat. Phys., 2012, 146, 610; doi:10.1007/s10955-011-0411-8.

9. Brics M., Kaupuzs J., Mahnke R., Condens. Matter Phys., 2013, 16, 13002; doi:10.5488/CMP.16.13002.

10. Xing J., Wang H., Oster G., Biophys. J., 2005, 89, 1551; doi:10.1529/biophysj.104.055178

11. Latorre J.C., Kramer P.R., Pavliotis G.A., J. Comput. Phys., 2014, 257, 57; doi:10.1016/j.jcp.2013.09.006.

12. Caldas D., Chahine J., Drigo Filho E., Physica A, 2014, 412, 92; doi:10.1016/j.physa.2014.06.009.

13. Shifman M.A., Turbiner A.V., Commun. Math. Phys., 1989, 126, 347; doi:10.1007/BF02125129.

14. Gómez-Ullate D., Kamran N., Milson R., Phys. Atom. Nucl., 2007, 70, 520; doi:10.1134/S1063778807030118.

15. Borges G.R.P., Drigo Filho E., Ricotta R.M., Physica A, 2010, 389, 3892; doi:10.1016/j.physa.2010.05.027.

16. Hänggi P., Talkner P., Borkovec M., Rev. Mod. Phys., 1990, 62, 251; doi:10.1103/RevModPhys.62.251.

17. Byrne D.J., Coffey W.T., Dowling W.J., Kalmykov Y.P., Titov S.V., Adv. Chem. Phys., 2015, 156, 393;

doi:10.1002/9781118949702.ch7.

43003-11

http://dx.doi.org/10.1007/s00791-006-0045-6
http://dx.doi.org/10.1021/jp505617b
http://dx.doi.org/10.1016/j.biosystems.2008.03.006
http://dx.doi.org/10.1088/1751-8113/43/1/015207
http://dx.doi.org/10.1007/s10955-011-0411-8
http://dx.doi.org/10.5488/CMP.16.13002
http://dx.doi.org/10.1529/biophysj.104.055178
http://dx.doi.org/10.1016/j.jcp.2013.09.006
http://dx.doi.org/10.1016/j.physa.2014.06.009
http://dx.doi.org/10.1007/BF02125129
http://dx.doi.org/10.1134/S1063778807030118
http://dx.doi.org/10.1016/j.physa.2010.05.027
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1002/9781118949702.ch7


M.T. Araujo, E. Drigo Filho

18. Zaccone A., Terentjev E.M., Phys. Rev. Lett., 2012, 108, 038302; doi:10.1103/PhysRevLett.108.038302.

19. Shushin A.I., Phys. Rev. E, 2000, 62, 4688; doi:10.1103/PhysRevE.62.4688.

Наближений розв’язок рiвняння Фоккера-Планка
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3 Факультет теоретичної фiзики, атомної фiзики та оптики та Iнститут математики,
Вальядолiдський унiверситет, 47011 Вальядолiд, Iспанiя

У цiй статтi запропоновано наближений розв’язок спецiального класу рiвняння Фоккера-Планка. Розв’я-
зок базується на зв’язку з рiвнянням типу Шредингера з частково обмеженим i симетричним потенцi-
алом. Щоб оцiнити точнiсть розв’язку, запропоновано функцiю похибок, яка отримана з оригiнального

рiвняння Фоккера-Планка. Використовуючи запропонований метод, проаналiзовано два приклади, а са-
ме, утятий гармонiчний потенцiал i негармонiчний полiном. Окрiм цього, для утятого гармонiчного по-
тенцiалу обговорено поведiнку системи в залежностi вiд температури.

Ключовi слова: рiвняння Фоккера-Планка, рiвняння Шредингера, наближений розв’язок
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