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In this study we present an extension of the dynamics of diffusion in multiplex graphs which
makes the equations compatible with the replicator equation with mutations. We derive an exact
formula for the diffusion term, which shows that, while diffusion is linear for numbers of agents, it is
necessary to account for non-linear terms when working with fractions of individuals. We also derive
the transition probabilities that give rise to such macroscopic behavior, completing the bottom-up
description. Finally, it is shown that the usual assumption of constant population sizes induces a
hidden selective pressure due to the diffusive dynamics, which favors the increase of fast diffusing
strategies.
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I. INTRODUCTION

During the last decade agent based modeling has in-
creased its importance as a powerful tool to model sit-
uations in which the complexity of the interactions of
many-agent systems makes it impossible, or at least very
difficult, to make analytic predictions of the dynamical
behavior of the system [1, 2]. Furthermore, the agent
based models complement the analytic approach allowing
for an exploration of the coarse-grained dynamics and the
connection between micro-scale and macro-scale behavior
[3–6]. Such agent based modeling is of special importance
in evolutionary game theoretical studies [7, 8] which aim
to capture the intricacies of biological, social and eco-
nomical systems, where the non-linearity and feed-backs
of the systems cannot be easily foreseen [9–12]. In the
middle of such framework [13], and connected with the
micro-evolutionary dynamics [3–6], stands the replicator
equation [14, 15]

(ẋα)rep = xα(fα − f̄) (1)

The replicator equation, which was introduced shortly
after the foundation of the evolutionary game theoretical
framework [7, 16, 17], has been extensively used during
the last decades to model the evolution of the fractions
xα = nα/N of traits of type α, α = 1, ..., L in large
well-mixed populations with frequency dependent selec-
tion, i.e. when the fitness fα (reproductive potential or
capacity) of the agents traits and the mean population
fitness f̄ =

∑
α f

αxα depend on the population composi-
tion. Such traits may represent different phenotypes and
genotypes in biological settings, or different behavioral
strategies in a cultural evolutionary framework.

In addition to classical biological applications related
to the evolution of gene frequencies and phenotypic traits,
the replicator equation and agent based simulations us-
ing microscopic updating rules that lead to it have been

∗Electronic address: rrequejo@ffn.ub.edu

used to study how evolution, with a stress on the evolu-
tion of cooperation, is affected by physical entities. These
studies include the interplay between different tempo-
ral scales of interaction and selection [18, 19], the effect
of network structures, both spatial lattices [19–21] and
scale-free networks [22, 23], and the effect of linking fit-
ness and resource availability [9, 10, 12, 24], showing a
self-organized feedback similar to homeostatic regulation
[25]. Furthermore, the richness of dynamical portraits
[26, 27] has also been shown in minimalist scenarios, as
exemplified by the introduction of loner [28, 29] and joker
[10, 30] strategies, which allow for several phase transi-
tions and complex dynamical behavior [10, 31, 32], or the
use of the discrete time version of the replicator equation
for two strategies, which has been proven to show peri-
odic and chaotic behavior [11].

The replicator equation is on the core of the framework
of evolution [13], linked to the quasispecies equation [13],
the game dynamical equation [3, 4], adaptive dynamics
[13], Lotka-Volterra dynamics [33, 34] and the Price equa-
tion [35–38]. The extension of the replicator dynamics
to regular networks has been developed in a situation
where each node is an agent [39], finding that for weak
selection it corresponds to a transformation of the pay-
off matrix. Furthermore, an extension of the replicator
dynamics has been developed to represent a two dimen-
sional world where the agents diffuse [32], which shows
the appearance of Turing patterns and other complex be-
havior. However, many real world situations cannot be
modeled as a simple network or a two dimensional space,
and need the introduction of several kinds of links to rep-
resent different properties of the system [40], as in the air
transportation networks, where each airline represents a
different network [41].

Let us focus on a cultural evolutionary framework
along the rest of the paper. In such a framework the in-
dividual traits being selected are behavioral traits, called
strategies. The main aim of this paper is to develop
the mathematical tools that allow to model diffusion of
strategies in multiplex networks in a compatible way with
the selection dynamics described by the replicator equa-
tion (with or without mutations), irrespective of the mi-
croscopic dynamics that give rise to the replicator equa-
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tion (see appendix A). Let us provide a simple example
to illustrate the situation: imagine several cities which
are connected by bus, train and plane, each kind of con-
nection with a different network structure. Individuals
in each city are interacting between them, both directly
or indirectly: they have different jobs and different in-
comes, which determines, at least partially, their choices
on how to travel, and they also have information about
the transportation ways. Based on such interactions and
information, they may decide to travel in one or another
transport; such choice determines the individual strategy.
As the different transportation ways determine different
networks structures, as well as the travel speeds are dif-
ferent, a multi-layer network is necessary to represent the
full transportation system; hence, as a first approach to
such simplified situation, we need to extend the replica-
tor dynamics (describing strategy changes) to diffusive
individuals in this kind of multi-layer.

We may think that introducing diffusion on multiplex
models of evolution is a straightforward task, as the dif-
fusive process has extensively been studied on such net-
works [42, 43]. However, it poses a challenge: as the
replicator dynamics describe the evolution of fractions
of individuals, the diffusive models need to be rewritten
in a compatible way, accounting for the constraint on
the addition of the fractions to one, as well as for the
conservation of the number of agents. We develop such
extension in this paper, showing that working with frac-
tions introduces dependencies which are not present for
the diffusion of the numbers of agents. These new de-
pendencies can only be taken into account introducing a
non-linear term, which has to be added to the linear one,
in order to represent the general dynamics of diffusion of
fractions of individuals in the multiplex. Furthermore,
we discuss some situations in which the linear scenario
can be recovered, as when population sizes or popula-
tion size ratios between sites are constant, and show that
in such situations hidden selective pressures act on the
system, even when they do not appear explicitly on the
equations.

The paper is outlined as follows: We start in section II
by defining multiplex networks and showing the problem
to overcome when working with fractions; after that, in
section III we derive the diffusion term compatible with
the replicator dynamics and infer the transition proba-
bilities that give rise to it; then, in section IV we discuss
some situations in which the linear dynamics are recov-
ered (and the analytic calculations simplified), and show
that some of this situations carry attached the appear-
ance of hidden selective pressures; finally, in section V we
discuss the results.

