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We investigate diffusion of a peptide drug through Graphene Oxide (GO) membranes that 

are modeled as a porous layered laminate constructed from aligned flakes of GO. Our 

experiments using a peptide drug show a tunable non-linear dependence of the peptide 

concentration upon time. This is confirmed using numerical simulations with a diffusion 

equation accounting for the photothermal degradation of fluorophores and an effective 

percolation model. This modeling yields an interpretation of the control and delay of drug 

diffusion through GO membranes. The ability to modulate the density of hydrogel-like GO 
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membranes to control drug release rates could be a step forwards in tailoring drug release 

properties of the hydrogels for therapeutic applications.  

Graphene, a single-atom thick free-standing layer of graphite, has been studied in various 

physical and chemical contexts. It is a single-layer honeycomb lattice of carbon atoms consisting 

of two interlocking triangular lattices, which has been extensively studied in various physical and 

chemical contexts
1,2

. The present work explores the diffusion-type features in graphene through 

an effective medium approach. However, the electronic properties of graphene underpin the 

physics at the nanoscopic scale and we find it worthwhile recalling related results to understand 

the basis of our modelling approach of diffusion of a peptide drug through a GO membrane. 

Well-known experiments on graphene include the demonstration that its electrical conductivity 

as a function of charge density increases symmetrically on either side of a minimum value at the 

neutrality point
3
. It is now believed that minimum conductivity might be an artifact of extrinsic 

electrons and hole puddles for which similar theoretical conductivity estimates exist on the basis 

of percolation and tunneling between adjacent puddles
4
. Other properties of graphene 

underpinned by diffusion and percolation models include filtration applications of water 

molecules
5
 at the nanometric scale within a GO flake. Inspired by all these works we investigate, 

theoretically and experimentally, a path towards control and delay of drug release with hydrogel-

like GO membranes.  

We have previously adapted the concept of transformation thermodynamics
6
, whereby the flux 

of temperature is controlled via anisotropic heterogeneous diffusivity, for the diffusion and 

transport of mass concentration. The n-dimensional, time-dependent, anisotropic heterogeneous 

Fick's equation was considered
6
, which is a parabolic partial differential equation applicable to 
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heat diffusion, for instance, in fluids. Finite-element computations were initially used to model 

liposome particles surrounded by a spherical multi-layered cloak consisting of layers of fluid 

with an isotropic homogeneous diffusivity, deduced from an effective medium approach
6
. This 

theoretical model has been experimentally validated for chemical engineering, whereby a steel 

structure in a concrete foundation can be protected from seawater corrosion by surrounding the 

structure with substances according to their anisotropic heterogeneous diffusivity
7
. Such an 

effect of invisibility in chemical engineering was inspired by earlier works in optics and 

acoustics
8-12

.  Other applications include invisibility cloaks controlling light diffusion in water-

based media
13

. We now investigate how the concept of anisotropic homogenous diffusion can be 

applied to tune drug delivery. Peptide and protein drugs have serum half-lives of minutes to 

hours, however conjugation to polymers in hydrogels results in the retardation of kidney 

filtration and a corresponding increase in plasma half-life of the therapeutic drug
14

. Clinical 

advantages include fewer injections for patients and reduced side effects for the health of 

patients. Based on the homogenization model applied in Guenneau and Puvirajesinghe, 2013
6
, 

GO was selected because of its low permeability
15

. GO has already been described to be a 

molecular sieve as the GO laminates only allow the permeation of ions of a certain hydrated 

radius
5,16

. GO has been used in combination with other composite materials to control drug 

release within hydrogels
17-19

. This study demonstrates similarities with GO membranes and clay 

and clay-based materials. Indeed this explains the combination of the two materials for the 

fabrication of clay-graphene composites
20-22

. To model GO hydrogel-like membranes, we 

employ a porous layered laminate to describe the percolation of an aqueous medium in these 

structures
23,24

. In combination with numerical stimulations, the concentration of GO in hydrogels 

can be used as a parameter to vary the rate of diffusion of a therapeutic peptide drug in order to 
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achieve tunable drug release. Using these principles, one can fine-tune the drug release 

properties of GO hydrogels by calculating the overall GO composition. 