II. DIFFUSION IN THE MULTIPLEX: THE
PROBLEM OF WORKING WITH FRACTIONS.

In a general multi-layer network [40] each node in one
layer can be connected to any node in any other layer.

FIG. 1: (Color online) Example of multiplex network formed
by three layers (blue, gray and red). The set of nodes is the
same in all layers and the inter-layer links connect them in
a one to one basis. For clarity, the inter-layer connection
between the first and third layer has been omitted.

Hence, the connectivity may be given by a tensor with
four indices, Mαβ

ij , whose entries are 1 if nodes iα –node
i in layer α– and jβ are connected and zero otherwise.
In multiplex networks [42–46], however, the set of nodes
i = 1, . . . , N is the same in all layers α = 1, . . . , L, and
the connectivity of each layer is given by a matrix Aα =
{aαij} (see Fig.1). Furthermore, only connections among
one node iα and its counterpart in another layer iβ are
allowed. This inter-layer connectivity is the same for all
nodes and is given by the inter-layer connectivity matrix
Λαβ [43]. Hence, multiplex networks have a connectivity
defined by

Mαα
ij = aαij

Mαβ
ii = Λαβ

Mαβ
ij = 0

(2)

with i 6= j and α 6= β.
Each site i of a multiplex may be regarded as one

structural entity, and the different layers α represent dif-
ferent interconnection structures between these entities.
Structural entities (sites) may represent specific locations
(cities), and the different connectivity of each transporta-
tion system or mobility pattern would define the different
layers through which the agents move, while the inter-
layer connections refer to the possibility to reach another
transport (layer) from a specific location (for simplicity
we will assume that Λαβ = 1). Individuals changing from
one layer to another can be represented as changing their
strategy due to selection (due to prices, availability, or
other competitive reasons) or mutation (random trial) in
an evolutionary framework.

In order to describe the state of the entire multiplex
system, we may define a set of vectors {~ni}, one per site
i, each one with L (number of layers) components. From
an evolutionary game theoretical point of view the com-
ponents of such vectors represent the number of agents
nαi in a given position iα of the multiplex, and hence ~ni
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is the population composition at i. Then, the evolution
of the state of node iα may be assumed as given by a
functional Fαi [{~ni(t)}, aαij ,Λαβ ], which depends, respec-
tively, on the state of the system, and on the intra- and
inter-layer connectivities.

As the state of the system is instantaneously defined
by a set of quantities ~ni for each site i, we may write the
dynamics as a set of coupled differential equations, one
per component (layer),

dnαi (t)

dt
= Fαi

[
nαi (t), aαijn

α
j (t),Λαβnβi (t)

]
, (3)

where the terms on which the functional depends are,
respectively, the state of iα, the state of connected nodes
in the same layer (intra-layer neighborhood of iα), and
the state of equivalent nodes connected through inter-
layer connections (inter-layer neighborhood of iα).

In order to approach a replicator-equation like func-
tional (see Eq.(1)), we have to normalize nαi with respect
to Ni =

∑
α n

α
i , the number of agents (population size)

on site i, which is only site dependent. The normalized
quantity is the fraction xαi = nαi /Ni, which must ful-
fill the restriction

∑
α x

α
i = 1, and hence its derivative

satisfies
∑
α ẋ

α
i = 0. Note that, whenever the agents dif-

fuse from jβ to iβ (or in the opposite direction), they
are modifying the value of the fraction in iα through the
modification of the population size Ni. Hence, in order to
account for the dynamics in a position iα it is no longer
enough to take into account the direct neighborhood of
iα, given by its connectivity, but it is necessary to take
into account the entire neighborhood of i, introducing an
extra dependence. The functional in terms of fractions is
thus

dxαi (t)

dt
= Fαi

[
~xi(t), a

α
ijx

α
j (t),Λαβxβi (t), aβijx

β
j (t)

]
. (4)

where the extra dependencies are given by the first term
between brackets, which now accounts for the entire state
of i, and the last term, which accounts for the neighbor-
hood of iβ . As we show in the following, such extra de-
pendencies require a modification of the diffusion term,
which will no longer be linear, but include a non-linear
term.

III. REPLICATOR DYNAMICS WITH
DIFFUSION IN THE MULTIPLEX

In this section we derive a diffusion term in the mul-
tiplex compatible with the replicator dynamics, i.e. de-
scribing the evolution of the fractions of agents xαi at site
i with diffusive pattern given by layer α, and keeping the
conservation of the total number of agents in the mul-
tiplex,

∑
iNi = N where N is constant, as well as the

constraint
∑
α x

α
i = 1. We will assume that diffusion and

evolution are uncoupled, and hence the diffusion term can
simply be added to the dynamics.

As the diffusion of agents has been already studied, let
us start trying to derive the equations for diffusion of the
fractions from those for the number of agents, and discuss
its use in game theoretical studies. If the agents are dif-
fusing across a network structure with adjacency matrix
of layer α given by the elements aαij = 1 for connected
nodes and 0 otherwise, the transition probabilities deter-
mining the microscopic dynamics of diffusion of (numbers
of) individuals i given j in layer α are

(T+α
i|j )diff = Dαaαijn

α
j = DαaαijNjx

α
j

(T−αi|j )diff = Dαaαijn
α
i = DαaαijNix

α
i

(5)

where Dα is the diffusion coefficient of layer α and

T+α
i|j = T [nαi → nαi + 1 |nαj → nαj − 1], (6)

is the transition rate of increase (decrease, by changing all
signs) of the number of agents in iα in one unit triggered
by the movement of one agent in jα. Note that, as the
process of diffusion impilies a redistribution of agents, the
aggregated number of agents Ni+Nj is preserved in each
diffusive event among i and j, and hence the constraint
(T+α
i|j )diff = (T−αj|i )diff holds, which also ensures the global

conservation of agents in the entire multiplex system by
linking the processes nαi → nαi + 1 and nαj → nαj − 1. In
the following, for simplicity, we will write the transition
rates in a simplified form, explicitly stating the process
to which it refers in the focal variables and the terms
involved, but not the linked process; in this way, Eq.(6)
would be T [nαi → nαi + 1 |nαj ]

The microscopic dynamics can be connected with the
macroscopic behavior of the system by expanding a
Fokker-Planck equation and truncating high order terms
(this happens naturally for N � 1 when working with
fractions, see appendix A for the one dimensional deriva-
tion), which results in the Langevin equation,

η̇αi = e+ ξs (7)

where ξ is uncorrelated Gaussian noise, η is either the
number of individuals or the fraction of individuals, and
the drift and diffusion terms (do not confuse the latter
with the diffusive dynamics studied in this section) are
respectively

e =
∑
j

(T+α
i|j − T

−α
i|j ),

s =

√∑
j(T

+α
i|j + T−αi|j )

Ni
.

(8)

where the transition probabilities have to be written in
terms of numbers or fractions depending on the choice in
Eq.(7). The first term in Eq.(8) (drift) accounts for the
deterministic behavior of the system and the latter (diffu-
sion term) for stochastic effects. Note that the stochastic
effects disappear in the thermodynamic limit Ni →∞, or
whenever Ni �

∑
j(T

+α
i|j +T−αi|j ), i.e. when the transition

rates are small compared to the population size.
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Whenever we introduce the transition probabilities
Eq.(5) into the drift term in Eq.(8) expressed for num-
bers of individuals, the deterministic diffusive dynamics
for the number of agents are

(ṅαi )diff = Dα
∑
j

aαij(n
α
j − nαi ) = −Dα

∑
j

Lαijn
α
j (9)

well known equation for the diffusion of particles on a
network, where the tensor Lα = {Lαij} = {δijkαi − aαij} is
the graph Laplacian of the corresponding layer α (with
δαβ the Kronecker’s delta) and kαi is the degree of site i
in layer α.

In order to derive the equation for the diffusion of frac-
tions instead of numbers, it is important to note that, if
we differentiate the fraction xαi = nαi /N , we get

ẋαi =
ṅαi
Ni
− xαi

Ṅi
Ni

(10)

and hence a non-linear term that depends on xαi appears.
Since we are trying to find the exact description of the
diffusive process which is compatible with the replicator
equation for mobile agents in a multiplex, we can follow
this approach: first, construct a compatible macroscopic
equation and then, infer the transition probabilities that
give rise to it. In order to do this we may introduce
Eq.(9) into Eq.(10) (note that the latter is a replicator
equation of the form of Eq.(A1)), and use

∑
β n

β
i = Ni,

obtaining a term of the form,

(ẋαi )diff = −Dα
∑
j

ρijL
α
ijx

α
j + xαi

∑
β

∑
j

DβρijL
β
ijx

β
j ,

(11)
where ρij = Nj/Ni is a population size dependence be-
tween neighboring sites. As it can be observed, in addi-
tion to a linear term, the first one, a second term appears.
This term ensures that the normalization of the fractions
is the proper one, i.e. fractions always add up to one,
as shown in Fig.2(a),(b) for a system of two layers and
two nodes in each layer. Note that, as previously fore-
seen in section II, this term implies a dependence of the
dynamics at iα on positions jβ to which it is not directly
connected, but represents the neighborhood of iβ nodes.

The diffusion term (11) may be rewritten in a more
compact form

(ẋαi )diff = −
∑
β

∑
j

Dβxβj ρij(δ
αβ−xαi )(kβi δij−a

β
ij) (12)

Note that, if one extracts the node degree from the sec-
ond parenthesis –the network Laplacian term–, then it
becomes kβi (δij − aβij/k

β
i ), which is similar to the first

parenthesis term, ρij(δαβ − xαi ), but with constant val-
ues instead of variables. In this way the latter term may
be interpreted as a population composition dependent
Laplacian, which accounts for the instantaneous hetero-
geneity in population sizes and fractions of individuals in
the network.

Now, it is possible to infer the transition probabili-
ties of the microscopic process from the emergent macro-
scopic dynamics (Eq.(12)), which may be used in Marko-
vian analysis [12]. The macroscopic deterministic dy-
namics emerge from the drift term in Eq.(8), which by
extrapolation to two dimensions results in

ẋαi =
∑
β

∑
j

(T
+α|β
i|j − T−α|βi|j ). (13)

where

T
+α|β
i|j = T

[
xαi → xαi + ∆xαi |x

β
j

]
, (14)

is the transition rate of increase (decrease, by changing
all signs) of the fraction of agents in iα given the fraction
of agents in jβ (see appendix C). Note that xβj may also
vary in the same process, but such variation is specified
in its related transition rate, and not explicitly written
here for simplicity.

Then, we can compare Eq.(12) and Eq.(13) (see ap-
pendix C for the derivation), and infer the bi-dimensional
transition probabilities describing the variation of the
fractions of individuals xαi which give rise to Eq.(12),
resulting in

T
+α|α
i|i = 0 T

−α|α
i|i = Dαkαi x

α
i (1− xαi )

T
+α|α
i|j = Dαρija

α
ijx

α
j (1− xαi ) T

−α|α
i|j = 0

T
+α|β
i|i = Dβkβi x

α
i x

β
i T

−α|β
i|i = 0

T
+α|β
i|j = 0 T

−α|β
i|j = Dβρija

β
ijx

α
i x

β
j

(15)
where we have omitted the subscript ’diff’ for simplicity.

Note that the transition probabilities depend on both
the layers (α) and the sites (i), and that the symme-
try which is present for mutation transition probabili-
ties, which makes them keep local population sizes con-
stant (see appendix B), is broken in general settings,
T−α|β 6= T+β|α. Such asymmetry is however expected, as
diffusion implicitly needs variable local population sizes
(although the total number of particles in the multiplex
is conserved), and assuming constant population sizes lo-
cally may have unexpected effects, as shown in the next
section.