 

Results 

GO membranes and measurement of the diffusion rate of a fluorescence anticancer lytic 

peptide 

GO has already been employed in hydrogels and provides advantages such as water solubility, 

high specific surface area and good biocompatibility. The anti-cancer agent used in this study is a 

previously characterized cationic lytic peptide, whose mechanism of action was based on 

disintegrating the cell membrane, leading to cell death. Incubation of MDA-MB-231 (human 

breast basal epithelial cancer cells) with different concentrations of the peptide has been reported 

to show a dose-dependent reduction in cell proliferation
25

. The peptide drug was chemically 

synthesized with the addition of a fluorescein isothiocyanate (FITC) fluorophore at the N-

terminal of the peptide. This enabled the monitoring of the presence of the peptide using green 

fluorescence. The concentration of the peptide was proportional to the fluorescence intensity and 

calibration curves can be derived to measure peptide drug concentration (Supplementary Fig. 

S1).  

In order to study the diffusion rate of the fluorescently labelled drug, we used cell culture 

membrane inserts made of polyethylene membrane with a porosity of 0.4 microns. The GO was 

deposited onto the membrane itself (Fig. 1a) and dried by exposure to high heat. A fluorescent 

plate reader was used to monitor the rate of drug diffusion by measuring the accumulated 

fluorescence signal from the lower chamber (Fig. 1b, c and d). Automatic readings were taken 

https://en.wikipedia.org/wiki/Fluorescein_isothiocyanate
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from the bottom of the plate at regular intervals of 3 min for 12 h 45 min (Fig. 2). In the absence 

of the GO membrane, the time taken for half the maximum amount of peptide to pass through the 

membrane was 18 min. Increasing the GO membrane density retards, and eventually halts, the 

rate of transport (see Supplementary Fig. S2).  In comparison to no GO membrane the density 

increases to 0.06, 0.09 and 0.17 ng/mm
3
 retard the peptide drug by 4, 6, 7 fold and completely, 

respectively. 

Curves depicting the diffusion of the drug (Fig. 2) showed that the magnitude of GO density 

affected the rate of drug transport. Depositing increasing densities of GO lead to a gradual 

decrease in the time taken for the drug to reach half of its maximal intensity (t1/2). Therefore the 

density of GO determines the rate of retardation of drug transport.  

In order to interpret this phenomenon, the membrane compactness of GO was characterized 

using transmission electron microscopy (TEM). Based on the fact that GO consists of a high 

proportion of carbon atoms, for which the low atomic number reduces scattering of the electron 

beam, a good contrast and a sharp image was acquired in TEM experiments without the need of 

the addition of a contrast agent. Low GO densities show isolation of GO structures (Fig. 3a). 

When the density of the GO membrane increased, TEM images showed that the heterogeneous 

GO have the tendency to aggregate, causing overlap of GO structures (Fig. 3b). However upon 

reaching a certain concentration of GO, complete overlap was evident, which leads to 

superimposition of particulates, as evidenced by an overall dark grey image, shown in (Fig. 3c). 

Therefore in conclusion, there is strong evidence to validate our proposal of the application of 

GO for the tunable delivery of therapeutic drugs. Next, we compare the acquired experimental 

results with effective mathematical models, which showed a close match between the numerical 

data and the experimental data (Supplementary Fig. S3).   
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For the numerical and analytical simulations, we recall that the assembly of aligned GO flakes 

resembles a porous layered laminate. It has been previously shown that a homogenization 

approach of Fick’s equation can be used to control processes of mass diffusion for biological and 

engineering applications
6
. We use the same equation to retrieve in (Fig. 4) the main features of 

the experiments reported in (Fig. 2). However, one notes that there is a decrease in the 

concentration after a certain time in (Fig. 2), whereas (Fig. 4c) only displays a plateau. We 

explain how this can be corrected by considering certain activation terms in the diffusion 

equation so as to account for photothermal degradation of fluorophores, described in the later 

section on methods.  

 

 

 

 



 

7 

 

Fig. 1: Experimental setup for the measurement of the rate of diffusion of a fluorescence anticancer lytic 

peptide.  (a) Schematic representation of graphene oxide (GO) deposited onto the polyethylene terephthalate (PET) 

membrane. (b) A fluorescent peptide with anti-cancer lytic activity is added to the Transwell cell culture insert at the 

beginning of the experiment (T=t). (c) At increasing time points during the experiment (T=t+x), the concentration of 

fluorescent peptide in the lower culture well chamber is measured. (d) Side view and top view photographs of the 

experiment depicted in (a,b,c). 
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Fig. 2: Varying the density of the GO membranes controls the rate of diffusion of an anticancer lytic peptide. 