The transition probabilities in Eq.(15), together with
those that give rise to the replicator equation with muta-
tions (appendices A,B) complete the microscopic descrip-
tion of the evolutionary process for agents in a multiplex.
Let us finally write down the deterministic replicator dy-
namics (see appendix A) with additive mutations (see
appendix B) and diffusion in a multiplex:

ẋαi = xαi (fαi − f̄i) +
∑
β

(xβi q
βα
i − x

α
i q
αβ
i )

−
∑
β

∑
j

Dβxβj ρij(δ
αβ − xαi )(kβs δij − a

β
ij)

(16)

where fαi is the fitness of individuals in position iα, f̄i is
the mean fitness of individuals in i across layers and qαβi is
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FIG. 2: Intra-layer diffusive dynamics of a system consisting of two layers with diffusion coefficients Dα = 10−1 and Dβ = 10−2,
and two sites, i = 1 and j = 2 . The initial configuration is with N individuals in nodes iα and jβ which are allowed to diffuse
within its own layer (note that N may take any value in the situation depicted, provided that it is the same in both layers, as
the fractional character of ρ makes it vanish); no inter-layer process is acting on the system. In order to fulfil the constraint∑
α x

α
i = 1, stars and solid line, and squares and dashed line, have to add up to one. (a,b) dynamics of Eq.(11), with (a) ρij

calculated exactly analytically and (b) setting ρij = 1; (b,c) dynamics of Eq.(17) with (c) ρij calculated exactly analytically
and (d) ρij = 1; Cases (c) and (d) do not keep the normalization of the fractions. The dynamics given in (a) and (b) maintain
the restriction

∑
γ x

γ
i = 1 due to the quadratic term in Eq.(11). However, while case (a) describes accurately the expected

dynamics, (b) shows an asymmetry in the final state, which is not expected due to pure intra-layer diffusion, but the result of
an induced evolutionary pressure due to the different diffusive velocities and the restriction ρij = 1.

the mutation rate which accounts for transitions of agents
between α and β layers in site i. For the case of mutations
coupled to reproduction substitute the first two terms in
the previous equation by the so called replicator-mutator
equation (Eq.(B7)).

Remarkably, the non-linear effects due to diffusion are
all contained in the xαi in the first parenthesis of the
latter term in Eq.(16). There are however some situations
in which the non-linearity disappears, and in which the
analytic calculations can be simplified. Let us discuss
them, as well as their implications, with special emphasis

on the appearance of hidden selective pressures.

IV. RECOVERING LINEAR DIFFUSION AND
SIMPLIFYING THE ANALYTICS.

Some situations allow us to recover linear diffusion,
as well as to simplify the analytic calculations. Here,
we analyze three of such scenarios. The first one refers
to a situation in which population sizes are all forced
to be constant across sites, and hence the second term
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in Eq.(10) disappears. Remarkably, in this situation a
hidden selective pressure appears favoring the increase
of fast diffusing strategies. The second scenario refers
to slow population change, situation which approximates
the constant population sizes scenario. The last subsec-
tion explores the situation in which the population ratio
can be expressed as some analytic function. In that case,
time scales separation allows us to write some formulas
which simplify the calculations.

A. Constant population ratios (or sizes) induce
hidden selective pressure.

Let us first study the case in which some mechanism
makes ρij = Nj/Ni → c, where c is a constant; for sim-
plicity, we will assume c = 1, which includes the usual as-
sumption in evolutionary game theoretical studies of con-
stant population sizes [3–5, 48–50]). This case is shown
in Fig.2(b), where the restriction on the addition of frac-
tions of individuals to one during the dynamical evolution
of the system is fulfilled. However, the final state is not
a symmetric one in which there are N/2 individuals in
each node, as it happens without the restriction on the
quotient of population sizes. Why does this happen?

The case in which ρij is forced to be equal to a certain
value in Eq.(11) may happen only if the conservation of
particles due to the diffusive process does no longer hold.
In such case, which may be due to a fast (compared to
diffusion) and neutral evolutionary process acting on the
system, the difference in diffusive velocities transforms
into different "diffusive pressures", which induce differ-
ent selective pressures while the system decays to the
equilibrium.

The different selective pressures are induced by the
fact that fast diffusing individuals are increasing their
frequency in a site compared to slower diffusing ones,
and then the increased fraction is fixated by the neutral
selective process, which only renormalizes the population
size without altering the proportions. This is similar to
a Wright-Fisher process, in which the population repro-
duces during the reproduction period according to their
fitness and then, keeping the proportions of individuals,
the population size is renormalized to its initial value. In
our case, however, the variation in the fractions is due to
the diffusion of the agents and the continuous renormal-
ization of the population size is due to the neutral evolu-
tionary process, thus favoring the fast diffusive strategy,
as shown in Fig.2(b).

B. Slow population size change and quasi-neutral
selection.

The equation describing the evolution of the fraction
of particles present at each point may in principle be sim-
plified whenever, starting from a situation near the equi-
librium, the variation of the number of agents is so slow

that it can be neglected, Ṅi/Ni → 0. This is equivalent
to assuming that ẋαi ≈ ṅαi /Ni, which results in

(ẋαi )diff = Dα
∑
j

aαij

(
Nj
Ni
xαj − xαi

)
= −Dα

∑
j

ρijL
α
ijx

α
j

(17)
However, Eq.(17) does not generally keep the proper nor-
malization for the fractions

∑
β x

β
i = 1, as it can be easily

proven with a simple example. Let us assume a mul-
tiplex network formed by identical networks with iden-
tical diffusion coefficients (for two-dimensional spatial
networks, this equals the Fisher-Kolmogorov reaction-
diffusion scenario for gene wave-front propagation [52–
54]). In this case, which is analogous to a mono-layer
network, there is no dependence of the adjacency ma-
trix terms and diffusion coefficients on the layer index α,
which now serves only to identify the different strategies
present in each node. Hence, by summing Eq.(17) over
layers (or strategies) and noting that

∑
β x

β
i = 1, we ob-

tain the condition
∑
β ẋ

β
i = (D/Ni)

∑
j aij(Nj − Ni) =

(D/Ni)
∑
j aijNj − kiNi, which is only equal to zero, i.e.

satisfies the dynamical constraint, whenever

Ni =

∑
j aijNj

ki
or Ni = Nj . (18)

These two restrictions are equivalent to requiring that∑
j LijNj = 0, which could be implemented or engi-

neered in the system, but it is not a priori expected to
happen as a self-organizing feature. Furthermore, simu-
lations using a system with two nodes and two layers con-
firm that the normalization is not fulfilled using Eq.(17),
as shown in Figs.(2)(c),(d). Hence, the construction of a
microscopic model that describes the macroscopic diffu-
sive dynamics of fractions of individuals cannot be done
by simply rewriting the transition probabilities in Eq.(5)
in terms of fractions.

The case of slow population change is equivalent to
assuming that the second term in Eq.(11) vanishes∑

β

∑
j

DβρijL
β
ijx

β
j → 0 (19)

and is hence only slightly influencing the dynamics de-
scribed by the first term. In such case, the diffusion term
approaches Eq.(17). Note however that, if we assume
that the term above is strictly zero, we recover the case
of strictly constant population sizes, and hence hidden
selective pressures may appear, as explained in the pre-
vious subsection.

From an evolutionary perspective, small perturbations
introduced in the neutral selection limit satisfy the con-
ditions leading to the slow population size change ap-
proximation whenever diffusion is slow. If we define the
quasi-neutral selection limit as represented by fαi → 0,
then the population size at each site varies slowly, given
that Ṅi = Nif̄i → 0 and Dγ → 0. The quasi-neutral se-
lection limit is important for two reasons: first, it allows
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for analytic calculations to be carried out in a similar
way to the weak selection limit [55, 56] and, second, this
limit approaches the neutral theory of molecular evolu-
tion proposed by Kimura [57]. However, care should be
taken when approaching this limit, as explained above.

C. Time-scales separation.

Let us finish exploring the situations in which ρij can
be written as a function of the fractions of individuals (or
their fitness, which are determined by such fractions once
the payoff matrix is known) and time due to time-scales
separation.

Whenever we are able to write the population size de-
pendence of the diffusion term as

ρij = ρij(x
γ
k , t). (20)

the entire replicator dynamics in the multiplex, including
replication and deaths, mutations and diffusion, can be
written as a function of the state of the system, given
by the fractions of individuals in each node, and of the
structural terms (diffusion coefficients and Laplacian of
the multiplex).

In the cases in which it is not possible to write an
explicit dependence for ρij as above, there are at least
two situations in which time scales separation allows for
approximations that take such form. The first one is
whenever diffusion is slow and most of the population
size change is due to replication and death. In this case
it is easy to prove that the differential equation

ρ̇ij ≈ (f̄j − f̄i)ρij (21)

governs the evolution of population sizes. Note that the
solution of this equation is an exponential integral,

ρij(t) = ρ0
ije

∫ t
0

(f̄j−f̄i)dt′ , (22)

which implies that the system has memory. More pre-
cisely, the entire history of the difference of mean popula-
tion fitness differences, which depends on the population
compositions, is influencing the present state. Hence,
Eq.(22) is a memory kernel of the past states of the sys-
tem.

As the memory kernel has an exponential form, al-
though the entire history is contained in it, the influ-
ence of past states decays very fast with time com-
pared to present states. This can be easily proved
noting that, given two time lapses beginning at t =
0 and ending at t1 and t2 > t1, the memory ker-
nels are ρij(t1) = ρ0

ije
∫ t1
0 (f̄j−f̄i)dt′ and ρij(t2) =

ρ0
ije

∫ t1
0 (f̄j−f̄i)dt′e

∫ t2
t1

(f̄j−f̄i)dt′ . The quotient between

them is ρij(t2)/ρij(t1) = e
∫ t2
t1

(f̄j−f̄i)dt′ , which is a mem-
ory kernel of the time lapse between t1 and t2 and does
not take into account the time lapse between 0 and t1.
Hence, we may always make t2 = t1 + dt to express the

quotient as an instantaneous integral of the fitness dif-
ferences, which allows for computation of the dynamics
without keeping track of the entire history of the system.

The opposite limit to slow diffusion is the fast diffusion
limit: In this case we may assume that, after a short
transient, the population size variations fulfill Ṅi/Ṅj =
κij(t) 6= 0,∞; then the approximation

ρij = (f̄i/f̄j)κij(t) (23)

can be used. Furthermore, in the fast diffusion limit we
may assume that the population size variations due to
replication and death may be negligible compared to dif-
fusion, as in the previous subsection; in such case the
conditions in Eq.(18) –equal populations across all sites
or a local mean field describing the population sizes– may
be prone to happen, although again, this may introduce
hidden selective pressures.

V. DISCUSSION AND CONCLUSIONS

We have presented a complete description of the diffu-
sive process in terms of fractions of individuals which is
consistent with the replicator dynamics. Such term can
be added to the replicator equation in order to make a full
description of a system of diffusing and evolving agents in
a multiplex. We have also found the transition probabil-
ities that describe the microscopic dynamics from which
the macroscopic behavior emerges. As we have shown,
due to the multiplex structure it is necessary to include
in the diffusion term a dependence on the quotient of
population sizes of neighboring sites, as well as to add an
extra diffusive term which is non-linear; this happens in
order to keep the restriction imposed by the addition of
fractions to one, as well as to account for the conservation
of particles due to its diffusion.

The extra non-linear diffusive term in Eq.(11) takes
into account the state of the vicinity of the focal node
and its equivalent nodes in all layers (extended neighbor-
hood), and not only its direct neighbors (directly con-
nected nodes). This is relevant for the calculation of the
evolution of the fractions of individuals at each site, and
contrasts with the usual diffusion term, which only takes
into account the state of directly connected nodes within
each layer.

We have finally explored the recovery of the linear sce-
nario, finding that when population sizes are constant
across sites (due to environmental saturation, for in-
stance), the non-linearity disappears. However, in this
case the diffusion process induces an extra evolutionary
pressure acting while the system reaches the equilibrium.
This has been argued to happen because, even if the
evolutionary process does not alter the fractions of in-
dividuals at each site, and only acts so as to maintain
the population size constant, the faster diffusing strat-
egy increases its proportion in the neighboring sites faster
than the slower strategy in the focal site, and hence the
renormalization process favors its increase. This suggests
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that, depending on the network architecture, the induced
evolutionary selective pressures may work so as to cre-
ate extra gradients of selection acting while the system
is out of the equilibrium, which may induce, depending
on the multiplex architecture, an unexpectedly complex
phenomenology.
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Appendix A: Microscopic local derivation of the
replicator equation.