GO dispersion in water is prepared at different densities and dried onto translucent cell culture inserts made from 

PET membrane, with a porosity of 0.4 microns. The concentration of the fluorescent peptide in the lower culture 

well chamber is measured and plotted against time. Each reading is representative of an average measurement of 24 

readings taken from the circumference of each well of the culture dish. Readings are taken every 3 min during a 

period of 12 h 45 min.  
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Fig. 3: TEM images showing GO of varying densities. Images are acquired using a Morgagni FEI 80KV Camera 

digital View III Olympus camera. For clarity the prominent sheets are outlined with dashed lines. (a) An image of 

one sheet, note that the contrast is very similar to that of the background surface. (b) Several sheets, each sheet is 

again outlined and the contrast is increased when additional sheets are superimposed. (c) Multiple sheets showing a 

sharp increase in the contrast when many GO flakes are stacked together, thereby substantially increasing the gray 

scale of the images. Scale bar (500 nm). 
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Fig. 4: Finite element simulations for effective diffusion rate. (a) A long water-filled rectangular domain with no 

flux boundary conditions on the left, right and bottom sides; an imposed concentration on the top and GO flakes 

overlying a porous (PET) membrane. (b,d) Concentration of the peptide at time steps t=1min and t= 200 min. (c,e) 

Concentration of the peptide for low and high density of GO flakes. (f) Geometry of PET overlaid with a high 

density of GO. (g) Variation of the concentration of the peptide with time for low, intermediate and high densities of 

GO flakes. Normalization was used in order to compare similar initial peptide concentrations.  
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Discussions 

Our numerical simulations carried out with the commercial finite element software COMSOL 

Multiphysics (Fig. 4) clearly reproduce most of the features of the experimental data (Fig. 2). 

However, after a period of time, the concentration decreases in Fig. 2, unlike the monotonically 

increasing solution to the diffusion equation in Fig. 4. The experimental data fits the modeling 

data if one adds a term to the diffusion equation in order to account for photobleaching, see 

Supplementary Fig. S3. We note that other work on filtration applications of water molecules
5
 

at the nanometric scale within a GO flake was underpinned by van der Waals interaction
26,27

 

which
 
played a prominent role at the nanometric scale, but this is not the case in the present 

work. 

 

Methods 

Peptide synthesis and diffusion experiments 

Peptides were synthesized by GenScript, based on the previously published peptide sequences
25

, 

with conjugation of FITC fluorophore to the N-terminal of the peptide. A fluorescence plate 

reader (FLUOstar Optima, BMG Labtech) is used to carry out drug diffusion assays, using 

excitation filter of 485 nm and an emission filter of 538 nm.  The density of graphene oxide is 

measured by the quantity of GO (ng) deposited onto a total area (mm) of a 24-well culture plate 

Transwell PET membrane insert and then represented as ng/mm
3
.   

 

Transmission electron microscopy 
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GO dispersion in water, 4 mg/mL (Sigma-Aldrich) is diluted 100 times with water. 2 µL of the 

diluted solution is deposited onto an electron microscopy grid. After 20 seconds, the drop is 

removed with a small fragment of filter paper. A 200 kV with a Tecnai G2 (FEI, Netherlands) 

and Velata camera (Olympus, Japan) is used for image acquisition.  

 

Effective model and numerical simulations 

We apply an effective model for porous media to obtain the results in Fig. 3. The effective and 

“free” diffusivities are usually related
28

 [according to the equation Deff = De /t  
where ε is the 

porosity of the structure and τ the tortuosity, which is a measure of the actual length per unit 

effective length a molecule has to diffuse in a porous structure. To calculate the porosity of the 

modeled structure we consider the ratio of the perforations to the total computational area, the 

concentration then obeys Fick’s equation
29

.  

e
¶

¶t
c-Ñ.(DeffÑc) = 0

                                                                                                 (1)
 

Tortuosity is usually expressed as a power of the porosity
30,31

 therefore the effective diffusivity 

varies as Deff = De p

. 

We note that applying Fick’s equation simply leads to an increase in concentration reaching a 

plateau (steady state) at long times, which does not explain the relative decrease in concentration 

observed in Fig. 1d.  

The physical system suffers degradation due to photobleaching. We build in this decay through 

an additional term 0<aeff
<<1 where aeff  

 is the rate of photobleaching
32-34
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¶

¶t
c-Ñ.(DeffÑc)+aeff c= 0                                                                                          (2) 

We verified that the concentration versus time then follows the same trend as in Fig. 2, see 

Supplementary Fig. S3.  
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