The replicator equation in a well-mixed population (no
network structure, Eq.(1)) can be derived –for large pop-
ulation sizes accepting smooth derivatives– by differenti-
ating the fraction of individuals xα,

d(xα)rep
dt

=
d(nα/N)rep

dt
= xα

(
ṅα

nα
− Ṅ

N

)
(A1)

and assuming that the fitness of the individuals corre-
sponds to the instantaneous per-capita growth rate of
each strategy due to replication and deaths [48],

fα(x) =
ṅα

nα
, (A2)

where x = {xα} is the state vector of the population,
and the mean fitness of the aggregated population fulfills
f̄ =

∑
α x

αfα = Ṅ/N . If the population size is constant,
Ṅ = 0, then the per-capita growth rate is proportional to
the difference between trait and mean population fitness,

fα(x)− f̄(x) =
ṅα

nα
, (A3)

being hence the replicator equation applicable for con-
stant and variable populations with slightly different fit-
ness definitions. As it will be proven in the following,
the replicator dynamics also emerge as the macroscopic
description of some microscopic dynamics.

Let us start the derivation of the replicator equation
by assuming that there is a microscopic process, which
can be described by some transition probabilities between
states, and that such states are well defined. As we will
assume that individuals of different types diffuse through
different network architectures, each of such networks be-
ing part of a multiplex structure, let us introduce now the
related notation: As before, each agent type will be la-
beled by the superscript α of the layer to which it belongs
(related with its strategy), and the subscript i will refer
to a site in such layer.

The probability for node iα to be at time t in a state
with nαi individuals of α type will be denoted as P (nαi , t),
and the probability of increasing or decreasing such num-
ber of individuals by one individual will be T+(nαi ) and
T−(nαi ) respectively, where

T+(nαi ) = T [nαi → nαi + 1] (A4)

(similarly for T− with a sign change). With this notation,
it is possible to write the master equation

P (nαi , t+ 1)− P (nαi , t) =

P (nαi − 1, t− 1)T+(nαi − 1) + P (nαi + 1, t− 1)T−(nαi + 1)

−P (nαi , t− 1)[T−(nαi ) + T+(nαi )]

(A5)

which describes the evolution of nαi . Now, let us as-
sume that the total number of agents in site i is Ni =∑
α n

α
i � 1. We do not require it to be infinite, but just

large enough, so that we can make a continuous approach
without neglecting finite size fluctuations. In this case it
is possible to define the re-scaled variables xαi = nαi /Ni,
τ = t/Ni and ρ(xαi , τ) = NiP (nαi , t). For simplicity, let
us assume that there are only two strategies present in
the population, and the constraint

∑
α x

α
i = 1; we can

then expand the master equation in a one dimensional
Taylor expansion for Ni � 1 (the derivation is similar
for the three– [49] and n–strategies cases [50] by using a
multivariate Taylor expansion), giving rise to

d

dt
ρ(xαi , t) = − d

dxαi
[e(xαi )ρ(xαi , t)]

+
1

2

d2

(dxαi )2
[s2(xαi )ρ(xαi , t)].

(A6)

As the previous equation has the form of a Fokker-
Planck equation, it is possible to transform it into the
Langevin equation

ẋαi = e(xαi ) + s(xαi )ξ (A7)

where ξ is uncorrelated Gaussian noise and the drift and
diffusion terms are

e(xαi ) = T+(xαi )− T−(xαi ),

s(xαi ) =

√
T+(xαi ) + T−(xαi )

Ni

(A8)

respectively accounting for the deterministic behavior
and the stochastic effects.

Note that, whenever the transition probabilities can be
written as

T+(xαi ) = xαi R(xαi ), T−(xαi ) = xαi D(xαi ), (A9)

the drift term e(xαi ) looks like a replicator equation. This
is indeed the only term acting in the thermodynamic
limit N → ∞, and whenever the size of large popu-
lations does not increase or decrease too fast, Ni �
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xαi (R(xαi ) +D(xαi )). In this cases the Langevin equation
simplifies to

ẋαi = xαi · (R(xαi )−D(xαi )) (A10)

and the termsR(xαi ) andD(xαi ) act as the replication and
death components of the fitness difference fαi − f̄i (com-
pare Eqs.(A10) and (1)). Hence, any process in which
the transition probabilities can be factorized as shown in
Eq.(A9), can be written as a replicator like system with
fitness obtained as the solution of the equation

fαi − f̄i = R(xαi )−D(xαi ). (A11)

This property has a particularly useful value: by us-
ing the latter equation and decomposing fitness in payoff
components, it is possible to combine several processes,
as virus spread (linear models) and cultural reproduc-
tion (frequency dependence, usually non-linear), into a
unified evolutionary framework, as shown in [47].

Appendix B: Microscopic local updating rules and
mutations

Whenever there is an arbitrary number of strategies
in the population, the transition rates in Eq.(A9) can be
decomposed in additive terms in a way in which each
term relates to the contribution of each of the strategies.
In this way Eq.(A7) can be generalized to

ẋαi =
∑
β

(T
+α|β
i − T−α|βi ), (B1)

where T+α|β
i is the transition rate of increase of the frac-

tions of individuals in i, α corresponding to the increase
in one unit due to the action of agents in β,

T
+α|β
i = T

[
nαi → nαi + 1 |nβi

]
, (B2)

and decreases them by one unit for the minus sign (note
that this may imply a variation in the local population
size Ni). The exact choice of the transition rates depends
on the microscopic dynamics. These transition rates may
be written as [49],

T
+α|β
i =

∑
γ

xγi x
β
i g

+γ|β
i qγαi , T−α|β = T+β|α (B3)

whenever the transitions depend on a big number of ran-
dom interactions between agents in the same site (local
well-mixing assumption) in which one individual replaces
another (defined by the second condition) and there are
mutations between γ and α individuals at a rate qγαi .
Factor g±γ|β contains the information about how the mi-
croscopic updating rule acts: it states the exact mecha-
nism by which one strategy increases or decreases due to
the action of another.

Two probabilistic microscopic dynamics are usually in-
vestigated which give rise to the replicator dynamics (as-
suming qγαi = δγα). The first one is the modified Moran
process, where one randomly chosen individual is as-
sumed to die, and another individual, chosen according to
a probability proportional to its fitness, reproduces. This
process is defined by g+α|β

i = fαi /f̄i and g
−α|β
i = g

+β|α
i .

The second process is proportional imitation, where one
individual compares its strategy to another one, both
chosen at random in the mean field limit, and changes
its strategy with a probability increasing linearly with
the difference of the payoffs between them. This process
is defined by g+α|β

i = (1/2)(1 + (fαi − f
β
i )/∆fs,max) and

g
−α|β
i = g

+β|α
i , where ∆fs,max is the maximum fitness

difference and keeps the proper normalization. In both
cases the symmetry condition g−α|βi = g

+β|α
i ensures that

the evolutionary process maintains a constant popula-
tion, and the dynamics result in the replicator equation,
up to a multiplicative factor which relates to the tempo-
ral scale of the dynamics.

Whenever mutations happen as a strategy change at
any point during the lifetime of the individuals, they can
be introduced as additive terms [4] of the form

(T+α|β)mut = xβqβα , (T−α|β)mut = (T+β|α)mut (B4)

to the transition rates in Eq.(B3), where the coupled mu-
tations may be eliminated by setting qαβi = δαβ (with δαβ
the Kronecker’s delta). The introduction of the additive
term in the transition rates gives rise to the extra additive
term in the replicator dynamics

(ẋαi )mut =
∑
β

(xβi q
βα
i − x

α
i q
αβ
i ). (B5)

This term describes the effect of random mutations or
equivalently of random exploration of strategies [51] in
the evolutionary process. For the case of equal symmetric
mutations, i.e. qαβi = qβαi = µ, between all strategies this
term simplifies to

(ẋαi )mut = µ(1− Lxαi ) (B6)

where L is the number of strategies [30].
Let us finally recall that, when mutations are coupled

to the reproductive dynamics as in Eq.(B3), then Eq.(B1)
gives rise to the replicator-mutator equation,

(ẋαi )rep,mut =
∑
β

xβi f
β
i q

βα
i − x

α
i f̄i. (B7)

The diffusion term in Eq.(12) could also be added to
this equation to represent situations where only newborns
mutate.

Appendix C: Derivation of the transition
probabilities for the non-linear diffusion term

The microscopic dynamics that give rise to the non-
linear equation describing the dynamics of diffusion for
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fractions of individuals (Eq.(12)) is defined by the transi-
tion probabilities determining the increase or decrease of
the number of individuals, as shown in Eq.(13). In order
to infer such transition probabilities, which complete the
bottom up description, we can start expanding Eq.(12)
as

(ẋαi )diff =

−
∑
β

∑
j D

βxβj ρij(δ
αβkβi δij − δαβa

β
ij − k

β
i x

α
i δij + aβijx

α
i )

(C1)
Then, we can split the double sum on the four contri-

butions corresponding to the terms arising from iα, jα,
iβ and jβ (assuming that α 6= β and i 6= j), obtaining

(ẋαi )diff = −Dαkαi x
α
i (1− xαi ) +

∑
j 6=iD

αaαijρijx
α
j (1− xαi )

+
∑
β 6=αD

βkβi x
α
i x

β
i −

∑
j 6=i
∑
β 6=αD

βaβijρijx
α
i x

β
j

(C2)
respectively.

By performing the same kind of split in Eq. (13) we
find

ẋαi = T
+α|α
i|i − T−α|αi|i +

∑
j 6=i(T

+α|α
i|j − T−α|αi|j )

+
∑
β 6=α(T

+α|β
i|i − T−α|βi|i ) +

∑
j 6=i
∑
β 6=α(T

+α|β
i|j − T−α|βi|j )

(C3)
Then, since the terms relate to the influence of different

nodes kγ on the focal node iα, we can compare term by
term both equations above, finding that each term in the
first equation corresponds to the substraction of a pair
of terms in the second.

In order to finally find the right transition terms, we
need to take into account the physical constraints in the
system. Let us analyze them one by one.

First, we can focus on the first term on the above equa-
tions. This term relates to the influence of iα on its own
dynamics. Since the agents in iα are diffusing away from
that position, the influence is necessarily negative, and
hence T+α|α

i|i = 0, and

T
−α|α
i|i = T

[
nαi
Ni
→ nαi − 1

Ni − 1
|xαi

]
= Dαkαi x

α
i (1− xαi )

(C4)
where |xαi denotes a dependence, not implying that such
term is constant (indeed, it varies in the process). Note
also that, whenever xαi = 0, the transition rate is zero,
as expected due to the absence of agents diffusing away.
Furthermore, if xαi = 1, the transition rate is again zero,
as expected due to the fact that agents diffusing away

decrease the number of agents, but leave the fraction un-
changed.

Now, let us focus on the influence of jα on the dynam-
ics of iα (j 6= i). Since agents diffusing away from jα are
incresing the number of agents in iα, the influence is nec-
essarily possitive, and the transition rates are T−α|αi|j = 0

and

T
+α|α
i|j = T

[
nαi
Ni
→ nαi + 1

Ni + 1
|xαj

]
= Dαaαijρijx

α
j (1− xαi )

(C5)
The limits, as before, can be easily proven to behave in
the correct way.

Then, for the influence of iβ on iα (β 6= α), we have
to note that agents diffusing away from iβ decrease the
denominator of the fraction xαi = nαi /

∑
γ n

γ
i , since they

are decreasing nβi , and hence the fraction xαi increases.
Therefor, the transition rates are T−α|βi|i = 0 and

T
+α|β
i|i = T

[
nαi
Ni
→ nαi

Ni − 1
|xβi
]

= Dβkβi x
α
i x

β
i (C6)

Finally, individuals diffusing away from jβ (j 6= i and
β 6= α) are incresing the number of individuals in iβ , and
hence increasing the denominator in the fraction of xαi
(opposite as in the previous case). The influence is then
so as to decrease the fraction of individuals at iα and
hence T+α|β

i|j = 0 and

T
−α|β
i|j = T

[
nαi
Ni
→ nαi

Ni + 1
|xβj
]

= Dβaβijρijx
α
i x

β
j (C7)

From the transition probabilities above we can derive
the diffusion term corresponding to the stochastic effects
in the Langevin equation (extrapolating s to two dimen-
sions in Eq.(8)), which is

s =

√∑
β

∑
j D

βxβj ρij(x
α
i + (1− 2xαi )δ

αβ)(aβij + kβi δij)

Ni
(C8)

This term can be added to Eq.(12) –multiplied by white
Gaussian noise– in order to account for the stochastic
effects introduced by the diffusive process in situations
in which the thermodynamic limit cannot be assumed,
or population sizes vary fast.

[1] E. Bonabeau, Proc. Nat. Ac. Sci. USA 99, 7280 (2002).
[2] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M.

Mooij, S. F. Railsback, H.-H. Thulke, J. Weiner, T. Wie-
gand, and D. L. DeAngelis, Science 310, 987 (2005).

[3] D. Helbing, Theory and Decision 40, 149 (1996).
[4] D. Helbing, In: Leinfellner, W., Köhler, E. (Eds.), Game

Theory, Experience, Rationality. Kluwer Academic, Dor-

drecht pp. 211–214 (1998).
[5] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev.

Lett. 95, 238701 (2005).
[6] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev.

E 74, 011901 (2006).
[7] J. Maynard Smith, Evolution and the Theory of Games

(Cambridge University Press, Cambridge, 1982).



11

[8] K. Sigmund, The Calculus of Selfishness (Princeton Uni-
versity Press, Princeton, 2010).

[9] R. J. Requejo and J. Camacho, J. Theor. Biol. 272, 35
(2011).

[10] R. J. Requejo and J. Camacho, Phys. Rev. Lett. 108,
038701 (2012).

[11] D. Vilone, A. Robledo, and A. Sánchez, Phys. Rev. Lett.
107, 038101 (2011).

[12] R. J. Requejo, J. Camacho, J. A. Cuesta, and A. Arenas,
Phys. Rev. E 86, 026105 (2012).

[13] K. M. Page and M. A. Nowak, J. Theor. Biol. 219, 93
(2002).

[14] P. D. Taylor and L. B. Jonker, Math. Biosc. 40, 145
(1978).

[15] J. Hofbauer, P. Schuster, and K. Sigmund, J. Theor. Biol.
81, 609 (1979).

[16] J. Maynard Smith and G. R. Price, Nature 246, 15
(1973).

[17] J. Maynard Smith, J. Theo. Biol. 47, 209 (1974).
[18] C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev.

Lett. 97, 158701 (2006).
[19] C. P. Roca, J. A. Cuesta, and A. Sánchez, Physics of Life

Reviews 6, 208 (2009).
[20] M. A. Nowak and R. M. May, Nature 359, 826 (1992).
[21] C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev. E

80, 046106 (2009).
[22] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95,

098104 (2005).
[23] F. C. Santos, M. D. Santos, and J. M. Pacheco, Nature

454, 213 (2008).
[24] R. J. Requejo and J. Camacho, Phys. Rev. E 85, 066112

(2012).
[25] J. Lovelock and L. Margulis, TELLUS 26, 2 (1974).
[26] I. Bomze, Biol. Cybern. 48, 201 (1983).
[27] I. Bomze, Biol. Cybern. 72, 447 (1995).
[28] C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund,

Science 296, 1129 (2002).
[29] C. Hauert, S. D. Monte, J. Hofbauer, and K. Sigmund,

J. Theor. Biol. 218, 187 (2002).
[30] A. Arenas, J. Camacho, J. A. Cuesta, and R. J. Requejo,

J. Theor. Biol. 279, 113 (2011).
[31] C. Hauert, J. Y. Wakano, and M. Doebeli, Theor. Pop.

Biol. 73, 257 (2008).
[32] J. Y. Wakano, M. A. Nowak, and C. Hauert, Proc. Nat.

Ac. Sci. USA 106, 7910 (2009).
[33] J. Hofbauer, Nonlinear Analysis, Theory, Methods and

Applications 5, 1003 (1981).

[34] J. Hofbauer and K. Sigmund, Evolutionary Games
and Population Dynamics (Cambridge University Press,
Cambridge, 1998).

[35] G. R. Price, Nature 227, 520 (1970).
[36] G. R. Price, Ann. Hum. Gen., London 35, 485 (1972).
[37] G. R. Price, Ann. Hum. Gen., London 36, 129 (1972).
[38] A. Traulsen, Evolution 64, 316 (2010).
[39] H. Ohtsuki, and M. Nowak, J. Theor. Biol. 243, 86

(2006).
[40] M. Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson,

Y. Moreno, and M. Porter, J. Complex Networks 2(3),
203 (2014).

[41] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance,
D. Papo, F. del Pozo, and S. Boccaletti, Sci. Rep. 3, 1344
(2013).

[42] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes,
C. Pérez-Vicente, Y. Moreno, and A. Arenas, Phys. Rev.
Lett. 110, 028701 (2013).

[43] A. Solé-Ribalta, M. De Domenico, N. E. Kouvaris,
A. Díaz-Guilera, S. Gómez, and A. Arenas, Phys. Rev. E
88, 032807 (2013).

[44] M. D. Domenico, A. Sole-Ribalta, E. Cozzo, M. Kivela,
Y. Moreno, M. A. Porter, S. Gomez, and A. Arenas,
Physical Review X 3, 041022 (2013).

[45] C. Granell, S. Gómez, and A. Arenas, Phys. Rev. Lett.
111, 128701 (2013).

[46] N. E. Kouvaris, S. Hata, and A. Díaz-Guilera, Sci. Rep.
5, 10840 (2015).

[47] R. J. Requejo and A. Díaz-Guilera, Unpublished results
(2015).

[48] G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).
[49] A. J. Bladon, T. Galla, and A. J. McKane, Phys. Rev. E

81, 066122 (2010).
[50] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev.

E 85, 041901 (2012).
[51] A. Traulsen, C. Hauert, H. De Silva, M. Nowak, and

K. Sigmund, PNAS 106, 709 (2009).
[52] R. A. Fisher, Annals of Eugenics 7, 355 (1937).
[53] A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov,

Bull. Univ. Moscow, Ser. Int. A 1, 1 (1937).
[54] J. Fort and V. Mèndez, Rep. Prog. Phys. 65, 895 (2002).
[55] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg,

Nature 428, 646 (2004).
[56] A. Traulsen and M. A. Nowak, Plos One 2, e270 (2007).
[57] M. Kimura, Nature 217, 624 (1968).


	I Introduction
	II Diffusion in the multiplex: The problem of working with fractions.
	III Replicator dynamics with diffusion in the multiplex
	IV Recovering linear diffusion and simplifying the analytics.
	A Constant population ratios (or sizes) induce hidden selective pressure.
	B Slow population size change and quasi-neutral selection.
	C Time-scales separation.

	V Discussion and conclusions
	A Microscopic local derivation of the replicator equation.
	B Microscopic local updating rules and mutations
	C Derivation of the transition probabilities for the non-linear diffusion term
	 References

